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Abstract— In this paper, we present closed-form ex-
pressions of the average per-node throughput for sensor
networks with a slotted ALOHA MAC protocol in Rayleigh
fading channels. We compare networks with three regular
topologies in terms of per-node throughput, transmit
efficiency, and transport capacity. In particular, for square
lattice networks, we present an analysis of the dependence
of the maximum throughput and optimum transmit proba-
bility on the signal-to-interference-ratio threshold required
for successful reception. For random networks with nodes
distributed according to a two-dimensional Poisson point
process, the average per-node throughput is analytically
characterized and numerically evaluated. It turns out that
although regular networks have an only slightly higher
per-node throughput than random networks for the same
link distance, regular topologies have a significant benefit
when the end-to-end throughput in multihop connections
is considered.

I. INTRODUCTION

A sensor network [1] consists of a large number
of sensor nodes which are placed inside or near a
phenomenon. Uniformly random or Poisson distributions
are widely accepted models for the location of the nodes
in wireless sensor networks, if nodes are deployed in
large quantities and there is little control over where they
are dropped. A typical scenario is a deployment from an
airplane for battlefield monitoring. On the other hand,
depending on the application, it may also be possible
to place sensors in a regular topology, for example in a
square grid.

Throughput is a traditional measure of how much
traffic can be delivered by the network [2], [3]. There
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is a rich literature on throughput capacity for wireless
networks [2], [4], [5] with random or regular topologies.
The seminal paper [2] shows that, under certain assump-
tions, in a static two-dimensional network with N nodes
and N/2 randomly selected source-destination pairs,
the end-to-end throughput of a connection is at most
Θ(W/

√
N), where W is the maximum transmission

rate for each node. However, such “order of” results
do not provide any guidelines for protocol design, since
the scaling behavior is very robust against changes in
MAC and routing protocols [6]. All the above research
work assumes networks with randomly located nodes.
There are also research efforts focusing on networks
with regular topologies which allow for mathematical
tractability and provide valuable insight. [4] calculates
the throughput of a regular square networks with a
slotted ALOHA channel access scheme. [6] proves that
the Θ(N) upper bound on transport capacity is tight
for regular square networks with path loss exponents
greater than 3. [7] compares the performance of regular
topologies with random topology in wireless CDMA
sensor networks. [8] and [9] evaluate the performance
for regular grid and random topologies. They assume a
“torus” network to avoid boundary effects and use the
expected interference power to replace the exact inter-
ference power. In particular at high load, replacing the
actual interference by its mean yields overly pessimistic
results.

Most of the work above is based on a “disk model”,
where it is assumed that the radius for a successful
transmission of a packet has a fixed and deterministic
value, irrespective of the condition and the realization
of the wireless channel. Such simplified link models

0-7803-9012-1/05/$20.00 (C) 2005 IEEE



ignore the stochastic nature of the wireless channel. Our
analysis is based on a Rayleigh fading channel model,
which includes both large-scale path loss and stochastic
small-scale variations in the channel characteristics. Note
that even with static nodes as assumed in this paper,
the channel quality varies because any movement in the
environment affects the multipath geometry of the RF
signal, which is easily confirmed experimentally [10, p.
45]. The significant variation of the link quality when
nodes are immobile is also pointed out in [11]–[13], and
the shortcomings of the “disk model” are discussed in
[14].

This paper addresses the throughput problem for
large sensor networks with Rayleigh fading channels.
To provide insight on the impact of the topology on
the networks performance, we compare networks with
a random and three regular topologies. We define the
throughput as the expected number of successful packet
transmissions of a given node per timeslot. The end-
to-end throughput over a multihop connection, defined
as the minimum of the throughput values of the nodes
involved, is a performance measure of a route and the
MAC scheme. It is assumed that every node always
has a packet to transmit (heavy traffic) and that all the
networks have the same density λ = 1.

