AER Circuits, Systems, and Tools

Bernabe Linares-Barranco

Sevilla Microelectronics Institute (IMSE) - Spanish Research Council (CSIC)

Instituto de Microelectrónica de Sevilla CICA, Av. Reina Mercedes s/n, 41012 Sevilla, SPAIN

Phone: 34-95-5056670 Fax: 34-95-5056686 E-mail: bernabe@imse.cnm.es

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
- spatial contrast retina
- mixed-mode convolution chip
- fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

Conventional Vision Sensing/Processing/Recognition

- Feature Extraction Stages
- Feature Combination Stages
- Classification/Decision Stages

Biology

Recognition Delay < 150ms

Simon Thorpe Nature 1996

Biology

Recognition Delay < 150ms

feedforward1 spike/neuron

Simon Thorpe Nature 1996

Serre & Poggio (MIT)

Ventral Stream Model for Immediate Recognition

- projection field processing
- short-range & dense for first layers
- long-range & sparse for later layers
- hard-wired for first layers
- plastic for later layers
- first layers: massive 2D filtering for different angles and scales
- first layers: basic feature extraction
- later layers: grouping of features -> abstractions

AER (Address Event Representation)

Feature Extraction

(AER Convolution Chip)

Matrix of integrators in the receiver chip

CORTICAL TISSUE

- Events are routed to neighbors through local on-chip routing tables
- Any arbitrary multi-layer feed-forward + feed-back hierarchy can be programmed
- LVDS links allow low-power high-speed event traffic
- Each tile could be a 128x128 programmable kernel convolution chip with local re-routing and remapping capability
- Hundreds of convolution chips can be fit in a 'Cortical Tissue' PCB

Computing Power of one such Cortical Tissue PCB

- 120 chips & 436 AER inter-chip links
- Each chip 128x128 neurons and kernel up to 128x128
- Total of 2M neurons
- Total of 32G synapses
- If each AER link requires 30ns per AE:
- 14Geps (interchip)
- 238 Tconnections/sec

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
- spatial contrast retina
- mixed-mode convolution chip
- fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

Calibration in Neuromorphic Cells

- large arrays
- small cell area
- very low currents (nano-pico amsp)
- high inter-pixel mismatch:

 $\sigma \approx 10-20\% \implies 6\sigma \approx 60-120\%$

Compact Calibration Circuit

[IEEE Trans. Neural Networks, Sep. 2003]

• Ladder-based digi-MOS:

3N + 1 unit transistors

N = number of bits

one point calibration

For Higher Precision

New Concept based on parallel/series MOS association

[Galup-Montoro et al., IEEE JSSC 1994]

From EKV/ACM models:
$$I_{DS} = \frac{W}{L} [f(V_G, V_S) - f(V_G, V_D)]$$

• Generic: - parallel:
$$\left(\frac{W}{L}\right)_{eq} = \left(\frac{W}{L}\right)_{A} + \left(\frac{W}{L}\right)_{B}$$

- series: $\left(\frac{W}{L}\right)_{eq} = \frac{\left(\frac{W}{L}\right)_{A}\left(\frac{W}{L}\right)_{B}}{\left(\frac{W}{L}\right)_{A} + \left(\frac{W}{L}\right)_{B}}$

Consequently,

• Series association with equal W, $\rightarrow L_{eq} = \sum L_i$

4-bit Monte Carlo Simulation

sub-pA current mirror

- we don't need nice precise stairs, but good coverage
- we like down-steps
- we like randomness
- we use same $W = 2\mu m$ and $L = \{3.0, 1.8, 1.8, 1.0, 0.7\}$ for a 5-bit digi-MOS

- we don't need nice precise stairs, but good coverage
- we like down-steps
- we like randomness
- we use same $W = 2\mu m$ and $L = \{3.0, 1.8, 1.8, 1.0, 0.7\}$ for a 5-bit digi-MOS

And we want two additional features:

- FEATURE-1: no recalibration when changing operating current
- FEATURE-2: take maximum advantage of calibration range: B>A but B~A

FEATURE-1: no recalibration

• for simple current mirror

FEATURE-1: no recalibration

• by adding peripheral translinear tuning:

$$I_{oi} = \frac{I_1 I_2}{I_3} (2 + g(w_{cal}))$$

- I_3 is constant, so currents through branch I_{i3} is constant
- M_1 has similar bias condition than M_3 , so I_1 is also kept constant
- M_2 has similar bias condition than M_4 , so I_{oi} is scaled by changing only I_2

