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Today’s Hottest Microchip
Intel’s Itanium 2

The numbers …
– 0.5 billion transistors in 

120nm CMOS
– 1.6GHz clock, 64-bit 

instruction, 9MB L3 cache, 
6.4GB/s I/O

– 2553 SPECfp_base2000 
(30% faster than 2.8GHz P4)

– 130 Watts

Source: IEEE ISSCC’2002

… and what they mean
Faster/cooler:

• Scientific computing
• Database search
• Web surfing
• Video games

What about intelligence?
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Chips and Brains
• Itanium:

– 3 109 floating op/s
• 5 108 transistors
• 2 109 Hz clock

– 1010 Hz memory I/O
• 128-b data bus @ 400MHz

– 130 Watts

• Human brain:
– 1015 synaptic op/s

• 1015 synapses
• 1 Hz average firing rate

– 1010 Hz sensory/motor I/O
• 108 nerve fibers

– 25 Watts

• Silicon technology is approaching the raw computational 
power and bandwidth of the human brain.

• However, to emulate brain intelligence with chips 
requires a radical paradigm shift in computation:
– Distributed representation in massively parallel architecture

• Local adaptation and memory
• Sensor and motor interfaces

– Physical foundations of computing
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Scaling of Task and Machine Complexity

Achieving (or surpassing) human-level machine intelligence will 
require a convergence between:

• Advances in computing hardware yielding connectivity and energy 
efficiency levels of computing and communication in the brain;

• Advances in training methods, and supporting data, to adaptively
reduce algorithmic complexity.  

Machine Complexity
Throughput;

Memory;
Power;

Size

Task Complexity
Search tree depth*breadth

[log]

[log]

Human brain
1015 synOP/s; 15W

Brute force
Digital computer

Humanoid
Neuromorphic “computer”
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Physics of Neural Computation
Silicon and Lipid Membranes

Mead, 1989

Voltage-dependent p-channel
– Hole transport between source and drain
– Gate controls energy barrier for holes 

across the channel
– Boltzmann distribution of hole energy

produces exponential decrease in channel 
conductance with gate voltage
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p- Si substrate

p-Channelp+ p+

n- well

Squid giant axon (Hodgkin and Huxley, 1952)

Voltage-dependent conductance
– K+/Na+ transport across lipid bilayer
– Membrane voltage controls energy barrier 

for opening of ion-selective channels
– Boltzmann distribution of channel energy

produces exponential increase in K+/Na+

conductance with membrane voltage
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Example: Silicon Model of Visual Cortical Processing
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Optic 
Nerve

Single-chip focal-plane implementation 
(Cauwenberghs and Waskiewicz, 1999)

Bipole cells
(diffusive 
network)

Complex and 
hypercomplex

cells
(lateral 

inhibition)

Neural model of boundary contour representation 
in V1, one orientation shown (Grossberg, 
Mingolla, and Williamson, 1997)

88 transistors/pixel
(including photodetector)
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Reconfigurable Synaptic Connectivity and Plasticity
From Microchips to Large-Scale Neural Systems
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Address-Event Representation (AER)
Lazzaro et al., 1993; Mahowald, 1994; Deiss 1994; Boahen 2000

– AER emulates extensive connectivity between neurons by 
communicating spiking events time-multiplexed on a shared 
data bus. 

– Spikes are represented by two values:
• Cell location (address)
• Event time (implicit)

– All events within ∆t are “simultaneous”
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Biochemical Synapse Mechanisms
• It is infeasible to 

implement networks of 
detailed synaptic 
models on a single 
silicon chip.

• Hybrid approach:
– Analog silicon chips 

model continuous-time 
membrane dynamics

– Action potentials are 
encoded as ‘address-
events’.

– A look-up table indexed 
by address-events 
implements synaptic 
connectivity and 
plasticity in the address 
domain
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– ‘Virtual’ synapses
• Dynamically reconfigurable
• Arbitrary connectivity

– Quantal release:  R = n p q
• n: multiplicity (repeat event)
• p: probability of release (toss a coin)
• q: quantity released (set amplitude)

Address-Event Synaptic Connectivity
Goldberg, Cauwenberghs and Andreou, 2000

IFAT2 (2000)

transceiver (IFAT)

1

2

Sender

Receiver
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Silicon Membrane Array Transceiver
Vogelstein, Mallik and Cauwenberghs, 2004

– Voltage-controlled membrane 
ion conductance

• Event-driven activation
• Dynamically reconfigurable:

– conductance g
– driving potential E

– Address-event encoding of 
pre-and post-synaptic action 
potentials

60 x 40
IFAT
Array

Event Arbitration
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IFAT3 (2004)

Na+ K+ Na+
(strong)
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Silicon Membrane Circuit

gi(t) ion-specific membrane 
conductance

Ei ion-specific driving potential

Synapse Synapse subcircuitsubcircuit Action potential generation and Action potential generation and 
AER handshakingAER handshaking
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Reconfigurable Silicon Large-Scale Neural Emulator

