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My neuro history

(see http://www.dicklyon.com)

1978 “A Signal Processing Model of Hearing”
paper for Stanford class on neural information
processing

1981 Xerox optical mouse — incorporates
explicit model of lateral inhibition

1986—-94 “Analog Electronic Cochlea” with
Mead and his crew

1993—97 Neural-net—based handwriting
recognition

1997-2006 Foveon color image sensors and
cameras

2006—2008 Google “Machine-Hearing” project




What is the function of a rainbow?




Pole—Zero Filter Cascade (PZFC) — preview

Good fit to human masking data with simple parameters

As with APFC, connection to traveling wave allows
natural coupling effects, for masking, adaptation, etc.

Like APGF & OZGF, unity-gain tail models lossless
propagation of low-frequency energy; tail doesn’t wag

with Q or other parameters

Easy to implement directly as standard second-order
(pole—zero) filter sections, without further approximation

Easy to vary parameters dynamically for "AGGC. e i

Low total order (complexity) for
multi-channel filterbank, by sharing
filter sections

— total complexity just "
2nd-order per channel, compared to ;*
8th-order for gammatones
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“Auditory filter” T
shapes and models

-20 |

70 dB
—40 |

qoin (dB)

Ro
y ol RoEx
Patterson
. . —-80 ! L I 1 1
Resonance AUdlt(.)l'y Fllter Shapes 500 1000 1500 frequz:i))(') " 2500 3000
N=1 and their Pole Orders (N)
Schafer et al. 50
Patterson 70 RoFx
Gaussian Patterson and Nimmo-Smith 80
N:OO
Swets et al. 62 RoEx(p), RoEx(p,r), RoEx(p,t,w) APGF, OZGF
Patterson 76 Patterson et al. 82 N=8, 16, 32
Lyon 96
|
Symmetric approx. GTF GTF GCF
Patterson 74 Patterson 88 Irino 95
GTF, OZGF, ++ Two-side RoEx Two-sided GTF
N=3 Moore and Glasberg 87 Rosen and Baker 94
Flanagan 60

Except for Flanagan 60, only psychophysical models are included

It would be good to connect to physiology...
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Don’t wag the tail when changing pole damping —
Like APGF & OZGF, unlike Gammatone & Gammac
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Gamma-
tone’s
Zeros

Slaney
X 1993

o o o o

APGF removes these;
X OZGF leaves one




Jim Flanagan 1960—-62 filter
models of basilar membrane

order-3 “gamma-tone” filter

a reasonable fit to BEKESY’S results 1s
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Such filters
have easy

Implementations:
Flanagan 1962




Waves in uniform media:
sinusoidal functions of x and t

 Complex wavenumber
k(w) controls loss or gain

 Butin a non-uniform medium, the wavenumber k
depends on place (x) as well as on frequency: k(w, x)

* Net result is a cascade of filters exp(—ik(w, x)dx).
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Figure 2: Floorplan of 100-stage cochlea chip.

X

X

CMOS VLSI Cochlea: an all-pole filter

cascade (APFC) — Lyon & Mead 1988

TAU

Figure 1: Second-order filter-section circuit.

2-pole stage is an

order-1 GTF or APGF




Filter cascades 4

X
A 4th-order All-Pole Gammatone Filter is an 8th-order filter,
a cascade of 4 identical pole-pair filters: 4
X
—» > > > >

X

6%
An All-Pole Filter Cascade looks the same, but non-

identical stages, and outputs at every step: ><

X

X

il et bt bl el el

A Pole-Zero Filter Cascade looks the same, but each

stage has both a pair of poles and a pair of zeros.




Some possible cascade stage
frequency responses




PZFC poles and zeros in the s plane

Poles are shown at
three sets of locations,
for 30 dB, 50 dB, and
70 dB SPL/Hz noise
levels




PZFC stage frequency response:
pole pair makes a bump (variable via
pole Q),and zero pair makes a dip

Single-stage of PZFC response, in dB, for three control levels
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AGC (AQC) via feedback

(automatic gain or Q control)

APGF (or OZGF) in feedback configuration

S S A?

