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My neuro history
(see http://www.dicklyon.com)

• 1978 “A Signal Processing Model of Hearing”
paper for Stanford class on neural information
processing

• 1981 Xerox optical mouse – incorporates
explicit model of lateral inhibition

• 1986–94 “Analog Electronic Cochlea” with
Mead and his crew

• 1993–97 Neural-net–based handwriting
recognition

• 1997–2006 Foveon color image sensors and
cameras

• 2006–2008 Google “Machine-Hearing” project



What is the function of a rainbow?



Pole–Zero Filter Cascade (PZFC) – preview

• Good fit to human masking data with simple parameters

• As with APFC, connection to traveling wave allows
natural coupling effects, for masking, adaptation, etc.

• Like APGF & OZGF, unity-gain tail models lossless
propagation of low-frequency energy; tail doesn’t wag
with Q or other parameters

• Easy to implement directly as standard second-order
(pole–zero) filter sections, without further approximation

• Easy to vary parameters dynamically for “AGC”

• Low total order (complexity) for
multi-channel filterbank, by sharing
filter sections – total complexity just
2nd-order per channel, compared to
8th-order for gammatones



“Auditory filter”

shapes and models

RoEx

It would be good to connect to physiology…

Roy
Patterson



Don’t wag the tail when changing pole damping –
Like APGF & OZGF, unlike Gammatone & Gammachirp



Gamma-

tone’s

zeros

Slaney

1993

APGF removes these;

OZGF leaves one



Jim Flanagan 1960–62 filter

models of basilar membrane

order-3 “gamma-tone” filter



Such filters

have easy

implementations:

Flanagan 1962



Waves in uniform media:

sinusoidal functions of x and t

• But in a non-uniform medium, the wavenumber k
depends on place (x) as well as on frequency:  k(!, x)

• Net result is a cascade of filters exp(–ik(!, x)dx).

• Complex wavenumber
k(!) controls loss or gain



CMOS VLSI Cochlea:  an all-pole filter

cascade (APFC) – Lyon & Mead 1988

2-pole stage is an

order-1 GTF or APGF



Filter cascades

An All-Pole Filter Cascade looks the same, but non-
identical stages, and outputs at every step:

A 4th-order All-Pole Gammatone Filter is an 8th-order filter,
a cascade of 4 identical pole-pair filters:

A Pole-Zero Filter Cascade looks the same, but each 
stage has both a pair of  poles and a pair of zeros.

4

4



Some possible cascade stage

frequency responses



PZFC poles and zeros in the s plane

Poles are shown at

three sets of locations,

for 30 dB, 50 dB, and

70 dB SPL/Hz noise

levels



PZFC stage frequency response:
pole pair makes a bump (variable via

pole Q),and zero pair makes a dip

dB



AGC (AQC) via feedback
(automatic gain or Q control)

A Filter Cascade in feedback configuration uses 
all outputs to affect parameters of all stages, 
through a sort of diffusion spreading effect

level detection and 
feedback loop filter

smoothing network (in time and place)

Q parameter

APGF (or OZGF) in feedback configuration



PZFC

Pole and Zero

Locations

(in top half of

Z plane, relative

to unit circle)

Adapted

Low-level



Low-level versus adapted responses
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PZFC fit #516



Response to sounds – no further

compressive (log) nonlinearity needed



A Map of Auditory Filter

ModelsOZGF spans these two

Lyon 1997

PZFC

“All-Pole Models of

Auditory Filtering”

Diversity in Auditory

Mechanics, E. Lewis et

al. (eds.), World Scientific

Publishing, Singapore,

1997, pp. 205–211.

Lyon/Mead chips



PZFC Advantages – review

• Good fit to human masking data with simple params

• Connection to traveling wave allows natural coupling
effects, for masking, adaptation, etc.

• Like APGF & OZGF, unity-gain tail models lossless
propagation of low-frequency energy; tail doesn’t wag
with Q or other parameters

• Easy to implement directly as standard second-order
filter sections, without further approximation

• Easy to vary parameters dynamically for “AGC”

• Low total order (complexity) for multi-channel filterbank,
by sharing filter sections – total complexity just 2nd-
order per channel, compared to 8th-order for
gammatones



Conclusion –

continuous improvement path

• RoEx family – good parameterized shapes, but not
the best; no corresponding real filters

• Gammatone – too symmetric, but otherwise a good
filter, not hard to implement; tail problems in real case

• Gammachirp – parameterized asymmetry,
dynamically-varying peak gain; good improvement
over the others, but the real filter still has tail issues

• AP/OZ GF – a chirping asymmetric filter much like
GC, but with rock-steady tail behavior as gain varies;
exact easy implementation, even dynamic

• PZFC – tied to traveling-wave concept; more efficient
filterbank; shape fit at least as good as any others,
with few parameters; can work on phase fits, too



Fitting Nonlinear Auditory Filters:
OZGF, PZFC, feedback versions, etc.