FEATURE-2: approach A and B

Experimental prototype CMOS 0.35um

• single current source calibrated at 10nA

Experimental prototype CMOS 0.35um

• single current source calibrated at 10nA

Experimental prototype CMOS 0.35um

• DAC: five current sources calibrated at 10nA, 5nA, 2.5nA, 1.25nA, 625pA and 16°C

Another Translinear Tuning Circuit [TCAS-II, in Press]

- achieves higher precision (7-bit) using a 5-bit circuit
- degrades more rapidly when changing bias conditions

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
- spatial contrast retina
- mixed-mode convolution chip
- fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

The bit serial LVDS AER interface

- Several options are possible:
 - Transmitting data and clock by different physical paths.
 - Recovering the clock using a PLL-based circuit.
 - Extracting the clock from the receiver data (e.g. using a Manchester coding).

The bit serial LVDS AER interface

- In AER links we will need:
 - Keeping the receiver synchronized in the silent periods.
 - Detecting a new address start.
 - Implementing a fast and robust synchronization scheme.

The bit serial LVDS AER interface (IV)

- Fast synchronization is a must in AER links because the events are generated in an asynchronous way.
- A Manchester coding scheme allows the receiver to recover the clock directly from the data flow.

The bit serial LVDS AER interface (V).

Transmitter circuit

Receiver circuit

• The only requirement for the CDR design is that five delay elements must introduce a delay between $T_b/2$ and T_b .

Receiver circuitry

• A Delay Locked Loop is used to fix the delay introduced by the inverters. The phase difference between the reference clock and a 360°-delayed version of it is compared and the delay elements control voltage is changed depending on the phase error.

Burst mode operation (II)

Simulation

- ST 90nm CMOS
- 50cm cat5E UTP cable
- 5cm microstrip traces
- LVDS pads
- ESD protection circuits
- LVDS drivers available from ST 90nm library
- connectors
- simulated for all technology process corners
- temperature range 0-80°C
- 5% variation in Supply Voltage

Simulation results

Signals involved in the clock recovery when the loop is locked

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
 - spatial contrast retina
 - mixed-mode convolution chip
 - fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

 $OutputFreq = f(I_{photo}(x, y), I_{neighbours})$

use of diffusers

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

- each pixel decides when to generate an event
- there is no global periodic reset (no frames)

in-pixel calibration

- Retina with AER output
- Output frequency proportional to instantaneous *Spatial Contrast*
- *Spatial Contrast* computation not limited to nearest neighbors
- Fully Asynchronous output (no frames)
- low mismatch (FPN)

Calibration Technique

Active Current Generation

- Active current sources, controlled digitally
- Can be used as a Current DAC

Digi-MOS

Example Layout for 0.35µm CMOS 5-bit digi-MOS

• unit transistor $W = L = 3\mu m$

Spatial Contrast Computation

Michelson Contrast: $I_{cont}(x, y) = I_{ref} \frac{I_{photo}(x, y) - I_{avg}(x, y)}{I_{photo}(x, y) + I_{avg}(x, y)}$

Weber Contrast:
$$I_{cont}(x, y) = I_{ref} \frac{I_{photo}(x, y) - I_{avg}(x, y)}{I_{avg}(x, y)}$$

Simple Ratio Contrast:
$$I_{cont}(x, y) = I_{ref} \frac{I_{avg}(x, y)}{I_{photo}(x, y)}$$

Calibrating for Mismatch

Sums/Subtractions & Multiplications/Division:

$$I_{o} = I_{1} \frac{I_{2} - I_{3}}{I_{4}} \rightarrow I_{o} + \Delta_{o} = (I_{1} + \Delta_{1}) \frac{(I_{2} + \Delta_{2}) - (I_{3} + \Delta_{3})}{(I_{4} + \Delta_{4})}$$

$$I_o + \Delta_o \approx \frac{I_1 I_2}{I_4} (1 + \Delta_1 + \Delta_2 - \Delta_4) - \frac{I_1 I_3}{I_4} (1 + \Delta_1 + \Delta_3 - \Delta_4)$$