We consider slotted ALOHA [4], which is a simple
random access scheme often used. It assumes that in
every timeslot, every node transmit with probability p.
The traffic distribution in a sensor networks is usu-
ally spatially and temporally bursty, i.e., busy periods
alternate temporally and busy areas alternate spatially
with periods and areas with little or no traffic. It may
therefore be impractical to employ reservation-based
MAC schemes such as TDMA and FDMA that require
a substantial amount of coordination traffic and cannot
be implemented efficiently and in a fully distributed
fashion1. In any case, the slotted ALOHA scheme is
the simplest meaningful MAC scheme and therefore
provides a lower bound on the performance for more
elaborate schemes. Since areas of the network or periods
with little or no traffic pose no problems, our analysis
focuses on and applies to busy areas and busy periods
of the network where collisions are unavoidable and the
throughput is interference-limited.

In Section II, the Rayleigh fading link model is

1In general this problem is NP-hard.

introduced, For a slotted ALOHA MAC scheme, the
conditional success probability of a transmission for
a node given the transmitter-receiver and interference-
receiver distances is derived. Section III evaluates the
(per-node) throughput for networks with three regular
topologies and compares their performance. In particular,
for square networks, the analysis of the dependence
of the maximum throughput and the optimum trans-
mit probability on signal-to-interference-ratio threshold
(SIR) Θ is provided. Section IV investigates the average
throughput for random networks with and without given
transmitter-receiver distance d0. This section also ana-
lyzes the transport capacity and end-to-end throughput.
Section V concludes the paper.

II. THE RAYLEIGH FADING LINK MODEL

We assume a flat Rayleigh block fading channel. A
transmission from node i to node j is successful if
the signal-to-noise-and-interference ratio (SINR) γij is
above a certain threshold Θ that is determined by the
communication hardware and the modulation and coding
scheme [12]. The SINR γ is given by γ = Q

N0+I ,
where Q is the received power, which is exponentially
distributed with mean Q̄. N0 denotes the noise power,
and I is the interference power, i.e., the sum of the
received power from all the undesired transmitters. Over
a transmission of distance d with an attenuation dα, we
have Q̄ = P0d

−α, where P0 denotes the transmit power,
α is the path loss exponent. Our analysis is based on the
following theorem:

Theorem 1: In a Rayleigh fading network with slotted
ALOHA, where nodes transmit at equal power levels
with probability p, the success probability of a transmis-
sion given a desired transmitter-receiver distance d0 and
n other nodes at distances di (i = 1, . . . , n) is

Ps|d0,...,dn

= exp
(
− ΘN0

P0d
−α
0

)
·

n∏
i=1

(
1 − Θp(

di

d0

)α
+ Θ

)
(1)

where P0 is the transmit power, N0 the noise power, and
Θ the SINR threshold.

Proof: Let Q0 denote the received power from the
desired transmitter and Qi, i = 1, . . . , n, the received
power from n potential interferers. All the received
powers are exponentially distributed, i.e., pQi

(qi) =
1/Q̄ie.

−qi/Q̄i , where Q̄i denotes the average received



power Q̄i = Pid
−α
i . The cumulated interference power

at the receiver is

I =
n∑

i=1

SiQi,

where Si is a sequence of iid Bernoulli random variables
with P(Si = 1) = p and P(Si = 0) = 1−p. The success
probability of a transmission is2

Ps|d0,d1,...,dn
= EI

[
P[Q0 � Θ(I + N0) | I ]

]
=EQ,S

[
exp

(
− Θ(

∑n
i=1 SiQi + N0)

Q̄0

)]

= exp
(
− ΘN0

Q̄0

)
EQ,S

[ n∏
i=1

exp
(
− Θ(SiQi)

Q̄0

)]

= exp
(
− ΘN0

P0d
−α
0

) n∏
i=1

{
P (Si = 1)

·
∫ ∞

0
exp

(
− Θqi

Q̄0

)
pQi

(qi)dqi + P (Si = 0)
}

= exp
(
− ΘN0

P0d
−α
0

) n∏
i=1

( p

1 + Θ
(

d0
di

)α + 1 − p
)

= exp
(
− ΘN0

P0d
−α
0

) n∏
i=1

(
1 − Θp(

di

d0

)α
+ Θ

)
(2)

Note that in Theorem 1, the success probability is
obtained without knowing who is transmitting among
the n nodes in each timeslot. We are interested in the
interference-limited case, so we focus on the interference
part of (2), i.e., the second factor. This implies that
the results obtained will have to be multiplied by the
noise term that is easy to determine and therefore not
included in our derivations. In addition, by increasing
the transmit power, the noise term approaches 1, so our
results represent MAC-dependent bounds that can be
approached but not exceeded even if the transmit power
were not constrained.