Q parameter level detection and
feedback loop filter

A Filter Cascade in feedback configuration uses
all outputs to affect parameters of all stages,
through a sort of diffusion spreading effect

a?T?Tﬂ*ﬂWTﬂS

[ smoothing network (in time and place)




PZFC
Pole and Zero
Locations

(in top half of
Z plane, relative
to unit circle)

Low-level

1 1 1 1 1 1
-0.4 -0.2 (i} 0.2 0.4 0.6

1 1 1 1 1 1
-0.4 -0.2 o 0.2 0.4 0.6




hMagnitude rezonae

hMagnitude rezonae
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PZ stage responses, low level
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PZ bank responses, low level

Frequency, radians per sample

6 dB,
0 dB;

Zon

htagn

' -

- Low-level versus ada

10" |

PZ stage responses, adapted to speech
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Response to sounds — no further
compressive (log) nonlinearity needed
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Popular Auditory
Filter Models
Related to APGF

/L
/ AN
Gaussian
(N - oo)

Lyon 1997
A Map of Auditory Filter Models,

illustrating the place of the
All-Pole Gammatone Filter and
the All-Pole Filter Cascade

GCF (gammachirp filter)
& ROEX (round exponential filter)
OZGF Spans these two don't fit the tanonomy well,

since they are simple filters that do
not have pole-zero representations

All-Pole Filters PZFC
/ w N\ N (less excess delay

GTF

(Gammatone

than APFC)
AN

A]iGF APFC Pole/Zero Arbitrary
& DAPGF (All-Pole Filter Filter-

Filter) (All-Pole GTF & Filter Cascade Bank

Differentiatecp Cascade)

hvd

(N=1)
Simple
Resonator

Lyon/Mead chips
\ /

A4

Good properties: model nonlinear level dependence
and linear tail, using one dependent parameter ;

more realistic impulse chirping and asymmetry than GTF;

more efficiently implementable than other filterbanks.

/

Simpler,
More Abstract

hd

Lumped-Parameter (Pole-Zero) Filters
(i.e. implementable in circuits or programs)

—t

Wave- Cochlear
Propagation Mechanics
Models Models

“All-Pole Models of
Auditory Filtering”
Diversity in Auditory
Mechanics, E. Lewis et
al. (eds.), World Scientific
Publishing, Singapore,
1997, pp. 205-211.

More Complex,

Modeling the Auditory Filter

®= Realistic, & Physical




PZFC Advantages — review

Good fit to human masking data with simple params

Connection to traveling wave allows natural coupling
effects, for masking, adaptation, etc.

Like APGF & OZGF, unity-gain tail models lossless
propagation of low-frequency energy; tail doesn’t wag
with Q or other parameters

Easy to implement directly as standard second-order
filter sections, without further approximation

Easy to vary parameters dynamically for “AGC”

Low total order (complexity) for multi-channel filterbank,
by sharing filter sections — total complexity just 2nd-
order per channel, compared to 8th-order for
gammatones




Conclusion —
continuous improvement path

RoEx family — good parameterized shapes, but not
the best; no corresponding real filters

Gammatone — too symmetric, but otherwise a good
filter, not hard to implement; tail problems in real case

Gammachirp — parameterized asymmetry,
dynamically-varying peak gain; good improvement
over the others, but the real filter still has tail issues

AP/OZ GF — a chirping asymmetric filter much like
GC, but with rock-steady tail behavior as gain varies;
exact easy implementation, even dynamic

PZFC — tied to traveling-wave concept; more efficient
filterbank; shape fit at least as good as any others,
with few parameters; can work on phase fits, too




Fitting Nonlinear Auditory Filters:
OZGF, PZFC, feedback versions, etc.

(Deriving the parameters for the human-
calibrated versions of the OZGF and the
PZFC from simultaneous masking data)




Irino & Unoki’'s Framework

Nonlinear optimization of parameters based on
minimizing squared error in predicting masked
thresholds based on tone SNR at filter output

Also optimize over filter CF to get best SNR of
the masked tone

Level-dependent parameters depend on output
of a “passive” filter with noise only (or with noise
plus target tone)

Nonlinear fit search also optimizes PO and K

Flexible frequency dependence of selected
parameters: linear or quadratic on ERBrate
scale




Level control via detection of
output of “passive” filter

“passive” filter’s output level controls
the “active” filter’s shape or gain,
like this for parallel filters (PriGC)

—» >
in “cascade” version (CasGC), the
“passive” filter comes first, followed
—™ by the level-dependent part

