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Visual inference: motion perception







Two guiding principles

Functional
specialization

Computational
theory
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Visual pathways and

functional specialization




Defining visual cortical areas

PhACT

Physiology = Architecture Connections  Topography




Electrophysiology (action potential)
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Cortical pyramidal
cell (Golgi stain)




oarchitecture: Brodmann's areas
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Korbinian Brodmann
(1868-1918)

~50 cytoarchitectural areas
defined by cell size, cell density,
number of layers, density of
myelinated axons.




Architecture: cortical layers

|— White
matter

Primary visual cortex slice (Nissl stain)




Architecture: cytochrome oxidase

V2: stripes

Cytochrome oxidase staining in human visual cortex

Tootell et al (1995)



Connections: retinogeniculate visual
pathway

— optic nerve

on optic chiasm

Ventral view AL optic tract

optic radiation

primary visual cortex




Network of visual
cortical areas
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Felleman & Van Essen (1991)



Network of visual
cortical areas

Each “feedforward”
conhnection has a

corresponding "feedback"
conhnection.
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Topography: retinotopy in human V1

Visual Disturbances Following
Gunshot Wounds of the Cortical
Visual Area

Based on observations of the wounded in
the recent Japanese wars
German edition first published in 1909

Tatsuji Inouye
(1880-1976)

Horton & Hoyt, 1991




V1 retinotopy

Lower VM




V1 retinotopy
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V1 retinotopy
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V1 retinotopy
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V1 retinotopy

Lower VM




V1 retinotopy
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V1 retinotopy

Lower VM




V1 retinotopy

Lower VM




V1 retinotopy

Lower VM




V1 retinotopy

Lower VM




Visual maps in the brain

Each visual brain area contains a map of the
visual world and performs a different function.




Functional magnetic resonance imaging

Revolution in psychology and neuroscience: > 1000 papers
published per year!




Measuring retinotopic maps

Radial component Angular component

Engel et al, Nature (1994)



Retinotopy: radial component

Brewer, Press, Logothetis & Wandell (2002)



Cortical segmentation & flattening
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Retinotopy: angular component

dorsal

lateral

medial

Larsson & Heeger,
J Neurosci, 2006




Human visual areas
from fMRI

Larsson & Heeger,
J Neurosci (2006)




Monkey visual areas from fMRI

Brewer, Press, Logothetis & Wandell (2002)



Topography: columnar
architecture in V1

Retinotopic map

Columnar architecture
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Functional specialization

Match each cortical area to its corresponding function:

V1 Motion

V2 Stereo

V3 Color

V3A Texture

V3B Segmentation, grouping

V4 Recognition

V5 Attention

V7 Working memory
Mental imagery
Decision-making
Sensorimotor integration
Etc.




Functional specialization:
motion perception

Geoff Boynton
Alex Huk




Beware of circular reasoning
in functional specialization

1. Hypothesize that there is a particular visual process that
is localized to a functionally specialized brain area.

2. Design an experiment with two stimuli/tasks, one of which
you believe imposes a greater demands on that visual
process.

3. Run the experiment and find sure enough that there are
some neurons in a brain area that respond more strongly
during trials with high demand on that visual process then
low demand ftrials.

What can you conclude from this?




Cortical area MT is specialized .4
for visual motion perception

* Neural responses in MT are correlated with the perception of
motion.

« Damage to MT or temporary inactivation causes deficits in visual
motion perception.

* Electrical stimulation in MT causes changes in visual motion
perception.

« Computational theory quantitatively explains both the responses
of MT neurons and the perception of visual motion.

* Well-defined pathway of brain areas (cascade of neural
computations) underlying motion specialization in MT.




Is MT specialized for only
visual motion perception?

*Neurons in MT are also selective for binocular disparity.

* Neural responses in MT are also correlated with the perception
of depth.

* Motion discrimination performance mostly recovers following
carefully circumscribed lesions to MT in monkeys.

* Electrical stimulation in MT causes changes in stereo depth
perception.




Is MT specialized for only
visual motion perception?

*Neurons in MT are also selective for binocular disparity.

* Neural responses in MT are also correlated with the perception
of depth.

* Motion discrimination performance mostly recovers following
carefully circumscribed lesions to MT in monkeys.

* Electrical stimulation in MT causes changes in stereo depth
perception.

Even so... computational theory quantitatively explains the
responses of MT neurons.