Corollary 2: Under the same assumptions as in The-
orem 1 but with N0 = 0 and unit transmit power
Pi = 1, the success probability given a desired link of
normalized distance r0 = d0/d0 = 1 and n other nodes
at normalized distances ri = di/d0 is:

Ps|r0,r1,...,rn
=

n∏
i=1

(
1 − p

1 + ri
α/Θ

)
= LI(Θ), (3)

2A similar calculation has been carried out in [15] for a network
with known simultaneously transmitting nodes.

which is the Laplace transform of the interference power
I evaluated at the SIR threshold Θ.3

Proof: With unit transmit power, the mean power
from the i-th interferer at distance ri is 1/rα

i . The
Laplace transform of the exponential distribution with
mean 1/µ is µ/(µ + s), thus the Laplace transform of I

is [18]:

LI(s) =
n∏

i=1

( prα
i

rα
i + s

+ 1 − p
)

=
n∏

i=1

(
1 − p

1 + rα
i /s

)
(4)

From (2) and with ri = di/d0 (normalized distances), if
N0 = 0,

Ps|r0,r1,...,rn
=

n∏
i=1

(
1 − p

1 + ri
α/Θ

)
(5)

we get (3).

III. REGULAR NETWORKS

In this section, we investigate networks with three
regular topologies (square, triangle, hexagon) in which
every node has the same number of nearest neighbors
and the distance between all pairs of nearest neighbors
is the same.

A. Square networks

We first analyze square networks with N nodes placed
in the vertices of a square grid with distance 1 between
all pairs of nearest nodes (density 1). The next-hop
receiver of each packet is one of the four nearest neigh-
bor nodes of the transmitter, so the transmitter-receiver
distance d0 = 1. If the receiver node O is located in the
center of the network as shown in Fig. 1 and node A is
the desired transmitter, the success probability for node
O based on (5) can be written as:

Ps(p) =
(
1 − Θp

1α + Θ

)3 ·
(
1 − Θp

(
√

2)α + Θ

)4

·
√

N/2∏
i=2

{(
1 − Θp

iα + Θ

)4 ·
(
1 − Θp

(
√

2i2)α + Θ

)4

·
i−1∏
j=1

(
1 − Θp

(
√

i2 + j2)α + Θ

)8}
. (6)

The first term in (6) accounts for the other three nearest

3The identity between the Laplace transform of the interference
and the reception probability in Rayleigh fading channels has been
pointed out in [16], [17].



AO

Fig. 1. The topology of a square network. Node O is the receiver
and node A is the desired transmitter, where d0 = |OA| = 1.

neighbor nodes of the receiver; the second term for the 4
diagonal nodes at distance

√
2; all the other terms from

the nodes located on the dashed squares with edge ≥ 2
in Fig. 1. The throughput4 is given by

g(p) = p(1 − p)Ps(p), (7)

where p is the probability that A transmits and 1 − p

is the probability that O does not transmit in the same
timeslot. The analytic throughput g vs. p based on (6)
and (7) for a regular square network with 40× 40 nodes
with node density λ = 1 is displayed in Fig. 2 (a).
For α = 4, the maximum throughput gmax = 0.0247 is
achieved at an optimal transmit probability popt = 0.066.
The transmit efficiency, defined as Teff = gmax/popt, is
37.4%. The simulation result5 of the throughput for a
40 × 40 square network is plotted in Fig. 2 (b), where
for α = 4, the maximum throughput gmax = 0.0252 is
achieved at popt = 0.066. It is shown that the analytic
results match the simulation perfectly.

For the analysis of the throughput as a function of
Θ, we need to determine popt(Θ) and gmax(Θ). We
use three analytic approximations to find popt(Θ) and

4The throughput is calculated as the throughput of the center
node. This is the worst case since most other nodes experience a
lower interference. In the case of infinite networks, the interference
distribution is the same at every node.

