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Survey

(I') What is embodied and situated cognition
and in which sense may we move it “upward”

(2) What is Dynamic Field Theory (DFT) and
how does it generate cognitive function!?

(3) What kind of embodied cognition emerges
from DFT?



(1) What is embodied and
situated cognition and in which

sense may we move it “upward”



playing soccer

I see and recognize the ball and the
other players

B select target, track it as well as the
other players, all the while controlling
gaze

B use working memory when players are
out of view to predict where you need
to look to update

B control own motion, initiate and
control kick

B any time open to update

I get better at it

B background knowledge: goal of game,
rules, how hard is the ball, how fast are
players



repairing a toaster

B visual exploration, recognizing screws, while keeping
track of spatial arrangement of screws on the
toaster (visual cognition, coordinate frames)

B finding tools, applying them to remembered
locations, updated by current pose of toaster
(working memory, scene represenation)

B manipulating cover, taking it off, recognizing spring,
re-attaching it (goal-directed action plan)

B mounting cover back on, generating the correct
action sequence (sequence generation)

[image: mystery fandom theater 3000]

B background knowledge: cover, screws, how hard to
turn screw-driver



=> some elements of
embodied, situated cognition

active perception for a purpose
perceptual objects grounded in space (Barsalou)

using the world as a model, which requires memory
and coordinate transforms

and requires representations close to the sensory
and motor surfaces, enabling continuous on-line
updating

behavioral history, learning

back-ground knowledge (Searle)



contrast to classical view of cognition

cognition operates on symbols that are
encapsulated and arbitrary, invariant under the
sensory conditions through which they were
instantiated ...

... very different concepts



information processing view

is like focussing only on penalty shooting:

given input information and priors
compute decision to kick left or right

initiate when computed to satisfaction...

this is wrong even for penalty shooting

in which player updates plan as he runs

and motor control at kick matters greatly



low-level vs. high-level cognition

the distance of a representation from the
sensory or motor surfaces as a measure for
how "high-level" a particular act of cognition is

this distance is indexed by the degree of
invariance under changes on these two
surfaces

e.g., long-term memory “higher” than working memory

e.g., thinking and language “higher” than reaching for an
object



hypothesis of embodiment

the same principles that govern low-level
cognition continue to work as the distance
from the sensory-motor surfaces increases...



the embodiment/situatedness program

understanding cognition cannot be separated
from understanding

the link of cognition to sensory and motor surfaces,

the immersion of embodied cognitive systems in real-time in
structured environments, and

the context of a behavioral history on which cognition builds

understanding of cognition must be based on
neural principles



neuronal principles

the neural process of cognition are time
continuous and autonomous, not paced by
computational steps

neurons code information somewhat rigidly as

defined by their connectivity to sensory and
motor surfaces

neurons send only simple messages



which neural level of description!?

not: discrete individual neurons

no evidence the graininess of neural sampling in human
behavior and cognition

=> population level

single cells may represent populations due to the tight

coupling within population ensembles that induces
correlations

recall: 1074 synapses per cortical neuron, many parameters
represented in any given population...

=> no need for redundancy to define population level



which neural level of description!?

not: spikes

no behavioral signature exists of the discreteness of
neuronal events

=> population dynamics: DFT



Dynamic Field Theory as an interface

between the microscopic neuronal dynamics

and embodied cognition and behavior, including
“higher-level” cognition



(2) What is Dynamic Field Theory

(DFT) and how does it generate
cognitive function!?

activation fields over metric dimensions

field dynamics

peaks as stable states (attractors)

instabilities generate different cognitive modes and functions

memory traces

generate small changes which the instabilities of the field
dynamics translate into macroscopic states



activation fields

information, probability, certainty
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example: movement planning
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tuning of cells in motor and premotor cortex to
direction of end-effector movement path
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Distribution of Population Activation
(DPA)

Distribution of population activation =
2 tuning curve * current firing rate
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®]look at temporal
evolution of DPA

mor DPAs in new
conditions, here:
DPA reflects prior
information
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example: visual space

