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Functional Brain Imaging Modalitiesg g

Cost    Temporal    Latency   Spatial
$K     resolution   resolution 

EEG 50 ms ms cm
Practical tool for  clinical 
applications. Useful research tool 
for human cognition.

R h t l f i ti tiMEG

fMRI

1000 ms ms mm

4000 s min mm

Research tool for investigating 
temporal properties of neuronal and 
cognitive processes.

Important for cognition research due fMRI

PET

4000 s min mm

2000 min h mm

to excellent localization of 
hemodynamic activity. 

Similar to fMRI. Can target specific 
metabolites.

fNIR 200 s ms cm

metabolites. 

Poor man’s fMRI
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MUR 200 ms ms μm Invasive. High SNR. Only local 
activity.



Single-trial EEG Analysisg y
• Identifying neural correlates requires assessment of trial-by-trial variability--i.e. single 

trial analysis.

• High density EEG systems were designed without a principled approach to handling• High-density EEG systems were designed without a principled approach to handling 
the volume of information provided by simultaneously sampling from large electrode 
arrays.

• Typically EEG is averaged over trials to increase the amplitude of the yp y g p
signal correlated with cortical processes relative to artifacts.

• Averaging masks information contained in individual trials and electrodes 
at specific moments in time.
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Single-trial EEG Event Related Potentials
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Spatio-temporal Decompositions of EEGSpatio temporal Decompositions of EEG

(Parra ….. Sajda, IEEE SPM 2008)
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Estimating “Interesting” Components 
Th h P j tiThrough Projections

… what is w?
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Estimating “Interesting” Components 
Th h P j tiThrough Projections

Signal summation

choose
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3dB improvement in SNR



Estimating “Interesting” Components 
Th h P j tiThrough Projections

Signal subtractionSignal subtraction

choose
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Estimating “Interesting” Components 
Th h P j tiThrough Projections

Linear Model for EEG forward model

Source Estimation by Linear Projection
backward model

For Gaussian noise with 
known correlation structure 
hi i ML ithis is an ML estimator
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noise collinear with the source



Estimating “Interesting” Components 
Th h P j tiThrough Projections

Minimizing Interference via Subtractiong

Estimate interfering source 
(backward model)

Estimate contribution to 
measurements (forward model) 

has no activity correlated with 

h i h d d k
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however it has reduced rank--
must deal with appropriately



Estimating “Interesting” Components 
Th h P j tiThrough Projections

Forward Model Estimate
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Some Objectives for Finding 
Interesting Components
… or how do we estimate w…

• Maximum Difference
• Maximum Power
• Statistical Independence
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Maximum Difference

x (t) = (I − ˆ A ˆ A # )x(t)

removal of eye-motion artifacts
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Use all electrodes in estimation of interference

xEBR (t) = (I A eyeA eye)x(t)



Maximum Difference

No blink

Blink
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Maximum DifferenceMaximum Difference
Maximum Magnitude Difference
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Maximum PowerMaximum Power

Maximum Power-Ratio
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Maximum PowerMaximum Power

max wge

imin wge
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Maximum PowerMaximum Power

ERD/ERS with generalized eigenvalues. 

Subject responds to a visual stimulus with a button press. 

Prior to the maximum-power ratio analysis, all EEG channels are 
bandpass  filtered between 5-40Hz. 

The covariance matrices R1 and R2 are computed in a window 
200ms before (R1) and 200ms after (R2) the button press. 
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Maximum PowerMaximum Power
Top left: Scatter plot of the corresponding 
activity for two of the 64 EEG sensors. Solid line 
indicates the orientation w along with the twoindicates the orientation, wge, along with the two 
distributions having a maximum power 
(variance) ratio, estimated using generalized 
eigenvalues. 

Bottom left: Estimated forward model 
corresponding to wge. Clear is that the source 
activity originates over motor areas (it is 
maximal over C3 and CP4) and has oppositemaximal over C3 and CP4) and has opposite 
sign (180 phase delay) between the 
hemispheres

Right: Spectrogram computed for theRight: Spectrogram computed for the 
component y(t) (averaged over 300 button 
press events) Button press indicated with a 
vertical white line. Alpha band activity (maximal 
at 12Hz for this subject) decreases (de
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at 12Hz for this subject) decreases (de-
synchronizes) for about 500ms after the button 
push.