5We use MATLAB to simulate the MAC scheme and the Rayleigh
fading channel. For the simulation, we consider only the center nodes
to avoid boundary effects.
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Fig. 2. For a square network with 40 × 40 nodes, with Θ = 10,
(a) the analytic throughput g(p) based on equation (6) and (b) the
simulated throughput.

gmax(Θ). From (5), g can be written as

g = p(1 − p)
n∏

i=1

(
1 − p

1 + rα
i /Θ

)
, (8)

where ri = di/d0.
Since popt = arg maxp g(p) = arg maxp log

(
g(p)

)
, we

maximize

log(g) = log(p) + log(1 − p)

+
n∑

i=1

log
(
1 − p

1 + rα
i /Θ

)
, (9)

using log(1 + x) ≈ x for small x,6 yielding

p2
opt − popt(1 + 2s) + s = 0, (10)

with

s =
1∑n

i=1
1

1+rα
i /Θ

. (11)

Note ri = di for d0 = 1. So, popt is given by

popt = s +
1
2

(
1 −

√
1 + 4s2

)
. (12)

gmax can be written as gmax = popt(1 − popt)Ps(popt),
where Ps(popt) is obtained by plugging popt into (6),
where s is given by (11). This approximation method
is called Analytic 1. Note that the only approximation
involved in the derivation of Analytic 1 is log(1+x) ≈ x.

For α = 4, we use i2 to approximate d4
i for the nodes

located in one quadrant. As shown in Fig. 3, the distance
of node i (i = 1, . . . , 8) in the first quadrant to the
receiver node O is di. Table I compares d4

i and i2 for
i = 1, . . . , 8. By Euler’s summation formula, d4

i ≈ i2

6The approximation is accurate for small p in the range of interest,
i.e., 0 < p < 0.3.



O

2

4 6

3

1

8

7

5

Fig. 3. Node numbering scheme pertaining to Table I for nodes in
the first quadrant of a square network. O is the receiver.

TABLE I

COMPARISON OF d4
i AND i2 .

i 1 2 3 4 5 6 7 8
d4

i 1 1 4 16 16 25 25 64
i2 1 4 9 16 25 36 49 64

allows a simplification (the node at distance 1 is the
desired transmitter):

k+1∑
i=2

1
1 + i2/Θ

≈
√

Θ
(

arctan
k + 3/2√

Θ
− arctan

3
2
√

Θ

)
.

(13)

For k → ∞,

s ≈ 1

4
√

Θ
(

π
2 − arctan 3

2
√

Θ

) , (14)

where 4 in (14) comes from the fact that nodes are
located in 4 quadrants. Plugging (14) into (12) is our
method Analytic 2.

In method Analytic 3, we use the approximation s ≈
1/(4

√
Θ), which is within ∓20% for the practical range

9/(2 cot(0.8))2 ≈ 2.4 < Θ < 9/(2 cot(1.2))2 ≈ 14.9,
and substitute it into (12),

popt =
1

4
√

Θ
+

1
2

(
1 −

√
1 +

1
4Θ

)
. (15)

Based on (9) and (11), gmax is given by

gmax = popt(1 − popt) e−popt/s. (16)

The numerical result obtained by direct maximization
of (6) for different Θ is compared with the results from
the three analytical approximations in Fig. 4. In Analytic
2, approximating interfering nodes at distance di by the
larger distance i1/2 (shown in Table I) results in lower
interference. The interference has a more significant
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Fig. 4. For a square network with 40 × 40 nodes and α = 4,
the numerical results and analytic results from Analytic 1, Analytic 2
and Analytic 3 for (a) the relationship between popt and Θ; (b) the
relationship between gmax and Θ.

impact on the throughput (thus popt) for small Θ (see
(13)). Thus for small Θ, this lower interference leads to
a higher popt than for Analytic 1. The transmit efficiency
is Teff = gmax/popt = (1 − popt)e−popt/s, which is
monotonically increasing from lims→0 Teff = e−1 ≈
0.37 to lims→∞ Teff = 1/2. The upper bound is achieved
if the interference goes to zero, in which popt = 1/2
and gmax = 1/4. For the lower bound, as s → 0, we
have popt → 0 and gmax → 0, and Teff converges to
e−1. Hence s is a measure for spatial reuse. Indeed
for s → 0, which happens for α → 0 7 or Θ → ∞,
the network does not permit any spatial reuse. In this
case, the transmit efficiency reduces to the efficiency of
conventional slotted ALOHA [19], where for a network
with N nodes, popt = 1/N and Teff = limN→∞(1 −

7In fact, α → 2 is sufficient for infinite networks..



