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Today’s Hottest Microchip

Intel’s Itanium 2

== TR ebniss® The numbers ...
2l A O e Tttt 0.5 bhillion transistors in
120nm CMOS

1.6GHz clock, 64-bit
instruction, 9MB L3 cache,
6.4GB/s I/O

2553 SPECTfp base2000
(30% faster than 2.8GHz P4)

— 130 Watts

... and what they mean

Faster/cooler:
Scientific computing
Database search
Web surfing

= Video games

T - lih u _ f -

Source: IEEE ISSCC'2002 | What about intelligence?
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Chips and Brains

ltanium: « Human brain:
as |~ 5 10° floating op/s - 100 synaptic op/s
e 5108 transistors « 101° synapses \
e 210° Hz clock « 1 Hz average firing rate

- 101V Hz memory [/O - 101V Hz sensory/motor [/O
« 128-b data bus @ 400MHz « 108 nerve fibers
- 130 Watts - 25 Watts

Silicon technology is approaching the raw computational
power and bandwidth of the human brain.

However, to emulate brain intelligence with chips
requires aradical paradigm shift in computation:
- Distributed representation in massively parallel architecture
» Local adaptation and memory
» Sensor and motor interfaces

- Physical foundations of computing
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Scaling of Task and Machine Complexity

[log], Brute force
Digital computer

Machine Complexity :
Throughput; \ Humanoid

Memory: ) Neuromorphic “‘computer”
Power; , ==X Human brain

Size , / 10% synOP/s; 15W

Task Complexity
Search tree depth*breadth

Achieving (or surpassing) human-level machine intelligence will
require a convergence between:
« Advances in computing hardware yielding connectivity and energy
efficiency levels of computing and communication in the brain;

« Advances in training methods, and supporting data, to adaptively
reduce algorithmic complexity.
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Physics of Neural Computation

Silicon and Lipid Membranes .
Mead, 1989 e
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Squid giant axon (Hodgkin and Huxley, 1952)

Voltage-dependent p-channel Voltage-dependent conductance
Hole transport between source and drain — K*/Na™ transport across lipid bilayer

Gate controls energy barrier for holes — Membrane voltage controls energy barrier
across the channel for opening of ion-selective channels

Boltzmann distribution of hole energy Boltzmann distribution of channel energy

produces exponential decrease in channel produces exponential increase in K¥/Na™
conductance with gate voltage conductance with membrane voltage
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Example: Silicon Model of Visual Cortical Processing

LGN r

o

Optic
Nerve

(diffusive
network)

Complex and
hypercomplex
cells
(lateral
inhibition)

Neural model of boundary contour representation
in V1, one orientation shown (Grossberg,

Mingolla, and Williamson, 1997)
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Single-chip focal-plane implementation
(Cauwenberghs and Waskiewicz, 1999)
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Reconfigurable Synaptic Connectivity and Plasticity
From Microchips to Large-Scale Neural Systems

Sender address

Synapse index
Receiver address
Weight polarity
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Address-Event Representation (AER)

Lazzaro et al., 1993; Mahowald, 1994: Deiss 1994: Boahen 2000

Sender Receiver

Data bus

- AER emulates extensive connectivity between neurons by
communicating spiking events time-multiplexed on a shared
data bus.

— Spikes are represented by two values:

e Cell location (address)
e Event time (implicit)
— All events within At are “simultaneous”
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Biochemical Synapse Mechanisms

A. GLUTAMATE B. GABA

/ Glutaming Glutamine Glutamine

l®
GLU \
GABA-T l ® Glutamate
O
° ()

