July 8, 2008

Investigations at the
interface of
morphology,
evolution and
cognition

¥ e

The

UNIVERSITY
o VERMONT

Josh Bongard
Department of Computer Science

College of Engineering and Mathematical Sciences
University of Vermont

josh.bongard@uvm.edu




Talk Overview

The Tool Set
MorphEngine
MorphEngine " Unplugged’
Physical Simulation

Example Investigations
Evolving Robot Morphologies and Controllers Together
Evolving Self-Models
Evolving Coupled, Nonlinear Models
Evolving Robots Capable of Multiple Behaviors

Conclusions
Proximate and Ultimate Mechanisms of Cognition
Summary



MorphEngine Tool set

ANN Controller www.cs.uvm.edu/~jbongard/
2008_Telluride/
MorphEngine.tar.gz

Morphology
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MorphEngine Unplugged Tool set
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Physical Simulation Tool set

Three-dimensional
For each time step

Internal, external forces are calculated for each object in the simulation ]
Positions, orientations and velocities of each object are updated

From ODE documentation
Collisions between objects are detected, and resolved

Simulated sensors
Real-time sensor data ——Input sensor values —neural network

Simulated motors l
Output neuron values »desired joint angles »Torque —
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Evolving Robot Bodies and Brains Together Example Investigations
ANN Controller

Sensor values

Morphology



Evolving Robot Bodies and Brains Together Example Investigations

Sensor values

Growth Commands



Automating Robot Design

The growing robot
body and brain

Bongard, J. C. (2002)
Evolving Modular Genetic Regulatory Networks, in
Proceedings of the IEEE 2002 Congress on _
Evolutionary Computation (CEC2002), The genome, a copy of which

pp. 1872-1877. resides in each morphological unit

Transcription factors,
produced by genes contained in the genome,
diffuse through the robot's body, causing phenotypic change



Automating Robot Design

S: sensor, M: motor

Bongard, J. C. and R. Pfeifer (2001)
Repeated Structure and Dissociation of Genotypic
and Phenotypic Complexity in Artificial Ontogeny, in
Proceedings of The Genetic and Evolutionary
Computation Conference,

pp. 829-836.
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Evolving Robot Bodies and Brains Together Example Investigations
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Evolving Robot Bodies and Brains Together

Example Investigations
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Evolving Self-Models

Bongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121.

Example Investigations
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Evolving Self-Models

Population
of
Models

F The cycle continues
at step B to further
refine models, or at
step D to create new
behaviors.

Self-model synthesis \

\

B Robot generates
several self-models

to match sensor
data collected while
performing previous

actions. It does not
know which model is
correct.

‘ ﬁ(ploratory action synthe

‘

=
a

t/

possible actions that

models.

¢

C Robot generates several

disambiguate competing self-

D After several cycles

Example Investigations

Population
of
Actions

of A-C, the currently best
model is used to

generate a locomotion
' sequence through
optimization.

Target behavior synthesiﬁ

s o

\— _/

. A Robot physically

performs an action.

Initially, this action is
random; later, it is the best
action generated in step C.

Population
of
Behaviors

E The best locomotion
sequence is then executed by
the physical robot.




Bongard, J., Zykov, V., Lipson, H. (2006). Resilient machines through
continuous self-modeling. Science, 314: 1118-1121. AUtomatmg Robot Recovery
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Robust Machines Through Continuous Self-Modeling
Josh Bongard, Victor Zykov, Hod Lipson
Computational Synthesis Laboratory

Sibley School of Mechanical and Aerospace Engineering
Cornell University




Comparative modeling performance

Intactrobot  pjich testing Random testing Intelligent testing (EEA)
N T, T,

30 trials 30 trials 30 trials



Comparative modeling performance

Intactrobot  pjich testing Random testing Intelligent testing (EEA)
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Topology correct? 23.3% success 26.7% success
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Comparative modeling performance

Intactrobot  pjich testing Random testing Intelligent testing (EEA)
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Topology correct? 23.3% success 26.7% success 43.3% success
Model error:  9.62 +/- 1.47 cm 9.7 +/- 1.45 cm 7.31 +/- 1.22 cm
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Multiple Robots Sharing Self-Models Example Investigations

Actions Models Actions Models

Best v Worst Best v Worst

(N J A ( N J
|
|
|
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————>

Bongard, J. (2007) Exploiting Multiple Robots to Accelerate Self-
Modeling, Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, ACM Press, New York, NY, pp. 214-
221.



Bongard J. and Lipson H.(2007). Automated reverse engineering of Automating System Identification
nonlinear dynamical systems.

Proceedings of the National Academy of Sciences,
104(24): 9943-9948.

Candidate models " Candidate tests
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b The inference process c The inference process
generates several different generates several possible
candidate symbolic models Inference Process new candidate tests that
that match sensor data disambiguate competing
collected while performing models (make them disagree
previous tests. It does not in their predictions).
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A Theinference process physically performs an
experiment by setting initial conditions, perturbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is
the best test generated in step c.