(a) Triangle Network (b) Hexagon network

Fig. 5. The topology of (a) triangle network and (b) hexagon
network.

1/N)N−1 = e−1 [4]. The fact that our limit coincides
with the limit for conventional slotted ALOHA further
validates our approximations. Note that while Analytic 1
provides a better approximation, the other two methods
yield closed-form expressions that are much more easily
evaluated.

B. Triangle networks and hexagon networks

Some other regular topologies of interest are the
triangle topology and its dual, the hexagon topology
(Fig. 5). For each triangle, there are three vertices and six
nearest neighbors for each vertex, while for the hexagon,
there are six vertices for each hexagon and three nearest
neighbors for each vertex. Again, the next-hop receiver
of each packet is one of the nearest neighbor nodes of
the transmitter, so the transmitter-receiver distance d0 is
equal to the side length of the regular polygon. In the
triangle network, each node is located in a hexagon with
area

√
3

2 d2
0. For node density is 1, d0 =

√
2√
3
. Similarly,

for hexagon networks, d0 =
√

4
3
√

3
for density 1.

The calculation of Ps in (6) depends on the geometry
of the node placement. Similar to the derivation of
square lattice networks as in (6), we get the relationship
between the throughput g and the transmit probability p

and compare the performance of triangle and hexagon
networks in Fig. 6 (a), (b). To compare the performance
of the three network, we introduce the transport capacity
which can be defined as Z := gmaxd0. The comparison
of square, triangle, and hexagon networks for α = 4 is
shown in Table II. The performance difference among
the three topologies can be explained by the distance
and number of the potential interfering nodes. Note that
the transmit efficiency Teff is very close to the one of
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Fig. 6. The analytic throughput g(p) vs. p for two-dimensional
networks with (a) triangle topology and (b) hexagon topology, where
Θ = 10 and N = 1600 nodes.

TABLE II

COMPARISON OF SQUARE, TRIANGLE AND HEXAGON NETWORKS

FOR α = 4 AND Θ = 10, WHERE popt , gmax AND Teff DENOTE THE

OPTIMUM TRANSMIT PROBABILITY, MAXIMUM THROUGHPUT

AND TRANSMIT EFFICIENCY.

popt gmax Teff d0 gmaxd0

Square 0.0660 0.0247 0.37 1.0 0.0247
Triangle 0.0570 0.0213 0.37 1.0746 0.0229
Hexagon 0.0870 0.0326 0.37 0.8774 0.0286

conventional slotted ALOHA and does not depend on
the topology.

IV. RANDOM NETWORKS

Here, we assume that the positions of the nodes con-
stitute a Poisson point process. Note for large networks,
this is equivalent to a uniformly random distribution for
all practical purposes. For a given realization of a random
network with N = 1600 nodes, Fig. 7 (a) displays the
analytic throughput based on (5) for a node in the center
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Fig. 7. For a receiver node in the center of a fixed network realization
with N = 1600 nodes around and d0 = 0.5522, (a) analytic result
of throughput g vs. transmit probability p based on equation (5) and
(b) simulation result over 2000 runs comparing with analytic result
for α = 4 and Θ = 10.



area with the transmitter-receiver distance d0 = 0.5522.
The simulation result of its throughput based on 2000
runs is compared with the analytic result for α = 4 in
Fig. 7 (b). It is shown that they match each other well.

In the following, we will investigate the throughput
averaged over network realizations when the transmitter-
receiver distance d0 is fixed (Section IV-A) and not fixed
(Section IV-B).