Calibrating for Mismatch

Sums/Subtractions & Multiplications/Divisions:

$$I_{o} = I_{1} \frac{I_{2} - I_{3}}{I_{4}} \rightarrow I_{o} + \Delta_{o} = (I_{1} + \Delta_{1}) \frac{(I_{2} + \Delta_{2}) - (I_{3} + \Delta_{3})}{(I_{4} + \Delta_{4})}$$
$$I_{o} + \Delta_{o} \approx \frac{I_{1}I_{2}}{I_{4}} (1 + \Delta_{1} + \Delta_{2} - \Delta_{4}) - \frac{I_{1}I_{3}}{I_{4}} (1 + \Delta_{1} + \Delta_{3} - \Delta_{4})$$

Only Multiplications/Divisions:

$$I_{o} = I_{1}\frac{I_{2}}{I_{4}} \rightarrow I_{o} + \Delta_{o} = (I_{1} + \Delta_{1})\frac{(I_{2} + \Delta_{2})}{(I_{4} + \Delta_{4})}$$
$$I_{o} + \Delta_{o} \approx \frac{I_{1}I_{2}}{I_{4}}(1 + \Delta_{1} + \Delta_{2} - \Delta_{4})$$
only one calibration current per pixel

$$f_{cont}(x, y) = \frac{I_{ref}}{C(V_{reset} - V_{ref})} \frac{I_{avg}(x, y)}{I_{photo}(x, y)}$$

CMOS test prototype in AMS 0.35µm

array size	32 x 32
pixel size	58μm x 56μm
pixel components	104 transistors + 1
	capacitor
photodiode quantum	0.34 @ 450nm
efficiency	
fill factor	3%
pixel current	20nA @ 1keps, 1nA @
consumption	standby
matching before	57%
calibration	
(indoor light)	
matching after	6.6%
calibration	
(indoor light)	
contrast sensitivity	10 Hz / % relative contrast
	@ 400Hz DC
range of diffusers	~10 pixels
noise standard deviation	~6% fluctuation of spike
	rate
dark current	~500fA
Handshaking cycle	15ns/ev (shorting Ack
	and Rqst)
	_

Pixel Layout

Uncalibrated

indoor illumination

bright illumination

Calibrated for indoor

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE: spa
- spatial contrast retina
 - mixed-mode convolution chip
 - fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

AER Convolution Chip

Pixel

Pixel

Pixel

Pixel Calibration

• pixel current pulses may range from ~ 1 pA to ~ 1 µA

Fabricated Chip

Pixel Layout

- pixel size 90µm x 90µm
- 364 transistors + 1 capacitor
- kernel weight resolution: 4 bit
- calibration register resolution: 5 bit
- interpixel mismatch (after calibration): < 2%

PCB with 4 32x32 Conv. Chips + Event Routing

0

>>1

1)

V U

144

kernel {-3,+3,+7}

kernel {-3,+3,+7}

Short Frame Time (0.05ms)

Long Frame Time (150ms)

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
 - spatial contrast retina
 - mixed-mode convolution chip
 - fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

Fully Digital Convolution Chip (I): Architecture

- Array of pixels (Digital)
- Random Access Memory (Kernel programmed)
- Horizontal Shift Block
- 2's complement
- Synchronous controller (input communication)
- AER block (output communication)
- Configuration registers

Fully Digital Convolution Chip (II): The Pixel

- Arithmetic unit
- Accumulator (18 bits)
- Comparator
- AER output communication

Fully Digital Convolution Chip (III): Layout

Photograph of the fabricated chip

Experimental Results (I): Single Chip Configuration

Input image

Measured output

High-Pass Kernel

Ideal output

Experimental Results (II): Multichip Configuration

Experimental Results (III): Multichip Configuration

Input image

Gabor

edge-extraction

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
- spatial contrast retina
- mixed-mode convolution chip
- fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

PCI-AER

- sequences AEs from the computer out to the AER port
- transforms video-frames to AER in real-time (uses rate coding)
- captures and timestamps AEs from the AER port into the computer
- peak rate 15Meps, sustained rate 10Meps.
- FPGA: Spartan-II
- performs bus mastering