FIG. 2.8. Molecular mechanisms of amino acid synapses. A. Glutaminergic synapses: (1)
synthesis of glutamate (GLU) from glutamine; (2) transport and storage; (3) release of
GLU by exocytosis; (4) binding of GLU to quisqualate (Q), kainate (K), and NMDA
receptors. The Q and K receptors gate Na* and K+ flux; the NMDA receptor also allows
Ca2+ entry when the membrane potential is depolarized (+). When the membrane poten-
tial is hyperpolarized (—), Mg2+ blocks this channel. The release of GLU may be
regulated by presynaptic receptors (?5). Once GLU is released, it is removed from the
synaptic cleft by reuptake (6) and processed intracellularly (7). B. GABAergic synapse:
(1) synthesis of GABA from glutamine; (2) transport and storage of GABA,; (3) release of
GABA by exocytosis; (4) binding to a GABA, receptor which can be blocked by bi-
cuculline (B), picrotoxin, or strychnine (S) and can also be modified by benzodiazepines,
such as valium (V); GABAy, receptors, by contrast, are linked via a G-protein to K+ and
Ca2+ channels which are blocked by GABA,; (5) release of GABA is under the control of
presynaptic GABAy receptors; GABA is removed from the synaptic cleft by uptake into
terminals or glia (6); (7) processing of GABA back to glutamine. (A from Shepherd,
1988, based upon Cooper et al., 1987, Jahr and Stevens, 1987; Cull-Candy and Usowicz,
1987. B from Shepherd, 1988a; modified from Cooper et al., 1987; Aghajanian and
Rasmussen, 1988; Nicoll, 1982.)

It is infeasible to
Implement networks of
detailed synaptic
models on a single
silicon chip.

Hybrid approach:

- Analog silicon chips
model continuous-time
membrane dynamics

Action potentials are
encoded as ‘address-
events’.

A look-up table indexed
by address-events
implements synaptic
connectivity and
plasticity in the address
domain
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Address-Event Synaptic Connectivity

Goldberg, Cauwenberghs and Andreou, 2000

Qutgoing AP

Sender address
Synapse index

Receiver address
: ‘ Weight polarity
Incoming AP I t
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- "Virtual” synapses Look-up table
« Dynamically reconfigurable
 Arbitrary connectivity

- Quantal release: R =np g
* n: multiplicity (repeat event)
» p: probability of release (toss a coin)
e (: quantity released (set amplitude)

Row decoding
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Integrate-and-fire array
transceiver (IFAT)

IFAT2 (2000)
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Silicon Membrane Array Transceliver
Vogelstein, Mallik and Cauwenberghs, 2004

Voltage-controlled membrane
ion conductance
 Event-driven activation

* Dynamically reconfigurable:
- conductance g
- driving potentialE

oyt g4t IFAT3 (2004)
AP
A

B, — E:-— En::-u —

Na+
(strong)

Spike Threshold

Address-event encoding of
pre-and post-synaptic action
potentials

AR AR
0 0.1 0.2 0.3 0.4
Time (Arbitrary Units
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Silicon Membrane Circuit

gi(t) ion-specific membrane
Ig'm 2 it conductance

E, — E? — E'!-I —

T 1 ...

Synapse subcircuit Action potential generation and
AER handshaking
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Reconfigurable Silicon Large-Scale Neural Emulator

Qutgoing AP

Incoming AP

Receiver

Neurotransmitter ©

Presynaptic neuron Postsynaptic neuron

IFAT3 (Vogelstein, Mallik and Cauwenberghs, 2004)
9,600 neurons

— 4 SﬂlCOH membrane Chips (l FAT) drmimgtg}mial
4 million, 8-bit “virtual” synapses o
- 128MB (32bX4M) non-volatile RAM g

presynaptic postsynaptic

1 million synaptic updates per second | e

pafameters

- 200MHz Spartan II Xilinx FPGA “ 7 i N s
Dynamically reconfigurable L N

- Rewiring and synaptic plasticity (STDP etc.)

- Driving potential (DAC) and conductance (IFAT)
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Hierarchical Vision and Saliency-Based Acuity Modulation
Vogelstein et al, NECO 2007

| View-Tuned Cells |

—»| Composite Cells |

T il

Local Salience Feature Cells

| Spatial Features | MAX I Complex Cells

& &
MAX

¥
IFAT Cortical Model Octopus Retina |Retina |—#-| SAM |—| Simple Cells |

4800 silicon neurons 80 x 60 pixels
4,194,304 synapses AER spiking output

OR image Simple cell response Saliency map
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Spike Timing-Dependent Plasticity
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Spike Timing-Dependent Plasticity

in the Address Domain
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Spike Timing-Dependent Plasticity on the IFAT

Vogelstein et al, NIPS*2002
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Scaling and Complexity Challenges

e Scaling the event-based neural systems to performance
and efficiency approaching that of the human brain will
require:

- Integration of synaptic arrays with neural event transceivers

* High density (1012 neurons, 101° synapses within 5L volume)
- Non-volatile memory technology (Flash, PCM, MRAM, ...)