• 9,600 neurons
– 4 silicon membrane chips (IFAT)

• 4 million, 8-bit “virtual” synapses
– 128MB (32bX4M) non-volatile RAM

• 1 million synaptic updates per second
– 200MHz Spartan II Xilinx FPGA “MCU”

• Dynamically reconfigurable
– Rewiring and synaptic plasticity (STDP etc.)
– Driving potential (DAC) and conductance (IFAT)

Sender

Receiver

IFAT3 (Vogelstein, Mallik and Cauwenberghs, 2004)
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Hierarchical Vision and Saliency-Based Acuity Modulation
Vogelstein et al, NECO 2007

IFAT Cortical Model
4800 silicon neurons
4,194,304 synapses

Octopus Retina
80 x 60 pixels

AER spiking output

OR image Simple cell response Saliency map
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Spike Timing-Dependent Plasticity

Bi and Poo, 1998
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Spike Timing-Dependent Plasticity
in the Address Domain

Causal Anti-Causal
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Spike Timing-Dependent Plasticity on the IFAT
Vogelstein et al, NIPS*2002
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Scaling and Complexity Challenges

• Scaling the event-based neural systems to performance 
and efficiency approaching that of the human brain will 
require:
– Integration of synaptic arrays with neural event transceivers

• High density (1012 neurons, 1015 synapses within 5L volume)
– Non-volatile memory technology (Flash, PCM, MRAM, …)

• High energy efficiency (1015 synOPS/s at 15W power)
– Adiabatic switching in event routing and synaptic drivers

• Dynamic resource allocation
– Efficient mapping of sparse brain architecture onto tiled synaptic arrays

– Scalable models of neural computation and synaptic plasticity
• Convergence between cognitive and neuroscience modeling
• Modular, neuromorphic design methodology
• Data-rich, environment driven evolution of machine complexity
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(a) (b) (c)

(d) (e) (f)

Phase Change Memory (PCM) Nanotechnology

Intel/STmicroelectronics (Numonyx) 256Mb multi-level  phase-change memory (PCM) [Bedeschi et al, 2008].  Die 
size is 36mm2 in 90nm CMOS/Ge2Sb2Te5, and cell size is 0.097µm2.  (a) Basic storage element schematic, (b) 

active region of cell showing crystalline and amorphous GST, (c) SEM photograph of array along the wordline
direction after GST etch, (d) I-V characteristic of storage element, in set and reset states, (e) programming 

characteristic, (f) I-V characteristic of pnp bipolar selector. 

– Scalable to high density and energy efficiency
• < 100nm cell size in 32nm CMOS
• < pJ energy per synapse operation
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• 1.2 TMACS / mW
– adiabatic resonant clocking conserves 

charge energy
– energy efficiency on par with human 

brain (1015 SynOP/S at 15W)

Kerneltron III: Adiabatic Support Vector “Machine”

Karakiewicz, Genov, and Cauwenberghs, VLSI’2006; CICC’2007
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Resonant Charge Energy Recovery
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Silicon support vector machine 
(SVM) and forward decoding 
kernel machine (FDKM)
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Adaptive Machine Intelligence 
Training Machines towards Human Performance through Games

Intelligent 
Machines

Competitive Games

Human 
Brain Human and 

Machine 
Learning

keyboard
mouse
joystick

Internetgame
moves

game
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events
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Competitive Games: Humans and Machines

– Learning through experience in two-player zero-sum games:
• Humans to humans: Novices learn from experts to become experts.
• Humans to machines: Towards human-level machine performance.
• Machines to machines: Beyond human-level machine performance.

– Heterogeneous competitive ranking:
• ELO score ranks humans and machines alike.
• Turing test.

H - H M - MH - M
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Web-Based Competitive Games
Humans and Machines

– Event codec adapter and machine interface
– Central logging, ranking, and matchmaking at external game 

server
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Web-Based Competitive Games
Humans Tutoring Machines

– Machine learns by observing actions and internal representation (EEG brain 
activity) of human expert.

– Neuromorphic: trained machine approaches human brain function and form.

Human Trainer
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mouse
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Internet

game
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events

Event Codec

EEG array

Tutor

Game
(active)

Pupil

Game
(passive)

game
moves
(copy)

actions
brain activity

feedback/reward events
activity map

video
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10Hz alpha

Eye blinks Eyes Closed

Wireless EEG/ICA Neurotechnology

RF Wireless 
Link

EEG/ICA 
Silicon Die

Dry 
Electrode

Flex 
Printed 
Circuit

with Tom Sullivan, Steve Deiss, Tzyy-Ping Jung and Scott Makeig

• Integrated EEG/ICA wireless EEG recording system
– Scalable towards 1000+ channels
– Dry contact electrodes
– Wireless, lightweight
– Integrated, distributed independent component analysis (ICA)
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Integrated Systems Neurobiology
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