(Deriving the parameters for the human-

calibrated versions of the OZGF and the

PZFC from simultaneous masking data)



Irino & Unoki’s Framework

• Nonlinear optimization of parameters based on
minimizing squared error in predicting masked
thresholds based on tone SNR at filter output

• Also optimize over filter CF to get best SNR of
the masked tone

• Level-dependent parameters depend on output
of a “passive” filter with noise only (or with noise
plus target tone)

• Nonlinear fit search also optimizes P0 and K

• Flexible frequency dependence of selected
parameters: linear or quadratic on ERBrate
scale



Level control via detection of

output of “passive” filter

“passive” filter!s output level controls 
the “active” filter!s shape or gain,
like this for parallel filters (PrlGC)

in “cascade” version (CasGC), the 
“passive” filter comes first, followed 

by the level-dependent part



Level control via detection at

filter’s own output

in “feedback” configuration, the 
main filter!s output is used for 

level detection and control

Somewhat trickier, since you need

a guaranteed stable way to let it

settle to a consistent level

Level



Framework Modifications
• Better convergence:  near-continuous CF search to

minimize confusion of estimated gradients

• Robust small-signal behavior:  include P0 as an input-

referred noise, accounted for in the SNR maximization;

noise-only level parameters include P0

• Easily obtain optimal detection K given other parameters,

instead of adding K to the search

• Feedback-type models: include a level-parameter

convergence step when the main filter’s output is used

instead of a “passive” filter.

• Allow all models (GC, OZGF, PZFC, RoEx, etc.) to run in

the same code, with minimal case switching

• Cache the level and CF between evaluations



Each fit makes a picture; this is PZFC #516



  case 516  % order 2, 8 params
    FeedbackType = 1;  % enable feedback iteration
    ModelName = 'PZFC'  % pole-zero filter cascade
    ValParam = [ ...
% Final, Nfit = 516, 11-3 parameters, PZFC, cwt 0
      1.73848   0.00000   0.00000 % SumSqrErr=  10226.95
      0.62250  -1.02349   0.94190 % RMSErr   =   2.82994
      0.37208   0.00000   0.00000 % MeanErr  =   0.00000
          Inf   0.00000   0.00000 % RMSCost  =       NaN
      0.00000   0.00000   0.00000
      2.00000   0.00000   0.00000
      1.27403  -0.26291   0.21906
     11.30471   5.33017   0.33995
%    -3.63143  -1.59230   4.68184 % Kv
      ];
    CtrlParam = [ ...  % an 8-parameter fit
      1  0  0  % b1 zero BW relative to ERB
      1  1  1  % B2
      1  0  0  % B21
      0  0  0  % c    one extra zero maybe
      0  0  0  % n1 unused
      0  0  0  % n2 order, stages per nominal ERB
      1  1  1  % frat Fzero:Fpole
      1  1  1  % P0
      ];

PZFC Fit#516



OZGF_fb #102



CasGC_fb #360



CasGC_fb Fit#360

 case 360
    FeedbackType = 1;  % enable feedback iteration
    ModelName = 'CasGC_fb'  % from 12-parameter fit
    ValParam = [ ... %
% Final, Nfit = 360, 14-3 parameters, CasGC_fb, cwt 0
      3.02522   1.15581  -1.72018 % SumSqrErr=  11201.52
     -6.51804   2.64805   0.00000 % RMSErr   =   2.96171
      1.44194  -1.02186   0.00000 % MeanErr  =  -0.00000
      0.01967   0.00292   0.00000 % RMSCost  =       NaN
      1.77270   0.00000   0.00000
      3.81828   0.00000   0.00000
      0.00000   0.00000   0.00000
      0.00000   0.00000   0.00000
      4.00000   0.00000   0.00000
      9.69783   5.26747   3.93392
%    -3.36401  -3.67324   4.80991 % Kv
      ];
    CtrlParam = [ ...  %
      1  1  1  % b1
      1  1  0  % c1
      1  1  0  % Fr
      1  1  0  % Fr1
      1  0  0  % B2
      1  0  0  % C2
      0  0  0  % B21
      0  0  0  % C21
      0  0  0  % n1
      1  1  1  % P0
      ];



Cascade GC in feedback mode?

• Feedback can work on filter models for which

it was not originally planned, sometimes.