Statistical Independence
Statistical independence implies for all i≠j,t,τ,n,m:

Statistical Independence

For M sources and N sensors each t,τ,n,m gives M(M-1)/2

E[si
n(t) sj

m(t +τ)] = E[si
n(t)]E[sj

m(t +τ)]

For M sources and N sensors each  t,τ,n,m gives M(M 1)/2
conditions for NM unknowns in A.

Sufficient conditions if we use multiple:Sufficient conditions if we use multiple:

use sources assumed condition statistic algorithm
i W R ( ) WT di i d l it non-stationary W Rx(t) WT = diag covariance decorrelation

τ non-white W Rx(τ) WT = diag cross-correlation SOBI
n, m non-Gaussian W Cx(i,j) WT = diag 4th cumulants JADE (ICA)
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Example: Non-stationaryExample: Non stationary 
Independent Sources

Th i d d ti
Example: First 8 independent 
components that explain 64 
observed EEG sensors x in

The independence assumption 
establishes that the covariance Rx(t) is 
diagonalized by W for all times t:

R (t ) W R (t ) WT di observed EEG sensors x in 
visual discrimination task 250 ms 
before and after stimulus 
presentation

Ry(t1) = W Rx(t1) WT = diag
Ry(t2) = W Rx(t2) WT = diag

C bi i th bt i th
p

EEG sensor projections A=W-1

Combining these we obtain the 
solutions again with the Generalized 
Eigen-vectors:

Rx(t2)
-1Rx(t1) W = W λ

More robust if we use simultaneous

Telluride 7/08 24

More robust if we use simultaneous 
diagonalization of multiple covariances.



Using Spatio-temporal Linear ProcessingUsing Spatio temporal Linear Processing
Y = WX

observations
transformation

matrix

recovered
sources

artifact removal and linear

X W Y

artifact removal and 
dimensionality reduction

linear 
discriminationData P(T)

64-128 channels

1

s2

s1
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An Example 
…predicting motor response using linear regression…
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Single-trial Detection with Spatial IntegrationSingle trial Detection with Spatial Integration
Conventional Event Related Potentials (ERP) averages over trials.  
We substitute trial averaging by spatial integration: x(t)g g y p g

s(t) = wT x(t)
Linear discriminants: Compute 
spatial weighting w which maximally 
discriminates sensor array signals 

(t) for two different conditionsx(t) for two different conditions.

Ex: Detect motor planning 
activity Predict button press at

eactivity Predict button press 
from 122 MEG sensors with 
linear discriminator  w such 
that s(t) differs the most during 

E[
y(

t)]

ue
 p

os
iti

ve
 ra
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( ) g
100-30 ms window prior to 
button push. t false positive rate

tru



Localization of Discriminating Componentg p
... possible because we have a linear model  ...

Wh t i th l t i l li fWhat is the electrical coupling  a of 
the hypothetical source s that explains 
most of the activity X? 

Least squares solution:

a =
Xy
yTy

Strong coupling indicates low attenuation.  
Intensity on these “sensor projections”  a
indicates closeness of the source to the

Telluride 7/08 28

indicates closeness of the source to the 
sensors.
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Applications: Cognitive User InterfaceApplications: Cognitive User Interface

Hypotheses: 

• EEG can be used to detected 
cognitive events related to 
visual target detection, 
discrimination, and perceived 
error fastslowerror.

• Such cognitive events can be 
detected more quickly and 

fastslow

reliably than overt (motor) 
responses.

Decision

Telluride 7/08 30

Objective: Use EEG signatures of cognitive events to improve task performance  



Single-trial Discrimination

Linear discriminants: Compute spatial 
weighting w which maximally discriminates 

g

Training
Wi d ( )Sti l R

g g y
sensor array signals x(t) for two different 
conditions.

S i l l k d i ( )
0 1000500250 750

Tr
ia

ls

Window (τ)Stimulus Response

vs

τ = tk −
δ
2

→ tk +
δ
2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Stimulus locked time (ms)

y(t) = wτ ,δ ,θ
T x(t)

vs.