A. Average throughput for fixed d0

In this case, we assume the distance between the
desired transmitter and receiver is fixed and there are
N other nodes constituting a two-dimensional Poisson
point process. Although (5) gives the success probability
conditioned on d1, d2, . . . , dN , we still need to find the
joint density of d1, d2, . . . , dN (ordered distances). It
is well known that for one-dimensional Poisson point
processes with density λ, the ordered distance from
nodes to the desired receiver form the arrival times of a
Poisson process [18]. The inter-arrival intervals are iid
exponential with parameter λ

fdi−di−1(xi − xi−1) = λe−λ(xi−xi−1). (17)

So for the ordered distance 0 ≤ d1 ≤ · · · ≤ dN , the joint
density function of the inter-arrival intervals is

fd1,d2,··· ,dN
(x1, x2, · · · , xN )

=fd1,··· ,dN−dN−1(x1, x2 − x1, · · · , xN − xN−1)

=
(
λe−λx1

)(
λe−λ(x2−x1)

) · · · (λe−λ(xN−xN−1)
)

=λNe−λxN , 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN (18)

When nodes are distributed according to a two-
dimensional Poisson point process with density λ, the
squared ordered distances from the desired receiver have
the same distribution as the arrival times of a Poisson
process with density λπ [18]. The squared ordered
distances have a joint distribution with density

fd2
1,··· ,d2

N
(x1, · · · , xN ) = (λπ)Ne−λπxN ,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xN , (19)

because from [20], we have

fd2
i−d2

i−1
(xi − xi−1) = λπe−λπ(xi−xi−1). (20)

The conditional success probability can be written as
(see (5))

Ps|d0,d1,··· ,dN
=

N∏
i=1

(d2
i )

α

2 + (1 − p)Θdα
0

(d2
i )

α

2 + Θdα
0

. (21)

Integrating (21) with respect to the joint density (19),
and in particular, evaluating it for α = 4, we obtain

Ps|d0
=

∫ ∞

0
(λπ)Ne−λπxN

{∫ xN

0
· · ·

∫ x2

0
N∏

i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 · · · dxN−1

}
dxN .

(22)

By applying a similar inductive technique as in [18], it
can be shown that∫ xN

0
· · ·

∫ x2

0

N−1∏
i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 · · · dxN−1

=
1

(N − 1)!

(
xN − p

√
Θd4

0 arctan
( xN√

Θd4
0

))N−1
.

(23)

Combining (22) and (23), we have

Ps|d0
=

∫ ∞

0

(λπ)N

(N − 1)!
e−λπx x2 + (1 − p)Θd4

0

x2 + Θd4
0(

x − p
√

Θd4
0 arctan

( x√
Θd4

0

))N−1
dx. (24)

Based on (24), we numerically evaluate the average
throughput E[g|d0] = p(1 − p)Ps|d0

(averaged over all
network realizations) and plot it as a function of p in
Fig. 8 (a) for a network with node numbers N = 100,
121 and 144, where d0 = 1. It is shown that they
are very close, indicating that only a portion of nodes
interferes at the receiver and that nodes further away have
little impact on the transmission. Fig. 8 (b) compares
the analytical average throughput E[g|d0] (dashed line)
according to equation (24) with the simulation result of
the throughput for center link with d0 = 1 averaged over
10000 network realizations (marked by +). Note that the
analytical approach used to derive (23) is restricted to
α = 4. Luckily, this value of α is of significant practical
relevance [21]. For other values of α, one has to resort
to simulation.

B. Average throughput for variable d0

In the previous analysis, we assumed the transmitter-
receiver distance d0 is fixed and N potential interfering
nodes are uniformly distributed around. Now we assume
that the receiver located at the center selects its nearest
neighbor node as its desired transmitter. Then there are
N − 1 nodes further away than the desired transmitter.
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Fig. 8. For α = 4 and Θ = 10, (a) The analytical average throughput
E[g|d0 = 1] based on equation (24) for networks with node number
N = 100, 121 and 144. (b) Comparison of the analytical average
throughput E[g|d0 = 1] (dashed line) with the simulation result for
the center link over 10000 network realizations (+ mark), where the
receiver has N = 144 potential interfering nodes around.