Neural circuits perform computations

~50,000 neurons per cubic mm
~6,000 synapses per nheuron
~10 billion neurons & ~60 trillion synapses in cortex




Computational theory
explains the responses of

V1 & MT neurons and
motion perception

V1 MT
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with Matteo Carandini, Tony Movshon, Eero Simoncelli



V1 physiology and

computational theory




V1 orientation selectivity
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Hubel & Wiesel (1968)
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Hubel & Wiesel movie




Simple cell







Complex cell

OHOSM3Cs
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Classical view:
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Simple
cortical
cell

Simple
cells

Complex
cell

Hubel & Wiesel (1962)




Orientation selectivity model

No stimulus in
receptive field:
ho response

Preferred stimulus:
large response

Non-preferred stimulus:
no response




Rectification and spiking threshold

stimulus %db— _I_Z—' firing rate

linear rectification
weighting function

Complementary Rectification and squaring

receptive fields

o0 o0

\Lfst
Vshumt Vthr

R, Firing Rate

-80 -60 -40 -20

V, Membrane Potential




Distributed representation of orientation

Response
(spikes/sec)

Stimulus: vertical bar

Verticél
Responses of each of several
orientation tfuned neurons.

neuron 2

neuron 3

neuron | Peak (distribution mean) codes
for stimulus orientation.

90
Preferred orientation (deg)



Broad tuning can code for small changes

Vertical Diagonal

neuron 2 neuron 2

neuron 3

neuron 3

neuron 1

neuron 1

Response
(spikes/sec)
Response
(spikes/sec)

90 90
Preferred orientation (deg) Preferred orientation (deg)




Neural code depends on multiple factors

High contrast

neuron 2

neuron 3 Low contrast

>

neuron 1 neuron 2

Response
(spikes/sec)

neuron 1 neuron 3

Response
(spikes/sec)

90 90
Preferred orientation (deg) Preferred orientation (deg)




Direction
selectivity

Hubel & Wiesel (1968)



Direction-selective complex cell




Orientation in space-time

>
past \\\\x

present

y
| . future
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Motion is like orientation in space-time and
spatiotemporally oriented filters can be used
to detect and measure it.

Adelson & Bergen (1985)



Motion is orientation in space-time




Direction selectivity model

X
.

past past

present present

future future

Vi \r

Strong response for motion in Weak response for motion in
preferred direction. non-preferred direction.




Impulse response
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Space-time
receptive field

Time, T (ms)

(=

Ohzawa, DeAngelis, gpace X (deg)

& Freeman (1995)




Distributed
representation
of speed

Each spatiotemporal filter
computes something like a
derivative of image
intensity in space and/or
time. "Perceived speed” is
the orientation
corresponding to the
gradient in space-time
(max response).

preferred speed




Complex cells: motion energy
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Motion energy & position invariance

Moving stimulus as seen by both subunits at two different
moments in time:
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Motion energy responses to moving
grating

Preferred direction Opposite direction
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Response saturation and phase advance

Amplitude (sp/s)

Relative phase (deg)

Response (sp/s)

5 10 20 50 100
Time (ms) Contrast (%)

Carandini, Heeger & Movshon, J Neurosci, 1997




Failure of invariance with saturation?

High contrast

neuron 2

Low contrast neuron 3

neuron 2 neuron 1
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neuron 1 neuron 3

Response
(spikes/sec)

>
90 0 180
Preferred orientation (deg) Preferred orientation (deg)

Can no longer discriminate orientations near vertical




Masking
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Carandini, Heeger & Movshon, J Neurosci, 1997




Normalization model

Linear weighting function Division Rectification
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Other cortical cells

Retinal image

, unnormalized response
normalized

response unnormalized
+ O
responses

Heeger, Vis Neurosci, 1992




Contrast invariance

Ratio of responses to pref and non-pref directions constant over
full range of contrasts.

Tolhurst & Dean (1980)
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MT physiology and

computational theory




Increasing receptive field size

parietal areas

MT RF size

V3v (VP)

V2 RF size
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Neurons in MT are selective
for motion direction




Neurons in MT are selective
for motion direction

Maunsell and Van Essen, 1983



Columnar architecture in MT

Direction columns in MT

Albright, Desimone & Gross,
J Neurophysiol (1984)




The “aperture problem”

These three motions are different but look the same when
viewed through a small aperture (i.e., that of a direction-
selective receptive field).

<O

Wallach (1935)



Intersection of constraints

With two different motion components within the
aperture, there is a unique solution:

Adelson & Movshon (1981)



Intersection of constraints (many
components)

Each component activates a
different V1 neuron, selective for
a different orientation and speed.

