Visual Processing

David J. Heeger New York University

david.heeger@nyu.edu

Vision is an unconscious inference

Visual inference: motion perception

Two guiding principles

Functional specialization

Computational theory

Visual pathways and functional specialization

Defining visual cortical areas

PhACT

Physiology Architecture Connections

Topography

Electrophysiology (action potential)

Cortical pyramidal cell (Golgi stain)

Cytoarchitecture: Brodmann's areas

Korbinian Brodmann (1868-1918)

~50 cytoarchitectural areas defined by cell size, cell density, number of layers, density of myelinated axons.

Architecture: cortical layers

Primary visual cortex slice (Nissl stain)

Architecture: cytochrome oxidase

V2: stripes

Cytochrome oxidase staining in human visual cortex

Tootell et al (1995)

Connections: retinogeniculate visual pathway

Ventral view

Felleman & Van Essen (1991)

Network of visual cortical areas

Each "feedforward" connection has a corresponding "feedback" connection.

Felleman & Van Essen (1991)

Topography: retinotopy in human V1

Tatsuji Inouye (1880-1976)

Visual Disturbances Following Gunshot Wounds of the Cortical Visual Area

Based on observations of the wounded in the recent Japanese wars German edition first published in 1909

human

human

Visual maps in the brain

Each visual brain area contains a map of the visual world and performs a different function.

Functional magnetic resonance imaging

Revolution in psychology and neuroscience: > 1000 papers published per year!

Measuring retinotopic maps

Radial component

Angular component

Engel et al, Nature (1994)

Retinotopy: radial component

Brewer, Press, Logothetis & Wandell (2002)

Cortical segmentation & flattening

Retinotopy: angular component

medial

Larsson & Heeger, J Neurosci, 2006

lateral

Monkey visual areas from fMRI

Brewer, Press, Logothetis & Wandell (2002)

Functional specialization

Match each cortical area to its corresponding function:

V1	Motion
V2	Stereo
V3	Color
V3A	Texture
V3B	Segmentation, grouping
V4	Recognition
V5	Attention
V7	Working memory
LO1	Mental imagery
IPS1	Decision-making
IPS2	Sensorimotor integration
Etc.	Etc.

Functional specialization: motion perception

Geoff Boynton Alex Huk
Beware of circular reasoning in functional specialization

- 1. Hypothesize that there is a particular visual process that is localized to a functionally specialized brain area.
- Design an experiment with two stimuli/tasks, one of which you believe imposes a greater demands on that visual process.
- 3. Run the experiment and find sure enough that there are some neurons in a brain area that respond more strongly during trials with high demand on that visual process then low demand trials.

What can you conclude from this?

Cortical area MT is specialized for visual motion perception

- •Neurons in MT are selective for motion direction.
- Neural responses in MT are **correlated** with the perception of motion.
- Damage to MT or temporary inactivation causes deficits in visual motion perception.
- Electrical stimulation in MT causes changes in visual motion perception.
- Computational **theory** quantitatively explains both the responses of MT neurons and the perception of visual motion.
- Well-defined **pathway** of brain areas (cascade of neural computations) underlying motion specialization in MT.

Is MT specialized for only visual motion perception?

- Neurons in MT are also selective for binocular disparity.
- Neural responses in MT are also correlated with the perception of depth.
- Motion discrimination performance mostly recovers following carefully circumscribed lesions to MT in monkeys.
- Electrical stimulation in MT causes changes in stereo depth perception.

Is MT specialized for only visual motion perception?

- Neurons in MT are also selective for binocular disparity.
- Neural responses in MT are also correlated with the perception of depth.
- Motion discrimination performance mostly recovers following carefully circumscribed lesions to MT in monkeys.
- Electrical stimulation in MT causes changes in stereo depth perception.

Even so... computational theory quantitatively explains the responses of MT neurons.

Neural circuits perform computations

~50,000 neurons per cubic mm ~6,000 synapses per neuron ~10 billion neurons & ~60 trillion synapses in cortex

with Matteo Carandini, Tony Movshon, Eero Simoncelli

V1 physiology and computational theory

V1 orientation selectivity

Hubel & Wiesel (1968)

Simple cell

Hubel & Wiesel movie

Simple cell

Complex cell

SIMPLE

Classical view: summation & spike threshold

Hubel & Wiesel (1962)

Orientation selectivity model

Rectification and spiking threshold

Complementary receptive fields

Rectification and squaring

Distributed representation of orientation

Stimulus: vertical bar Vertical neuron 2 spikes/sec) Response neuron 3 neuron 90 180 0 Preferred orientation (deg)

Responses of each of several orientation tuned neurons.

Peak (distribution mean) codes for stimulus orientation.

Broad tuning can code for small changes

Neural code depends on multiple factors

Direction selectivity

Hubel & Wiesel (1968)

Direction-selective complex cell

Orientation in space-time

Motion is like orientation in space-time and spatiotemporally oriented filters can be used to detect and measure it.