—

—> > >




Level control via detection at
filter's own output

in “feedback’ configuration, the
main filter’s output is used for
level detection and control

—>

-

LeveIT—

Somewhat trickier, since you need
a guaranteed stable way to let it
settle to a consistent level




Framework Modifications

Better convergence: near-continuous CF search to
minimize confusion of estimated gradients

Robust small-signal behavior: include PO as an input-
referred noise, accounted for in the SNR maximization;
noise-only level parameters include PO

Easily obtain optimal detection K given other parameters,
instead of adding K to the search

Feedback-type models: include a level-parameter
convergence step when the main filter's output is used
iInstead of a “passive” filter.

Allow all models (GC, OZGF, PZFC, RoEXx, etc.) to run in
the same code, with minimal case switching

Cache the level and CF between evaluations
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%

case 516
FeedbackType =
ModelName =

ValParam
% Final, Nfit =

. 73848
.62250
.37208

Inf

.00000
.00000
.27403
.30471
.63143

CtrlParam

LM P PO RRL R

RPRPOOSOORS
RPRPOOSOORS

1;
'"PZFC'
=L .

0. @@0@@
-1.02349
.00000
.00000
.00000
.00000
.26291
.33017
.59230

516 11-3 parameters,
.00000
.94190
.00000
.00000
.00000
.00000
.21906
.33995
.68184

SRS RN

U
PO

... % an
% bl zero BW
% B2
% B21
% C

% nl unused
% n2 order,

% PO

% order 2, 8 params
% enable feedback iteration
% pole-zero filter cascade

%
%
%
%

%

PZFC Fit#516

PZFC, cwt 0
SuqurErr_ 10226.95
RMSErr = 2.82994
MeanErr = 0.00000
RMSCost = NaN
Kv

8-parameter fit
relative to ERB

Fpole

one extra zero maybe

stages per nominal ERB
% frat Fzero:




Filter Gain (dB)

Gain of Tip / Tail filter (dB)
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Filter Gain (dB)
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case 360

FeedbackType = 1;
ModelName =

ValParam

% Final, Nfit =
.02522

3
-0.

% -

()
(-|-
LR, OO RRPRPRRPRPRPILLILWUORAOOWROR

51804

.44194
.01907
(7270
.81828
.00000
.00000
.00000
.09783
.30401

S
Q

RPOSOSOSOSOREFRL,EFLELQ
PO Rr=

. %

.15581
. 043805
.02180
.00292
.00000
.00000
.00000
.00000
.00000
.26747
.07324

WU RrLrNE

cee %
bl
cl
Fr
Frl
B2
C2
B21
C21
nl
PO

I
R RRRRRRRR X
—

-1

PUWOOSOOSOSOOS

. 72018
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.93392
.80991

CasGC fb Fit;

"CasGC_fb" % from 12-parameter

Séé; 14-3 parameters, CasGC_fb,

% SumSqgrErr=
% RMSErr
% MeanErr
% RMSCost

% Kv

% enable feedback iteration

fit

cwt 0
11201.52
2.90171
-0.00000
NaN

L

-

£360




Cascade GC in feedback mode?

 Feedback can work on filter models for which
it was not originally planned, sometimes.

 Notice:

case 360
FeedbackType = 1; % enable feedback iteration
ModelName = 'CasGC_fb" % from 12-parameter fit

 This works because the level-dependence
affects the gain correctly (Fr: position of high-
pass active filter); attempting to use the
bandwidth instead, as in CasGC Fit#316,
doesn’t work well, since the model equations
hold the peak gain fixed independent of
bandwidth
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OZGF_fb Fit#100 (APGF)

FeedbackType = 1; % enable feedback iteration
ModelName = '0ZGF_fb" % APGF
ValParam = [ ...

% Final, Nfit = 100, 7-3 parameters, O0ZGF_fb, cwt 0

0.00000 ©0.00000 ©.00000 % SumSqrErr= 14684.11
0.55936 -0.97985 ©.89312 % RMSErr = 3.39101
0.66293 0.00000 0.00000 % MeanErr = ©.00000
Inf 0.00000 ©0.00000 % RMSCost = NaN
4.00000 ©.00000 ©.00000
4.00000 ©0.00000 ©.00000
0.00000 ©0.00000 ©.00000
13.59306 8.04349 -1.35988
% -3.04024 -0.96252 3.35127 % Kv
13
CtrlParam = [ ... % a 4-parameter fit
@ @ 0 % bl unused in feedback version
1 1 1 %B2
L0 o xiu 4-parameter
2.2 0 %nl 4th-order APGF,
@ 0 @ % n2 _
@ 0 0 % frat unused feedback version
1 1 1 %P0
13
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Generalization: test-set error versus
training-set error (split data between
sources, G&M vs. Baker et al.)