Localization of Discriminating Component 
possible because we have a linear model

Xy

Strong coupling indicates low attenuation.  Intensity 
on these “sensor projections” a indicates closeness

a =
Xy
yT y
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on these sensor projections a indicates closeness 
of the component to the sensors.

Parra, Sajda  et al. Neuroimage, 2002
Parra, Spence, Gerson & Sajda, Neuroimage, 2005 



Single-trial Analysis using 
Linear DiscriminationLinear Discrimination

al
s

A
z

250 ms

5al
s

A
z

Tr
ia

0 5 10 01

0.
7

Tr
ia

0 5 10 01
Stimulus locked time (ms)

0.5 1p = 0.01
Stimulus locked time (ms)

0.5 1p = 0.01

y(t) = wτ ,δ ,θ
T x(t) a =

Xy
yTy

Discrimination
performance
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Neural-based Image Triage

Telluride 7/08 33

Image Sequence



Neural-based Image Triage

Single-trial decoder

priority list 
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Image Sequence



Neural-based Image Triage
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Pre-triage Post-triage



On-line Real-time 
P t bl I T i S tPortable Image Triage System

parallel port (display events)parallel port (display events)

serial COMS port (detection events)

Display Laptop
(EPrime & Python)

Analysis Laptop
(Matlab DLL & C))

USB

Bi i
64 channels

USB
(EEG data 
streaming)

Biosemi
Active Two
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Hierarchical Discriminating Components
li ti ti f ll t…online estimation of all parameters…

hn
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Triage resultsTriage results

Original Sequence EEG (no motor)Triage performance

ge
 n

um
be

r

EEG (motor) Button EEG (motor) and Button

Im
ag
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Gerson, Parra & Sajda, IEEE TNSRE, 2006
Sajda et al., Trends in BCI, 2007



Detection of Error Related Negativity 
During a Visual Discrimination EventDuring a Visual Discrimination Event

Error Related Negativity (ERN) occurs following perception of errors. It is 
hypothesized to originate in Anterior Cingulate and to represent responsehypothesized to originate in Anterior Cingulate and to represent response 
conflict or subjective loss.  

Example: Erikson Flanker task

Discrimination of error versus correct response (64 EEG sensors, 100ms)
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Real-Time On-Line Error Correction
Linear 
filtering & eye 
bli k l64 EEG blink removal64 EEG 

channels

Linear classifier 
for ERN 
detection

Adaptive 
threshold for 
error correction detectionerror correction

Machine Corrected Errors Overall Human-Machine 
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Machine Corrected Errors
Performance



Real-Time On-Line Error Correction
Linear 
filtering & eye 
blink removal64 EEG blink removal64 EEG 

channels

Machine Corrected Errors
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Machine Corrected Errors
200 ms latency



Real-Time On-Line Error Correction
Linear 
filtering & eye 
bli k l64 EEG blink removal64 EEG 

channels

Linear classifier 
for ERN 
detection

Adaptive 
threshold for 
error correction detectionerror correction

Machine Corrected Errors Overall Human-Machine 
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Machine Corrected Errors
Performance



Real-Time On-Line Error Correction
Linear 
filtering & eye 
blink removal64 EEG blink removal64 EEG 

channels

Machine Corrected Errors
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Machine Corrected Errors
200 ms latency
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Perceptual Decision MakingPerceptual Decision Making

Visual discrimination

Auditory discrimination

Somatosensory discrimination

from Heekeren et al Nature Rev Neuro 2008
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from Heekeren et al. Nature Rev. Neuro. 2008



Perceptual Decision Making

Behavioral Response

Perceptual Decision Making

Behavioral Response

of
 tr

ia
ls

t c
or

re
ct

What are the neural correlates (origins) of these 
behavioral responses?

nu
m

be
r 

pe
rc

en
t behavioral responses?

response timecontrol variable
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Relating Neural Activity to Behavioral Performance
i k i l d lti it di i i t

• Signal detection theory used to correlate psychophysical and neuronal responses
Britten et al. ’92, ‘96

…previous work: single and multi-unit recordings in primates…

QuickTime™ and a
Cinepak decompressor

are needed to see this picture

responses to “pref” direction

responses to “null” direction

psychometric data

neurometric data

are needed to see this picture.

