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ThreeThreeThreeThree----dimensionaldimensionaldimensionaldimensional

For each time stepFor each time stepFor each time stepFor each time step

Internal, external forcesforcesforcesforces are calculated for each object in the simulation
Positions, orientations and velocities of each objectobjectobjectobject are updated

CollisionsCollisionsCollisionsCollisions between objects are detected, and resolved

Simulated sensorsSimulated sensorsSimulated sensorsSimulated sensors
Real-time sensor data Input sensor values neural network

Simulated motorsSimulated motorsSimulated motorsSimulated motors
Output neuron values desired joint angles Torque

From ODE documentation

Physical Simulation                                             Tool set
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The growing robot
body and brain

The genome, a copy of which 

resides in each morphological unit

Transcription factors, 

produced by genes contained in the genome, 

diffuse through the robot's body, causing phenotypic change

Automating Robot Design

Bongard, J. C. (2002)
Evolving Modular Genetic Regulatory Networks, in 
Proceedings of the IEEE 2002 Congress on 
Evolutionary Computation (CEC2002),
pp. 1872-1877.



Automating Robot Design

Bongard, J. C. and R. Pfeifer (2001)
Repeated Structure and Dissociation of Genotypic 
and Phenotypic Complexity in Artificial Ontogeny, in 
Proceedings of The Genetic and Evolutionary 
Computation Conference,
pp. 829-836.



Automating Robot Design

Bongard, J. C. and R. Pfeifer (2001)
Repeated Structure and Dissociation of Genotypic 
and Phenotypic Complexity in Artificial Ontogeny, in 
Proceedings of The Genetic and Evolutionary 
Computation Conference,
pp. 829-836.
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Evolving Robot Bodies and Brains Together                      Example Investigations



Regulatory gene
Targetted regulatory gene
Structural gene affecting morphogenesis
Structural gene affecting neurogenesis

Evolving Robot Bodies and Brains Together                      Example Investigations
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Evolving Self-Models Example Investigations

Bongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. 
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Evolving Self-Models Example Investigations

Bongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. 
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Bongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. 



Self-model synthesis

Robot generates 

several self-models 

to match sensor 

data collected while 

performing previous 

actions. It does not 

know which model is 

correct.

Robot physically 

performs an action. 

Initially, this action is 

random; later, it is the best 

action generated in step C.

Robot generates several 

possible actions that 

disambiguate competing self-

models.

Exploratory action synthesis

After several cycles 

of A-C, the currently best 

model is used to 

generate a locomotion 

sequence through 

optimization.

Target behavior synthesis

The best locomotion 

sequence is then executed by 

the physical robot.

The cycle continues 

at step B to further 

refine models, or at 

step D to create new 

behaviors.
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Evolving Self-Models Example Investigations



Automating Robot RecoveryBongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. 
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Automating Robot RecoveryBongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. 



Intelligent

Testing
Modeling

Random

Testing
ModelingRandom

Testing
Modeling

23.3% success 26.7% success 43.3% success

Batch testing Random testing Intelligent testing (EEA)

Comparative modeling performance

9.62 +/- 1.47 cm 9.7 +/- 1.45 cm 7.31 +/- 1.22 cm

Intact robot

Topology correct?

Model error:

Intelligent

Testing
Modeling

Random

Testing
ModelingRandom

Testing
Modeling

Batch testing Random testing Intelligent testing (EEA)

5.60 +/- 2.98 cm 4.55 +/- 3.22 cm 2.17 +/- 0.55 cm

Damaged
robot

Model error:



Multiple Robots Sharing Self-Models                                           Example Investigations

Bongard, J. (2007) Exploiting Multiple Robots to Accelerate Self-
Modeling, Proceedings of the 9th Annual Conference on Genetic 
and Evolutionary Computation, ACM Press, New York, NY, pp. 214-
221. 



Bongard J. and Lipson H.(2007). Automated reverse engineering of
nonlinear dynamical systems.
Proceedings of the National Academy of Sciences,
104(24): 9943-9948. 

Automating System Identification
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dG/dt = 0.96A2/(0.96A2+1)

dA/dt = G( L/(L+1) – A/(A+1) )

dL/dt = -GL/(L+1)

Best modelBest modelBest modelBest model

dG/dt = A2/(A2+1) – 0.01G + 0.001

dA/dt = G( L/(L+1) – A/(A+1) )

dL/dt = -GL/(L+1)

TargetTargetTargetTarget
systemsystemsystemsystem

The The The The laclaclaclac operonoperonoperonoperon from from from from E. coliE. coliE. coliE. coli
(G = concentration of beta-galactosidase; A = allolactose; L = lactose)

Evolving Coupled, Nonlinear Models Application I: lac operon in E. coli



dH/dt = 3.42x106 - 67.82H - 10.97L

dL/dt = 3.10x105 + 32.66H - 63.16L

BestBestBestBest

modelmodelmodelmodel

TargetTargetTargetTarget

SystemSystemSystemSystem

Historical data reporting approximated populations of snowshoe hare (H) and 

Canadian lynx (L) 