The distance to the nearest neighbor has the Rayleigh
density function (as shown in [15]):

fd0(x) = 2πxe−πx2
. (25)

Since d0 is the nearest distance, d2
i in (21) can be

varying from d2
0 to d2

i+1. So we integrate xi from d2
0

to xi+1:

Ps|d0
=

∫ ∞

d2
0

fd2
1,...,d

2
N−1|d2

0
(x1, . . . , xN−1|d2

0)
{ ∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−1∏
i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 . . . dxN−2

}
dxN−1

(26)
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Fig. 9. For α = 4 and Θ = 10, E[g] vs. p for random network
with N = 144. The analytic result from (26) and (29) is displayed
by solid line; the simulation result over 10000 runs by + mark.

and

fd2
1,...,d

2
N−1|d2

0
(x1, . . . ,xN−1|d2

0) =

(λπ)N−1e−λπ(xN−1−d2
0),

where 0 ≤d2
0 ≤ x1 ≤ · · · ≤ xN−1. (27)

By induction, it can be shown that∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−2∏
i=1

x2
i + (1 − p)Θd4

0

x2
i + Θd4

0

dx1 . . . dxN−2

=
1

(N − 2)!

{
xN−1 − d2

0 − p
√

Θd4
0

·
[
arctan

( xN−1√
Θd4

0

) − arctan
( d2

0√
Θd4

0

)]}N−2
. (28)

The success probability averaged over d0 is given by:

Ps =
∫ ∞

0
fd0(x)Ps|d0

dx (29)

Substitute (27) and (28) into (26) and evaluate (29) with
(25), we obtain the relationship between E[g] = p(1 −
p)Ps and p, which is plotted in Fig. 9. It is shown that
the analytic (solid line) and simulation result (marked by
+) match each other perfectly.

Fig. 9 implies random networks have better average
throughput for local data exchange than regular net-
works. This can be explained by d0, the transmitter-
receiver distance. In random networks, a variable d0

leads to a variable throughput. Fig. 10 (a) displays
E[g|d0] vs. p for d0 from 0.5 to 1.5. Fig. 10 (b) shows
the relationship for d0 = 0.1, 0.5, 1.0 and 1.5. Not
surprisingly, smaller d0 results in higher throughput.
For the variable d0 case, it is assumed that the desired
transmitter is the nearest neighbor of the receiver. With
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Fig. 10. For α = 4 and Θ = 10, average throughput (a) E[g|d0]
vs. p for d0 from 0.5 to 1.5. (b) E[g|d0] vs. p for d0 = 0.1, 0.5, 1.0
and 1.5.

the pdf of (25), the probability that d0 is greater than
1 (the inter-node distance in square regular network)
is P[d0 > 1] = e−π = 0.043. So for most nodes,
the received signal power from the desired transmitter
is greater than that in regular networks. In Fig. 10
(b), for d0 = 0.1, it is shown that the strong signal
power resulting from very small d0 offsets the impact
of interference even for high transmit probabilities p.

Now consider the generic routing strategy from [15]:
each node in the path sends packets to its nearest neigh-
bor that lies within a sector φ, i.e., within ±φ/2 of the
source-destination direction. The previous scheme where
d0 is obtained as the distance to the nearest neighbor
makes no progress in the source-destination direction.
Such a choice of d0 would correspond to routing within
φ = 2π, clearly an inefficient choice of φ. More sensible
is φ ≤ π. Let d0 be the distance to the nearest neighbor
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Fig. 11. Comparison of the average throughput of regular square
network and random network. For both networks, N = 1600, d0 = 1,
α = 4 and Θ = 10.

within sector φ. The probability density of d0 is given
by [15]:

fd0(x) = xφe−x2φ/2. (30)

If the routing sector φ = π/2, then E[d0] = 1. For d0 =
1, Fig. 11 displays the throughput for square network
and random network with N = 1600. It turns out that for
the same transmitter-receiver distance, square networks
have a slightly higher average throughput than random
networks.

We compare the transport capacity gmaxd0 of regular
and random networks. Fig. 12 (a) shows gmax vs. d0 and
popt vs. d0 for a random network. Fig. 12 (b) compares
the transport capacity of random and regular networks.
It is shown that at a specific transmitter-receiver dis-
tance d0, regular networks slightly outperform random
networks in terms of transport capacity.