®in cat visual
cortex Al7
build DPA
from receptive
field profiles 4

RF-center

[Jancke et al., 1999] 0.4°




= temporal evolution of DPA of retinal location

time

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms

[Jancke et al., 1999]



®interaction betwen two stimulus locations

‘ response to increasing distance between the two squares of light
composite stimuli

Eﬁﬂi
e Ete 3

1 superposition of responses to each B N
elemental stimulus

[Jancke et al., 1999]



INteraction at location of left component stimulus
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Distribution of Population
Activation (DPA)

neurons are not localized within DPA!
cortical neurons really are sensitive to many
dimensions

B motor: arm configuration, force direction

M visual: many feature dimensions such as spatial frequency,
orientation, direction...

=> DPA is a projection from that high-
dimensional space onto a single dimension
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illustration of DFT in 4 steps

| layer Amari model
2 layer Amari model
3 layer model

2 layer 2D model



Simplest model: | layer Amari

Amari equation
ri(z,t) = —u(z,t) + h+ Sz, t) + / w(z — 2')o(ula', ) de’

where
e time scale is 7
e resting level is A < 0
e input is S(x,1)

e interaction kernel is




=> simulations



solutions and instabilities

input driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

detection instability
reverse detection instability
selection

selection instability
memory instability

detection instability from boost



functional significance of instabilities

m detection instability: stabilizes detection
decisions
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mstabilization against fluctuations in both
amplitude and metric position of input:
tracking
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mtracking during occlusion of input

Space

[figure: John Spencer]
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uselection instability stabilizes selection
decisions
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" memory instability: stabilizes against long
occlusions of input
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robotic demonstration of functional
significance of sustained peaks

“young” robot: not sustained “old” robot: sustained

target target




boost-induced detection instability
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time

Dynamic
field

stimulus
duration

uoljeAiyoe

uoljeAiyoe

how does preshape arise!
e.g,a

®from learning,
memory trace
®or hebbian learning



preshaping fields through a
memory trace of prior activation

memory trace
memory trace
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habit formation stabilizes behavior

target




2 layer Amari fields

excitatory
kernel

mto comply with ®
Dale’s law

excitatory
®mand account for layer
@

difference in time
course of excitation
(early) and inhibition inhibitory
(late) ayer

inhibitory
kernel

[figure:Wilimzig, Schneider, Schoner, Neural Networks, 2006]



2 layer Amari model

Tu(z, t) —u(x,t) + hy + S(x.t) + / dr' ez — ") o(u(z’,t))
— / dx' ey (x — ') o(v(2', t))

To(z, t) —v(x,t) + hy, + / dr' ¢, (x — 2') o(u(z', 1))

, (z —2')*] o(u) = 1
C; j(il? —T') = ¢ J.strength €XP 952 ' | 1 +exp[—f5 u]



=> simulations



solutions and instabilities

selection vs. multi-peak mode

capacity limit for sustained multi-peak solution



functional significance

= multi-item working memory and tracking ...

[figure: John Spencer]



3 layer model

to accomodate separation between perceptual
and memory function

and to thus account for how memories arise

from percepts, how percepts may detect
change and update memories...



3 layer model

sensory input

@ memory

®
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Tu(x,t)

TU(x, t)

Tw(x,t)

_|_

3 layer model

—u(x,t) + h, + S(z,t) +/d:r' Cou(T — 2) o(u(2', 1))

/d:r cov(z — 2') o(v(a', t)) +/(h cuw(z — ') o(w(2', 1))
—v(x, t) + hy
/d:r Con (T o(u(x',t)) + /d:r CowlT — ") o(w(2', 1))

—w(x,t) + hy + /d:r Cpw(x — ') o(w(z' 1))

[ ez =) o(v(@.t) + [ d’ cuulx - 2') o(u(@, 1))



=> simulations



solutions and instabilities

emergent working memory

change detection and updating of working memory



2layer 2D field

activation

10'-,

~ 150




=> simulations



functional significance:
dimensional cuing

H B L
se.g., three inputs
at three locations
with three
different colors

activation

®manswer: “where is
the red square”




dimensional cuing

activation

15+

10 4

® supply ridge input
along the cued color
dimension




dimensional cuing

lpeak comes UP activation
where stimulus input =
and cue overlap

® read out spatial
location at which
peak is located

read out
spatial

location
of red
square



dimensional cuing

® three colored objects
including two red
ones

activation

®manswer: “where are
the red ones’’?