Evolving Coupled, Nonlinear Models Application II: Ecological data set



-1.57rad -2.67rad00

dθ/dt = 1.004ω + 0.0001

dω/dt = -19.43sin(1.104θ+0+0+0+0)

dθ/dt = 1.008ω + 0.0028

dω/dt = -19.43sin(1.0009θ----1.5751.5751.5751.575)

dθ/dt = 1.0039ω - 0.0003

dω/dt = -22.61sin(1.101θ----2.6732.6732.6732.673)

dθ/dt = ω

dω/dt = -9.8Lsin(θ)

Model for an idealized single pendulum with no friction

Evolving Coupled, Nonlinear Models Application III: Mechanical pendula



Evolving Robots Capable of Dynamic Behavior               Boston Dynamic’s Big Dog



Evolving Robots Capable of Multiple Behaviors Example Investigations

Behavior chaining

Enables a robot to learn multiple, dynamic behaviors gradually.

Learns one behavior,
then gradually incorporates new behaviors into its existing repertoire.

All behaviors are incorporated into the same monolithic controller.

Is more scalable than other approaches that require building
a new controller component for each new behavior.

Builds on the idea of scaffolding, and robot shaping:
gradually changing the environment 
to guide the learner toward a complex behavior
it might not have learned otherwise.



Behavior Chaining:

p = random controller
Eval(p)

For g = 1:generations

tmp = CopyOf(p);
c = Mutate(tmp);
Eval(c)

if (Fitness(c) > Fitness(p))
p = c

else 
delete c

if Success(p)
MoveObjFurther()

if Failure(p) 
LengthenEvalTime()

Morphology

CTRNN Controller

S1 S2
0 0
0.1 0.2
0.4 0.8
…

Sensor values

Evolving Robots Capable of Multiple Behaviors Example Investigations

Bongard, J. (2008)
Behavior Chaining: Incremental Behavioral

Integration for Evolutionary Robotics,
ALife XI, to appear.

MorphEngine
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Bongard, J. (2008)
Behavior Chaining: Incremental Behavioral

Integration for Evolutionary Robotics,
ALife XI, to appear.
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Evolving Robots Capable of Multiple Behaviors Example Investigations



Evolving Robots Capable of Multiple Behaviors Example Investigations

Courtesy of
Josh Auerbach

Successful lifting

Fumbling

Little locomotion

No locomotion
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Proximate and Ultimate Mechanisms of Behavior                   Conclusions

Proximate mechanisms:

1. Causation (Mechanism): what are the stimuli that elicit the response, and how 
has it been modified by recent learning? 

2. Development (Ontogeny): how does the behaviour change with age?

Ultimate mechanisms:

3. Evolution (Phylogeny): how does the behaviour compare with similar behaviour in 
related species, and how might it have arisen through the process of phylogeny?

4. Function (Adaptation): how does the behavior impact on the animal's chances of 
survival and reproduction? 

Nikolaas Tinbergen (1907–1988)
Four levels of description: 

not mutually exclusive



Mechanisms of Centralized Neural Structure Conclusions

Proximate mechanisms:

1. Causation (Mechanism): how is stimuli combined in the central nervous 
system? 

2. Development (Ontogeny): how does the central nervous system develop 
during growth?

Ultimate mechanisms:

3. Evolution (Phylogeny): how did central neural structure in the current 
population evolve from distributed neural structures in ancestral populations?

4. Function (Adaptation): how does centralized neural structure impact the 
robot’s chances of survival and reproduction? (integration of sensor information?)



Mechanisms of Competitive Processes in the Brain                              Conclusions

Proximate mechanisms:

1. Causation (Mechanism): what are the stimuli that trigger competition between 
processes in the brain? What form do these processes take?

2. Development (Ontogeny): How do competitive processes multiply during 
growth? Do some processes eventually ‘win’?

Ultimate mechanisms:

3. Evolution (Phylogeny): how did competitive neural processes arise from less, 
or lack of competitive processes in ancestral populations?

4. Function (Adaptation): how do competitive neural processes affect the 
animal's chances of survival and reproduction? 



Mechanisms of Gradual Behavior Integration Conclusions

Proximate mechanisms:

1. Causation (Mechanism): what are the stimuli that trigger the learning of a new 
behavior? What form do these processes take?

2. Development (Ontogeny): How are behaviors gradually integrated into a 
robot’s exhibit behavioral repertoire?

Ultimate mechanisms:

3. Evolution (Phylogeny): how do the mechanisms that allow for gradual 
behavior integration arise from ancestral robots capable of exhibiting only one 
behavior?

4. Function (Adaptation): Obvious
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Take Home Message
To truly understand cognition, we must pursue two lines of attack:

understand biological systems by replicating them in hard/software
cause analogues of these systems to evolve in artificial systems.

Software Robots with Hardware Brains

www.cs.uvm.edu/~jbongard/2008_Telluride

CNS?

Competitive Processes in the Brain?

Gradual Behavior Integration?