C. End-to-end throughput gEE in a random network

In wireless sensor networks with multihop communi-
cation, the end-to-end throughput (the minimum of the
throughput values of the nodes involved) of a route with
an average number of hops is a better performance indi-
cator than the average throughput. For two-dimensional
random sensor networks (area m × m, density 1, rout-
ing within sector φ) with uniformly randomly selected
source and fixed destination located at the corner8, we
can approximate the average path length in hops

h̄ ≈ r̄

D̄η
. (31)

8For the many-to-one traffic typical in sensor networks, we assume
the data sink for all connections to be in one of the corners of the
(square) network.
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Fig. 12. With N = 1600, α = 4 and Θ = 10, (a) gmax vs. d0 and
popt vs. d0 for a random network, (b) transport capacity gmaxd0 for
random and regular networks with the same size and node density.
For random networks, E[d0] = 1 for φ = π/2.

where r̄ denotes the expected distance between the
source-destination pair, D̄ the expected hop length and η

the expected path efficiency, where the path efficiency is
the ratio between the Euclidean distance and the travelled
distance of a path. D̄η can be viewed as the effective hop
length — the average hop length projected in the desired
source-destination direction. The mean distance from a
random point in a square to a corner can be derived from
[22, Exercise 2.4.5]:

r̄ =

[√
2

3
+

1
3

arctanh(
1√
2
)

]
m ≈ 0.769m, (32)

From [15], we know that

D̄ =
√

π

2φ
, η =

2
φ

sin(
φ

2
). (33)
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Fig. 13. The average end-to-end throughput of random networks
for different routing sectors φ, where α = 4 and Θ = 10.

So the average path length in hops can be approxi-
mated by plugging (32) and (33) into (31). To evaluate
the end-to-end throughput of a route with h̄ hops, we
use a semi-analytic approach by generating an h̄-hop
path with each hop length obtained as a realization of D

according to pdf in (30), and evaluate the throughput of
each hop based on Fig. 10 (a). The average end-to-end
throughput is then obtained by taking the minimum of
each path and averaging the minimum over the number
of realizations of the simulated routes. Fig. 13 shows
that the maximum end-to-end throughput gEE is 0.0086,
0.0053 and 0.0039 for φ = π, π/2 and π/3.

What is the end-to-end throughput for regular net-
works? It can be directly obtained from Fig. 2 (a) and
Fig. 6, which is 0.0247, 0.0213 and 0.0326 for square,
triangle and hexagon networks. For regular networks,
every hop has the same length, and the throughput is
calculated for a node in the center of the network,
which is the worst case, so the end-to-end throughput
(minimum throughput of all the nodes involved) is the
throughput of the center node. In terms of the end-
to-end throughput for multihop communication, regular
networks significantly outperform random networks. For
larger networks, the benefit is larger since larger m

results in longer paths.

V. CONCLUSIONS

We have shown that for a noiseless Rayleigh fading
network with slotted ALOHA, the success probability of
a transmission is the Laplace transform of the interfer-
ence evaluated at the SIR threshold Θ. Even though for
sensor networks, more elaborate MAC schemes might
be used in practice, the analysis for slotted ALOHA



provides lower bounds of the performance for other
MAC schemes and can serve as a benchmark.

Among the three regular networks (square, triangle,
hexagon), the hexagon network provides the highest
throughput since every node has only three nearest
neighbors which is the smallest number among the three
networks. The analysis of the dependence of the maxi-
mum throughput gmax and optimum transmit probability
popt on Θ for square networks shows that the transmit
efficiency Teff = gmax/popt varies from e−1 to 1/2 as
the spatial reuse increases from 0 to ∞. In practical
networks (α/Θ < 1) that are optimized for throughput,
the spatial reuse does not permit a transmit efficiency
close to 1/2. So, in most cases, it will be closer to
e−1, which implies that at maximum throughput, the
packet loss rate is about 60%, which is surprisingly high.
These results hold quantitatively for the other two regular
networks — triangle and hexagon networks.

For random networks, two scenarios are considered
— fixed and variable transmitter-receiver distance d0.
In the latter case, the throughput is averaged over the
actual distribution of the nearest-neighbor distance d0.
Conditioned on d0 being the same for random and
regular networks, regular networks slightly outperform
random networks in terms of (per-node) throughput and
transport capacity. In the case of variable d0 where the
receiver selects the nearest neighbor node as its desired
transmitter, the average throughput of random networks
is better than that of regular ones. This is because strong
signal powers resulting from very small d0 offset the
impact of interference even for high transmit probabil-
ities. This result, however, only pertains to local data
exchange. When multihop communication and effective
routing is taken into account, regular topologies have a
significant advantage in terms of end-to-end throughput.
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