» High energy efficiency (101> synOPS/s at 15W power)

- Adiabatic switching in event routing and synaptic drivers

* Dynamic resource allocation
— Efficient mapping of sparse brain architecture onto tiled synaptic arrays

— Scalable models of neural computation and synaptic plasticity
» Convergence between cognitive and neuroscience modeling
* Modular, neuromorphic design methodology
« Data-rich, environment driven evolution of machine complexity
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Phase Change Memory (PCM) Nanotechnology
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Intel/STmicroelectronics (Numonyx) 256Mb multi-level phase-change memory (PCM) [Bedeschi et al, 2008]. Die
size is 36mm2 in 90nm CMOS/Ge2Sh2Te5, and cell size is 0.097um2. (a) Basic storage element schematic, (b)
active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline
direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming
characteristic, (f) I-V characteristic of pnp bipolar selector.

- Scalable to high density and energy efficiency
¢ <100nm cell size in 32nm CMOS
« < pJ energy per synapse operation
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Kerneltron Illl: Adiabatic Support Vector “Machine”

MVM

SUPPORT VECTC
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Correctly classified faces . s e B

- = e . Karakiewicz, Genov, and Cauwenberghs, VLSI'2006; CICC’'2007
] =2 A

S e = ms oe + 1.2 TMACS / mW

H = : H u — adiabatic resonant clocking conserves

charge energy

.&l i l‘. ﬂ ' energy efficiency on par with human

Correctly classified non-faces brain (10%° SynOP/S at 15W)

Classification results on MIT CBCL
face detection data
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Resonant Charge Energy Recovery

capacitive load
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Sub-Micropower Analog VLSI Adaptive Sequence Decoding
Chakrabartty and Cauwenberghs (NIPS'2004)

GiniSVM

1 g @ B L
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Forward decoding MAP sequence estimation Biometric verification
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Silicon support vector machine p

(SVM) and forward decoding S —
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Adaptive Machine Intelligence
Training Machines towards Human Performance through Games

Human and
Machine
Learning




Competitive Games: Humans and Machines

- Learning through experience in two-player zero-sum games:
e Humans to humans: Novices learn from experts to become experts.
« Humans to machines: Towards human-level machine performance.
e Machines to machines: Beyond human-level machine performance.
- Heterogeneous competitive ranking:
« ELO score ranks humans and machines alike.
o Turing test.
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Web-Based Competitive Games
Humans and Machines

Internet

game game
moves moves

Java J Java Game
ernel ernel Server

Y

video keyboard ‘ 1

audio mouse Eguen:t Cod

joystick
events I

Human Player

Machine

- Event codec adapter and machine interface

Central logging, ranking, and matchmaking at external game
server
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Web-Based Competitive Games
Humans Tutoring Machines

Internet

game
moves

(copy)

Game ame
(active) (passive) game
— _“Tutor Pupil ehvet

actions
brain activity

Y

video keyboard ‘ l 1
audio mouse Event Cod Fc

joystick  sensory/motor 4] feedback/reward events
events act|V|ty map

EEG array

Human Trainer
(Expert) Machine

- Machine learns by observing actions and internal representation (EEG brain
activity) of human expert.

— Neuromorphic: trained machine approaches human brain function and form.
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Wireless EEG/ICA Neurotechnology

with Tom Sullivan, Steve Deiss, Tzyy-Ping Jung and Scott Makeig
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* Integrated EEG/ICA wireless EEG recording system
— Scalable towards 1000+ channels
- Dry contact electrodes
- Wireless, lightweight
- Integrated, distributed independent component analysis (ICA)
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Integrated Systems Neurobiology

Human/Bio
Interaction

Neuromorphic/

= Neurosystems

Engineering
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S Microchips
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