OZGF
generalize better
than others




Conclusion

The filter fitting framework is a useful tool for
seeing how proposed auditory filters relate to
others

The modified framework allows more types of
models, including feedback configurations

Being able to specify different model types in
one framework will make this approach more
accessible and useful to others

The APGF, OZGF and PZFC are good
auditory filter shapes




Machine Hearing Research Agenda

Why?

* Help "Machine Hearing” become a first-
class academic and commercial field
like “Machine Vision”

* Motivate, plan, and promote my project
activities

* Do something useful with all the
uninterpretable audio media out there

» Motivate the recording of more...




Three areas to get right:

1. Leveraging techniques already developed in
the machine-vision and machine-learning
fields

2. Productive interaction with the wider field of
hearing research, to keep models honest
and motivate better experiments

3. Focus on applications for which the
challenge has to do with what things sound
like, as opposed to specialized domain
knowledge (“non-speech non-music audio™)




How we proceed...

Good auditory front end, based on good hearing
research, leads to representation of what things “sound
like”

Content-based retrieval of sound tracks (or other audio
content) based on what it “sounds like is going on” is a
good hard application

Noisy data is good data

Analogy to content-based image retrieval, based on
features that encode what things “look like,” leads to
workable system structure
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Content-based retrieval of sound

query
words

Auditory
front end

Sparse

> feature
extraction

'

sound stabilized
waveform auditory

image or
correlogram

| | Trainable | || Rankingby | _
matrix dot product
bag of bag of ranked
features words hits

Auditory front end based on stable models from long
ago, with new feature extraction ideas.

PAMIR multi-label retrieval (MLR) for the trainable
back-end retrieval.

What about sound segmentation or separation?




Sound-retrieval precision in top k, for multi-label
retrieval versus support-vector-machine classifier

Old results —
we’ve since done
much better

Large query vocabulary (about 2000 words) makes it difficult.
Results are not great yet with this baseline front end; auditory front
end has been shown to help a lot, in smaller experiments so far




Other ways to leverage
machine vision

* In combination:
— Audio/visual robots and 3D perception

— Content-base retrieval, content
classification, etc., based on joint
sound/image features

» By analogy:
— Object tracking —> sound source tracking
— Key-point features —> key sound features?




Other good applications

Indexing, retrieval, summarization of
personal audio diaries, movie
soundtracks, etc.

Real-time and retrospective analysis of
audio security/surveillance recordings

Front end to speech transcription
systems




humans are electrical in nature and so are the signals handled by
chips. Already universities have produced silicon chips that can be
implanted in the human body to replace damaged nerves to restore
the flow of signals from the nervous system to the brain.
And, to an extent, the five senses and the brain can already be
replicated in silicon. Limited machine vision and touch are avail-

Avoid
narrow
VIEWS,
secrecy

able to industrial robots. Machine hearing is something on which a
lot of research money is being spent around the world and a great
deal of secrecy attaches to progress. Machines can recognize indi-
vidual words, but are not so hot when it comes to sentences. None
the less, the best people in the field think that machines capable of
recognizing human speech will be on the market in the 1997-2000
time frame.

1995

That opens a vast range of product possibilities from dictation
machines that print out speech, to portable translators that speak
out in a different language from the one spoken into them, and to a
whole bunch of voice-operated machines, from telephones to cars to
computers.

Smell and taste have had less research money than sight and
hearing, probably because there are fewer commercial applications




Bake-offs

* As in speech and vision, good shared
datasets with defined tasks can lead to
good competitive/cooperative progress

« Quantitative performance testing
requires lots of labeled training and
testing data. How will we get it?




Conclusion
(memo to self)

* Machine hearing field is full of
unrealized potential; needs some
focus on strategies for progress

» Cooperation among groups and fields
IS key to rapid progress; don't be
iInsular or re-invent the wheel