How do you get selectivity for
the moving pattern as a whole,
not the individual components?




Neural implementation of TOC

Answer: For each possible 2D
velocity, add up the responses of
those V1 neurons whose preferred
orientation and speed is consistent
with that 2D velocity.

$ N

Simoncelli & Heeger, Vis Res, 1998




Spatiotemporal frequency response Frequency responses of filters that
of space-time oriented linear filter. are all consistent with one velocity.

Simoncelli & Heeger, Vis Res, 1998



Distributed representation of 2D velocity

Brightness at each location

Vy
represents the firing rate
of a single MT neuron with a
different preferred
velocity. Location of peak
corresponds to perceived

. Vx velOCiTy.

87— &

Simoncelli & Heeger, Vis Res, 1998



Component vs. pattern motion selectivity

component-motion cell pattern-motion cell

- & -

grating component moving pattern moving up-right
up-right => strong response strong response




Component vs. pattern motion: single

neurons
Movshon et al., 1983 Model
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Simoncelli & Heeger, Vis Res, 1998



Computational theory of
V1 & MT physiology

Vi1 MT

U} 1}

« Linear Gain Output *  : Linear Gain Output
« operator control nonlinearity : « operator control nonlinearity :




Normalization in MT

Snowden et al. (1991)
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anti-preferred direction
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Simoncelli & Heeger, Vis Res, 1998




Visual motion
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Bias in perceived velocity
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Bayesian models of perception

world observer

measurement estimate

O @ —O

Perception is our best guess as to what is in the world, given
our current sensory input and our prior experience
(Helmholtz, 1866).

Goal: explain "mistakes” in perception as "optimal” solutions
given the statistics of the environment.




Simoncelli (1993)
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Bayesian model predictions

stimulus idealization




Bayesian model predictions

stimulus idealization

Vy




Prior for slow speeds explains bias in
perceptual bias

Human observers
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Stone et al (1990) Heeger & Simoncelli (1993)
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Theory fits lots of behavioral data

Stone & Thompson, ‘90
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Weiss, Simoncelli, & Adelson (2002)
see also Stocker & Simoncelli (2006)




Attention and recurrent

(top-down) processing




Attention

Gandhi, Heeger, & Boynton, PNAS, 1999



Normalization model of attention

Attention field

Position

Orientation

Stimulus Excitatory drive
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Normalization model of attention

Stimulus

Attention

\

Receptive fields /

0

Normalization

!

firing rate
> —
response

Reynolds & Heeger, under review



Small stimulus, large attention field

Predominantly Contrast Gain
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Large stimulus, small attention field
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Contrast gain & response gain

Reynolds, Pasternak, &
Desimone, Neuron, 2000
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Attentional selection: gain change
with two stimuli in the receptive field

Predominantly Response Gain

—

F 100 Two stimuli within receptive field.

4 One preferred orientation. Other
non-preferred (orthogonal).
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Bayesian inference

Attention field

Position

Stimulus Excitatory drive l

Orientation
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Bayesian inference

Prior
Position
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Stimulus Likelihood
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Hierarchical Bayesian Inference

Other priors
(V2, v4, LIP,
FEF, SC, etc.)

"Prior” from MT

Attentional

field
Excitatory

field l
Excitatory
| I drive L
* — _— ®—)@ > Response
\/

Attentional

field Suppressive field l MT
Excitatory

field Suppressive drive

Excitatory
drlve
Stimulus =——>» A ®—)@ -—» Response

Suppressive field

V1
| Lee & Mumford, JOSA A, 2003

Suppressive drive Kersten et al., Annu Rev Psychol, 2004




What distinguishes neural activity that
underlies conscious visual appearance?

- Neural activity in certain brain areas.
- Activity of specific subtypes of neurons.

- Particular temporal patterns of neural activity (e.g.,
oscillations).

- Synchronous activity across groups of neurons in different
brain areas.

- Neural activity that is driven by a coherent combination of
bottom-up sensory information and top-down recurrent
processing (e.g., linked to attention).

- Nothing. Once you know the computations, you're donel!




Summary

* Functional specialization and computational theory: two
balancing principles in the field.

*Visual cortical areas: physiology, architecture,
connections, topography.

*Parallel pathways: hierarchy of processing with
increasingly complex selectivity, increasing invariance,
and increasing RF size.

* Canonical computation: linear sum, halfwave rectification
or squaring, hormalization, adaptation.

*Recurrent/feedback/top-down processing: attention and
hierarchical Bayesian inference.

* Visual awareness?




Thank you