USB-AER

- USB connection to computer
- <u>sequencer</u>: either frame-AER or recorded AE-player (up to 25Meps)
- <u>monitor</u>: either AER-frame or timestamping and data-logging (up to 25Meps)
- data logging/playing up to 512 Kevents (very useful for multi-lab experiments)
- <u>mapper</u> (stand-alone mode) 25Meps; mappings from 1-1 up to 1-8
- VGA output
- firmware loaded through USB or MMC/SD card

Splitter/Merger

- uses a CPLD as the communication center
- splitter: 1 to 4
- merger: 4 to 1
- reconfigured by jumpers
- delay introduced: 20ns

USB2AER

- uses high speed USB2 (up to 6Meps between AER-port and computer)
- only functionalities: AE monitor & AE sequencer (AER-port to/from computer-USB2)
- monitoring & sequencing can be simultaneous
- no FPGA, just a CPLD (timestamping) and a microcontroller (for USB traffic management)
- USB powered
- compatible with jAER viewers and Matlab

AER-Robot

- for controlling motors directly from an AER bus
- each PCB has 4 motor connectors

The CAVIAR Vision System

- 4-layer system
- 45k neurons
- up to 5M synapses
- 12Geps
- 1-3ms latency for tracking
- scalable w/o performance degration

Latency Measurement

Outline

- Introduction: AER, a technology for building large scalable neuromorphic systems
- Some useful circuits: calibration
 - LVDS interface
- Some example systems at IMSE:
- spatial contrast retina
- mixed-mode convolution chip
- fully digital convolution chip
- HW Tools from Sevilla: some FPGA-based PCBs
 - example use in CAVIAR
- SW Tool: Behavioral Matlab Simulator
 - Example 1: neocognitron emulation
 - Example 2: texture classification

CORTICAL TISSUE

- Potentially Very High Computational Power: 2Mneurons, 32Gsynapses, 238Tconn/sec
- ¿How to reconfigure?
- ¿What hierarchies and structures?
- ¿What kernels?
- We need theories for implementing desired functionalities (hopefully before the HW is available)

MATLAB based AER Behavioral Simulator

500000

0

%First, we declare sources to the system
% SOURCES SOURCES DATA
sources {1} {data1}

%Next, we declare priorities
priorities {0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2}

onexe, we decidie proc

8NAME	IN-CHANNELS	OUT-CHANNELS	PARAMS	STATES
splitter	{1}	{2,4}	<pre>{params1}</pre>	{state1}
h_sobel	{2}	{3}	{params2}	{state2}
imrotate90	{4}	(5)	{params3}	(state3)
h_sobel	(5)	(6)	{params4}	{state4}
imrotate90	(6)	{7}	<pre>{params5}</pre>	{state5}
merger	{3,7}	(8)	{params6}	(state6)
ack	(8)	()	{params7}	{state7}

_							_
	2,50000	2 <i>5</i> 0000	250010	45	29	1	
	291600	2916.50	291660	44	29	-1	
	291650	291700	291710	43	30	1	
	399750	3997.50	399760	45	32	1	
	399800	399800	399810	44	42	1	
	399830	3998.50	399860	43	28	-1	
	399900	399900	399910	23	40	1	
	399950	3999.50	399960	9	38	1	
	400000	0	-1	2	41	1	
	400050	0	-1	з	42	-1	
	400100	0	-1	23	5	1	
	400150	0	-1	26	32	1	
	400200	0	-1	44	28	1	
	400250	0	-1	45	30	1	
	400300	0	-1	45	34	-1	

-1

sign

1

1

-1

1

1

y

29

29

29

30

29

Read Netlist & Conf. Find channel with 1st PreRqst Call AER module Write events on out channels Find channel with next PreRqst

45

Multi-Chips Multi-Layer Processing Systems Neocognitron & Convolution Neural Networks

K. Fukushima 1969

Applied to handwritten character recognition

Example: Simplified Neocognitron

- 4 layers, 68 convolution modules
- inputs 16x16 b&w pixels
- 7 output categories

Large kernels

Texture Classification

Detecting People & displaying using jAER

Conclusions

- AER has high potential for building complex neurocortical hierarchies.
- A variety of AER sensors are available.
- With present day technology it is feasible to build programmable & reconfigurable "Cortical Tissues" with millions of neurons, billions of synapses, and Tconn/sec.
- We need to develop knowledge for configuring, programming, and training optimally such systems.