0 1 10 100

from Britten et al. ‘92

% Coherence
0       1           10        100

Neurometric functions predictive of psychophysical performance

Neurometric Function
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Neurometric functions predictive of psychophysical performance



Identifying Discriminative Components 
in the EEGin the EEG

… time-locked spatial filters…
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A “Typical” Perceptual Decision Making Taskyp p g
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Philiastides, Ratcliff & Sajda, J. Neurosci 2006



Beginnings of a Timing Diagram
High Coherence

Subject: Face vs CarHigh Coherence Lower Coherence
Subject: Face vs Car Subject: Face vs Car

Subject: Red vs Green Subject: Red vs Green

Telluride 7/08 50
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Combining EEG and fMRI
Localization of decision making (fMRI)

Combining EEG and fMRI

Easy > Hard Decisions
Hard > Easy Decisions

Ti i f d i i ki (EEG) C ti l t k (fMRI/EEG)

Heekeren et al. 
Nature 2004

a d asy ec s o s

Timing of decision making (EEG) Cortical networks (fMRI/EEG)
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Linking EEG Components to fMRI BOLD

• Simultaneous EEG/fMRI experiment• Simultaneous EEG/fMRI experiment

• EEG-informed fMRI
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EEG-informed fMRI Design AnalysisEEG informed fMRI Design Analysis
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EEG-informed fMRI Design AnalysisEEG informed fMRI Design Analysis

?

?

?

VStim On
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RT

time



EEG-informed fMRI Design AnalysisEEG informed fMRI Design Analysis

0.5
0.26

1.0
0.52

0.5
0.26

1.0
0.52

1.0
0.34

0.5
0.10

0.5
0.10

0.5
0.10

S f
0.5
0.43

1.0
0.68

0.2
0.12

0.2
0.12

Simplified

Single-trial EEG
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EEG-Informed fMRI: A Spatio-temporal 
Di f P t l D i i M kiDiagram for Perceptual Decision Making

(Philiastides and Sajda, J. Neurosci 2007)
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What about trial-to-trial variability?
Simultaneous EEG/fMRI



Custom Built Hardware and Software for 
Si lt EEG/fMRISimultaneous EEG/fMRI
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Auditory Oddball
…auditory analog of visual targets amongst distractors…

“boop”“boop”

“beep” “beep” “beep”

pp

time
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Single-trial Analysis of Simultaneous 
EEG/fMRIEEG/fMRI
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Correlation of single-trial variability of EEG g y
discriminator with BOLD signal  

We see significant activations which are unobservable 
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g
with standard regressors 



SummarySummary

• Spatio-temporal linear filters (i.e. projections), 
estimated under a variety of objective functions can beestimated under a variety of objective functions, can be 
used to identify a variety of “interesting” and 
neurologically relevant “components”.

• From an engineering point of view, such filters are 
attractive because they can be estimated on-line and inattractive because they can be estimated on line and in 
real-time, enabling a variety of brain-computer 
interfaces.

• We have used such spatio-temporal filters to more 
precisely characterize perceptual decision making in

Telluride 7/08 61

precisely characterize perceptual decision making in 
the human brain.



Further Reading/InfoFurther Reading/Info

• Papers and code at http://liinc.bme.columbia.edu
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Using Machine Learning to Identify Neural 
C l t f P t l D i i M kiCorrelates of Perceptual Decision Making

machine
learning
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ICA ComponentsICA Components
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GEVD ComponentsGEVD Components
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LR ComponentsLR Components
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A P h P ll Ci it f All ti f Att ti t S Sti liA Push-Pull Circuit for Allocation of Attention to Sensory Stimuli
…single-trial variability reveals cross-modal modulation 

of visual and somatosensory cortices…

Auditory Stimulus Driven
Decision Making

A
S

A
S

A
S

A
S

A
S

A
S

VVVVVV

Visual Stimulus Driven Somatosensory Stimulus DrivenVisual Stimulus Driven
Decision Making

Somatosensory Stimulus Driven
Decision Making

A
S

A
S? ?
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