Encoding and optimizing of models

) dx/dt = 1.4(0.8+x)
dy/dt = 0.2/ (x+y)

dx/dt = (0.8 + x) * sin(x)
dy/dt=x/y




Evolving Coupled, Nonlinear Models Application I: lac operon in E. coli
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(G = concentration of beta-galactosidase; A = allolactose; L = lactose)

Target dG/dt = A2/(A2+1)-0.01G + 0.001
system dA/dt = G(LAL+1) - A/(A+1))
dudt  =-GL/(L+1)

Bestmodel |dG/dt = 0.96A2/(0.96A2+1)

dA/dt = G(LAL+1) - A/(A+1))
dldt  =-GL/(L+1)




Evolving Coupled, Nonlinear Models Application |l: Ecological data set

Historical data reporting approximated populations of showshoe hare (H) and
Canadian lynx (L)

Target
System 1601
h
i ——HARE
140 N ——-LYNX
120
100
Thousands gq| .'*]

i1l g
40 [
20

'l_..!

1845 1855 1865 1875 1835 1895 1905 1915 1925 1935

Best dH/dt  =3.42x106 - 67.82H - 10.97L
model |dL/dt =3.10x10° + 32.66H - 63.16L




Evolving Coupled, Nonlinear Models Application Ill: Mechanical pendula

00 ‘ -1.57rad \ -2.67rad
— >

dé/dt = 1.004w + 0.0001 dé/dt = 1.0039w - 0.0003
dw/dt = -19.43sin(1.1046+0) dw/dt = -22.61sin(1.1016-2.673)

doé/dt = 1.008w + 0.0028
dw/dt = -19.43sin(1.00096-1.575)

de/dt = w
dw/dt = -9.8Lsin(0)

Model for an idealized single pendulum with no friction



Boston Dynamic’s Big Dog
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Evolving Robots Capable of Multiple Behaviors Example Investigations

Behavior chaining
Enables a robot to learn multiple, dynamic behaviors gradually.

Learns one behavior,
then gradually incorporates new behaviors into its existing repertoire.

All behaviors are incorporated into the same monolithic controller.

Is more scalable than other approaches that require building
a new controller component for each new behavior.

Builds on the idea of scaffolding, and robot shaping:
gradually changing the environment
to guide the learner toward a complex behavior
it might not have learned otherwise.



Evolving Robots Capable of Multiple Behaviors Example Investigations

CTRNN Controller

Sensor values

Bongard, J. (2008)

Behavior Chaining: Incremental Behavioral

Morphology Integration for Evolutionary Robotics,
Alife XI, to appear.




Evolving Robots Capable of Multiple Behaviors Example Investigations
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Evolving Robots Capable of Multiple Behaviors Example Investigations
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Courtesy of
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Proximate and Ultimate Mechanisms of Behavior Conclusions

Nikolaas Tinbergen (1907-1988) Four levels of description:

Proximate mechanisms: not mutually exclusive

1. Causation (Mechanism): what are the stimuli that elicit the response, and how
has it been modified by recent learning?

2. Development (Ontogeny): how does the behaviour change with age?

Ultimate mechanisms:

3. Evolution (Phylogeny): how does the behaviour compare with similar behaviour in
related species, and how might it have arisen through the process of phylogeny?

4. Function (Adaptation): how does the behavior impact on the animal's chances of
survival and reproduction?



Mechanisms of Centralized Neural Structure Conclusions

Proximate mechanisms:

1. Causation (Mechanism): how is stimuli combined in the central nervous
system?

2. Development (Ontogeny): how does the central nervous system develop
during growth?

Ultimate mechanisms:

3. Evolution (Phylogeny): how did central neural structure in the current
population evolve from distributed neural structures in ancestral populations?

4. Function (Adaptation): how does centralized neural structure impact the
robot’s chances of survival and reproduction? (integration of sensor information?)



Mechanisms of Competitive Processes in the Brain Conclusions

Proximate mechanisms:

1. Causation (Mechanism): what are the stimuli that trigger competition between
processes in the brain? What form do these processes take?

2. Development (Ontogeny): How do competitive processes multiply during
growth? Do some processes eventually ‘win™?

Ultimate mechanisms:

3. Evolution (Phylogeny): how did competitive neural processes arise from less,
or lack of competitive processes in ancestral populations?

4. Function (Adaptation): how do competitive neural processes affect the
animal's chances of survival and reproduction?



Mechanisms of Gradual Behavior Integration Conclusions

Proximate mechanisms:

1. Causation (Mechanism): what are the stimuli that trigger the learning of a new
behavior? What form do these processes take?

2. Development (Ontogeny): How are behaviors gradually integrated into a
robot’s exhibit behavioral repertoire?

Ultimate mechanisms:
3. Evolution (Phylogeny): how do the mechanisms that allow for gradual

behavior integration arise from ancestral robots capable of exhibiting only one
behavior?

4. Function (Adaptation): Obvious



The Tool Set
MorphEngine » Www.cs.uvm.edu/~jbongard/2008_Telluride
MorphEngine " Unplugged’ »Software Robots with Hardware Brains

Physical Simulation

Example Investigations
Evolving Robot Morphologies and Controllers Together » CNS?
Evolving Self-Models » Competitive Processes in the Brain?
Evolving Coupled, Nonlinear Models
Evolving Robots Capable of Multiple Behaviors — Gradual Behavior Integration?

Conclusions
Proximate and Ultimate Mechanisms of Cognition
Summary

Take Home Message
To truly understand cognition, we must pursue two lines of attack:
understand biological systems by replicating them in hard/software
cause analogues of these systems to evolve in artificial systems.