• Notice:
case 360
    FeedbackType = 1;  % enable feedback iteration
    ModelName = 'CasGC_fb'  % from 12-parameter fit

• This works because the level-dependence

affects the gain correctly (Fr: position of high-

pass active filter); attempting to use the

bandwidth instead, as in CasGC Fit#316,

doesn’t work well, since the model equations

hold the peak gain fixed independent of

bandwidth



CasGC_fb #362: vary pole B2



Log files combine into a

summary performance plot

PZFC achieves best fit with 1 to 5 fewer parameters than Cascade GC.

For very few parameters,

OZGF_fb is best, including

4-parameter APGF_fb.

Some OZGF are APGF

(zero at infinity)

 (100, 106, 107, 137–143).



 case 100
    FeedbackType = 1;  % enable feedback iteration
    ModelName = 'OZGF_fb'  % APGF
    ValParam = [ ...
      % Final, Nfit = 100, 7-3 parameters, OZGF_fb, cwt 0
      0.00000   0.00000   0.00000 % SumSqrErr=  14684.11
      0.55936  -0.97985   0.89312 % RMSErr   =   3.39101
      0.66293   0.00000   0.00000 % MeanErr  =   0.00000
      Inf       0.00000   0.00000 % RMSCost  =       NaN
      4.00000   0.00000   0.00000
      4.00000   0.00000   0.00000
      0.00000   0.00000   0.00000
      13.59306   8.04349  -1.35988
      %    -3.04024  -0.96252   3.35127 % Kv
      ];
    CtrlParam = [ ...  % a 4-parameter fit
      0  0  0  % b1 unused in feedback version
      1  1  1  % B2
      1  0  0  % B21
      0  0  0  % c
      0  0  0  % n1
      0  0  0  % n2
      0  0  0  % frat unused
      1  1  1  % P0
      ];

OZGF_fb Fit#100 (APGF)

4-parameter

4th-order APGF,

feedback version



Fit # 100 APGF_fb



Generalization:  test-set error versus

training-set error (split data between

sources, G&M vs. Baker et al.)

PZFC and OZGF

generalize better

than others



Conclusion

• The filter fitting framework is a useful tool for
seeing how proposed auditory filters relate to
others

• The modified framework allows more types of
models, including feedback configurations

• Being able to specify different model types in
one framework will make this approach more
accessible and useful to others

• The APGF, OZGF and PZFC are good
auditory filter shapes



Machine Hearing Research Agenda

Why?

• Help “Machine Hearing” become a first-
class academic and commercial field
like “Machine Vision”

• Motivate, plan, and promote my project
activities

• Do something useful with all the
uninterpretable audio media out there

• Motivate the recording of more…
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How we proceed…

• Good auditory front end, based on good hearing

research, leads to representation of what things “sound

like”

• Content-based retrieval of sound tracks (or other audio

content) based on what it “sounds like is going on” is a

good hard application

• Noisy data is good data

• Analogy to content-based image retrieval, based on

features that encode what things “look like,” leads to

workable system structure



“Sapsucker” (woodpecker) representations

Image

Cochleagram

Stabilized Auditory Image (Correlogram)

Discrete

features
Waveform

Words



Content-based retrieval of sound

Auditory 
front end

Sparse 
feature 

extraction

Trainable 
matrix

Ranking by 
dot product 

sound
waveform

stabilized 
auditory 
image or 

correlogram

bag of 
features

bag of 
words

ranked 
hits

query 
words

Auditory front end based on stable models from long

ago, with new feature extraction ideas.

PAMIR multi-label retrieval (MLR) for the trainable

back-end retrieval.

What about sound segmentation or separation?



Sound-retrieval precision in top k, for multi-label

retrieval versus support-vector-machine classifier

Large query vocabulary (about 2000 words) makes it difficult.

Results are not great yet with this baseline front end; auditory front

end has been shown to help a lot, in smaller experiments so far

Old results –

we’ve since done

much better



Other ways to leverage

machine vision

• In combination:

– Audio/visual robots and 3D perception

– Content-base retrieval, content

classification, etc., based on joint

sound/image features

• By analogy:

– Object tracking –> sound source tracking

– Key-point features –> key sound features?



Other good applications

• Indexing, retrieval, summarization of
personal audio diaries, movie
soundtracks, etc.

• Real-time and retrospective analysis of
audio security/surveillance recordings

• Front end to speech transcription
systems

• …



Avoid

narrow

views,

secrecy

1995



Bake-offs

• As in speech and vision, good shared

datasets with defined tasks can lead to

good competitive/cooperative progress

• Quantitative performance testing

requires lots of labeled training and

testing data.  How will we get it?



Conclusion

(memo to self)

• Machine hearing field is full of
unrealized potential; needs some
focus on strategies for progress

• Cooperation among groups and fields
is key to rapid progress; don’t be
insular or re-invent the wheel