dimensional cuing

activation

15+

10-

®same idea: cue at read
through ridge input




dimensional cuing

activation

®=> both red
squares generate
peaks

®m and their locations
can be read out

read out
spatial

locations
of red

squares



functional significance: coordinate
transformations

®e.g, transform visual target from retinal
representation to body-centered representation
for reaching

) 4 ) ¢




coordinate transformations

retinal location
22D field enables {5
representation of
associated retinal

location and
head position

location relative to body

®=> project to
extract body
related location




coordinate transformations

retinal location

®peak in body
relative
coordinates
tracks changes of
head position

location relative to body




coordinate transformations

®use same 2D field to retinal location
reciprocally estimate
head position from
retinal position and
position relative to
body (e.g., while
holding object in
hand)

location relative to body




coordinate transformations

retinal location

®or predict retinal
position from location
of object relative to
body and head position

location relative to body

=> ongoing research project Sebasian Schneegans



(3) What kind of embodied
cognition emerges from DFT?



DFT of spatial memory

mspace ship task of John Spencer lab




spatial memory

Results 6 years olds

= repulsion from perceptual - zero delay
boundaries, e.g., midline

i
E 5 s delay
i
; -mﬂ? 10°
3 ul:- i 1 £
407 ' [ 'y '] |0 s delay
=60~
-80° . j. - Eﬂ”
fixation llght E\ |5 s delay
. starting location
20 s delay

] )

Spencer, Hund, Cog. Psych. (2003) Spencer, Hund, JEP:G (2002)




Landmarks repel working memory
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change detection in space

Midline Axis Lateral Axis

u = spatial
discrimination

=first non-trivial
prediction:
discrimination
is improved
near perceptual
boundaries

Proportion ‘Same’ Responses

Stimulus Separation (px)

Simmering, Spencer, Schoner: Perc & Psychophysics (2006)

75%
‘Different’
threshold



change detection in space
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Change detection: space

® confirmed

experimentally
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Simmering, Spencer, Schoner: Cognitive Science 2006




change detection for color

Sample Array Delay Interval Test Array
= [ Same
or
. . Different?

Johnson, Spencer, Luck, Schoner, 2008



DFT model of change detection
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behavioral signatures of DFT

mat close metric
separation, there is less
inhibition in perceptual
layer, leading to reduced
threshold for change
detection for metrically
close items!
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Johnson, Spencer, Luck, Schoner, 2008



Experimental confirmation

® better change 2 50 Color Orientation
detection when mSimulations
. 2.00 = Simultaneous
Iitems are mSequential l
metrically 1.50 |
close! = |
1.00 ,
|
a
trge alsc? for - :
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discrimination 0.00

Close Far Close Far

Johnson, Spencer, Luck, Schoner, 2008



DFT account for feature binding

use space as a way to link items (peaks) across
different feature dimensions



DFT of feature binding
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sequence generation

exemplary sequence generation task: robot is
shown a sequence of colors

and must then search for objects of those
colors in the order shown

irrespective how long each step takes



architecture

sequence memory
a "red-blue-red-..." node
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teaching the sequence
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discrete times at which sequence
advances emerge from instabalities

A

AR

| | W |

[Sandamirskaya, Schoner, 2008]
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result: generating a sequence that
takes variable amounts of time

10
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different ways DFT can be used

DFT

/

DFT models for experiment:
account for experimental

results
? RoboUc
demonstrations

Experiment of DFT models

neural o DFT approaches to
: robotic .
behavioral technical
demonstratlons
\ . autonomous
of experimental .
robotics

results



conclusion

embodiment/situatedness program: moving
toward higher cognition using DFT

linked to the sensory and motor surfaces, but not
dominated by inputs

sensitive to structured environments and behavioral history
through simple learning mechanisms