Adelson & Bergen (1985)

Motion is orientation in space-time

Direction selectivity model

Strong response for motion in preferred direction.

Weak response for motion in non-preferred direction.

Impulse response

Space-time receptive field

T= 200 ms T=150 ms T= 100 ms T= 50 ms Y Time, T (ms) 300 X 0 Space, X (deg)

Ohzawa, DeAngelis, & Freeman (1995)

Distributed representation of speed

Each spatiotemporal filter computes something like a derivative of image intensity in space and/or time. "Perceived speed" is the orientation corresponding to the gradient in space-time (max response).

Complex cells: motion energy

Motion energy & position invariance

Moving stimulus as seen by both subunits at two different moments in time:

Motion energy responses to movinggratingPreferred directionOpposite direction

Response saturation and phase advance

Carandini, Heeger & Movshon, J Neurosci, 1997

Failure of invariance with saturation?

Can no longer discriminate orientations near vertical

Masking

Carandini, Heeger & Movshon, J Neurosci, 1997

Normalization model

Heeger, Vis Neurosci, 1992

Contrast invariance

Ratio of responses to pref and non-pref directions constant over full range of contrasts.

Tolhurst & Heeger, Vis Neurosci, 1997

MT physiology and computational theory
Increasing receptive field size

Increasingly complex selectivity

MT

MST

STS

Neurons in MT are selective for motion direction

Neurons in MT are selective for motion direction

Maunsell and Van Essen, 1983

Columnar architecture in MT

Direction columns in MT

Albright, Desimone & Gross, J Neurophysiol (1984)

The "aperture problem"

These three motions are different but look the same when viewed through a small aperture (i.e., that of a directionselective receptive field).

Wallach (1935)

Intersection of constraints

With two different motion components within the aperture, there is a unique solution:

Adelson & Movshon (1981)

Intersection of constraints (many components)

Each component activates a different V1 neuron, selective for a different orientation and speed.

How do you get selectivity for the moving pattern as a whole, not the individual components?

Neural implementation of IOC

Answer: For each possible 2D velocity, add up the responses of those V1 neurons whose preferred orientation and speed is consistent with that 2D velocity.

+ 0 + 0 + 0 + 22

Simoncelli & Heeger, Vis Res, 1998

Spatiotemporal frequency domain

Spatiotemporal frequency response of space-time oriented linear filter.

 ω_t $\omega_{\mathbf{x}}$

Frequency responses of filters that are all consistent with one velocity.

Simoncelli & Heeger, Vis Res, 1998

Distributed representation of 2D velocity

Brightness at each location represents the firing rate of a single MT neuron with a different preferred velocity. Location of peak corresponds to perceived velocity.

Simoncelli & Heeger, Vis Res, 1998

Component vs. pattern motion selectivity

Component vs. pattern motion: single neurons

Model

D

.70

.35

Simoncelli & Heeger, Vis Res, 1998

Normalization in MT

Simoncelli & Heeger, Vis Res, 1998

Visual motion ambiguity

Bias in perceived velocity

5%

10%

Stone, Watson, & Mulligan (1990)

Bayesian models of perception

Perception is our best guess as to what is in the world, given our current sensory input and our prior experience (Helmholtz, 1866).

Goal: explain "mistakes" in perception as "optimal" solutions given the statistics of the environment.

Prior bias for slower speeds

Simoncelli (1993)

X

Bayesian model predictions

stimulus

idealization

model

Bayesian model predictions

stimulus

idealization

model

Prior for slow speeds explains bias in perceptual bias

Theory fits lots of behavioral data

Attention and recurrent (top-down) processing

Attention

Gandhi, Heeger, & Boynton, PNAS, 1999

Normalization model of attention

Normalization model of attention

Small stimulus, large attention field

Large stimulus, small attention field

Contrast gain & response gain

Attentional selection: gain change with two stimuli in the receptive field

Two stimuli within receptive field. One preferred orientation. Other non-preferred (orthogonal).

$$R_p = \alpha \frac{\gamma c}{\gamma c + c + \sigma}$$

$$R_n = \alpha \frac{c}{c + \gamma c + \sigma}$$

Bayesian inference

Hierarchical Bayesian Inference

What distinguishes neural activity that underlies conscious visual appearance?

- Neural activity in certain brain areas.

- Activity of specific subtypes of neurons.
- Particular temporal patterns of neural activity (e.g., oscillations).

- Synchronous activity across groups of neurons in different brain areas.

- Neural activity that is driven by a coherent combination of bottom-up sensory information and top-down recurrent processing (e.g., linked to attention).

- Nothing. Once you know the computations, you're done!

Summary

- •Functional specialization and computational theory: two balancing principles in the field.
- Visual cortical areas: physiology, architecture, connections, topography.
- Parallel pathways: hierarchy of processing with increasingly complex selectivity, increasing invariance, and increasing RF size.
- Canonical computation: linear sum, halfwave rectification or squaring, normalization, adaptation.
- •Recurrent/feedback/top-down processing: attention and hierarchical Bayesian inference.
- Visual awareness?
Thank you

