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Neuro-Inspired Signal Processing What are the Problems/Opportunities?
£

N

= How can we learn from & apply knowledge from biological systems?
This is a major focus of our work here

Psychoacoustics is the basis for many products (e.g. mp3, aac)
Much left to do
= Non-linear processing
Analysis is very difficult — this makes it difficult to design non-linear systems
and also to understand how existing systems (e.g. biological systems) work.
= Accuracy
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How much is needed and how can robust systems be made from inaccurate
subsystems?

= Parallel processing
Can we learn more about self-configurable / adaptive systems from biology?
= Timing
Most theory has been developed assuming continuous systems or regular
samples.

We need to develop much more theory to describe processing using
temporal encoding (e.g. spikes)
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Analysis & Synthesis

Analysis only
Signal understanding
May be destructive

Analysis — Synthesis
Signals modified for human consumption
Analysis stage must be invertible
Preserving perceptual integrity is important
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Analysis vs. Analysis-Synthesis
Problems

Analysis only Analysis-Synthesis
Automatic speech Hearing compensation
recognition Signal enhancement
Audio scene understanding Audio compression
Signal localization Beam forming
Sound classification Speech coding
Stream analysis Signal separation
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Sourabh Ravindran

Problem Statement

To build audio classification systems that are low-power and
robust to changes in the environment.
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Audio Classification

Audio classification deals with classifying a sound into one of the
several pre-defined categories

Challenges
Intra-class variability

= Features should provide good inter-class discrimination but still
maintain intra-class cohesion

Features must be robust to noise
Granularity Issue

= Trade-off between complexity of system and granularity of
classes

Real-time response

= Computationally efficient classification structures and feature
extraction algorithms
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Problems with conventional features

= Work well in noise free case but performance degrades in
presence of noise

= Accuracy is reduced greatly when different classes are
presented simultaneously

Why auditory modeling?

= Humans do an extremely good job of classifying sounds
= Physiologically inspired perceptual features are

Highly discriminative

Robust to noise
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Part | — Perceptual Features
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NRAF, Cortical Features
Data Preparation

Adaptive Normalization,
Dimension Reduction using AdaBoost

Hearing Aids

Application
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Auditory Spectrum Vs Spectrogram
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rocessing

Noise robustness of MFCCs
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Cochlea

Hair cell stage

Cochlear nucleus
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Noise-Robust Auditory Features (NRAF)
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BPF BPF BPF BPF Band pass filter
Spatial derivative
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[*] Sourabh Ravindran, David V. Anderson and Malcolm Slaney, “Low Power Audio Classification for Ubiquitous Sensor Networks",
ICASSP 2004, Montreal, Canada.

circy SCAS, 3002, Phoenix, AZ.
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Processing Lab

Motivation for Using BPFs

(Aa)(Ab) > % 4.1,
A=t 2p=—j4

dt

(M) = [(t=E@®) | s) [ dt

(M)’ = [(@-E(@)* |5(w) [ do
[A,B|=AB-BA=—j

(Ar)(aw)>

Leon Cohen\“Time-Frequency Distributions — A Review”, Proceedings of IEEE, VOL. 77, NO. 7, JULY 1989

:/A Computational Model of Filtering, Detection and Compression in the Cochlea”, ICASSP, May 1982, Pal a<: 4
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Asymmetrical Shape

Processing Lab
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Processing Lab

Modulation Spectra

x 10°

N

Frequency (Hz)
o o o = = = =
S o 3 - N S =3 o
T T T T T T T

o
N

Acoustic Freq

Modulation Frequency 06 2‘0 4‘0 6‘0 8‘0 160 1‘20 1“10 160

Modualtion Frequency (Hz)

Modulation transform of a 10kHz tone
modulated by a sinusoid at 80Hz
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Modulation Spectra Comparison
(babble noise)

Processing Lab

MFCC
Front-end
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Speech signal at various SNRs Signal in a particular Channel (~200 Hz)
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Signal in a particular Channel (~800 Hz) Proposed Solution - BPF-MFCC

Q Q| .
3 Signal in a particular MECC channel (~800Hz) Signal in a particular BPF channel (~800Hz) 3 | | Replace FFT by fllter'bank
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Modulation Spectra Comparison (pink noise)

Modulation Spectra of Noisy Speech Using MFCC Frontend

Modulation Spectra of Speech Using MFCC Frontend
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Modulation Spectra Comparison (white noise)
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Modulation Spectra of Speech Using MFCC Frontend
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Modulation Spectra of Noisy Speech Using MFCC Frontend
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Speech versus non-speech classification

Speech Versus Non-Speech Classification
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Connected Digits Recognition

Speech Recognition on Aurora 2 (training in clean condition)
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Information theoretic measure of Empirical Conditional Entropy
clustering Measure

Conditional Entropy: o1 Pink Noise White Noise
C=2
|C| ‘Kl Emperical Conditional Entropy Measure Emperical Conditional Entropy Measure
H(CK) = Z Z;p(c k)logp(c|k) ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
e=1k=1
Il |
H*(CK) = & k)
e=1k=1 (k)
H°(CK)=H"(C,K)— H°(K)
Mutual Information: L - S
Ie(c K) _ HS(C) B HS(C|K) 5dB 1501\1?5 20 dB Clean 0dB 5dB 130Nt|jaB 20 dB Clean
IC|
hic (c
H (€)=~} i)og% C=2,K=4
e=1
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What about class discrimination (for C>2)? Noise Modulation Filtering

Emperical Conditional Entropy Measure (C=4, K=4)

Let, x(¢)=s(¢)+n(?)

Assuming,  §(f) = Zesi (t)vz @)

Output at the spatial derivative stage is,
(5,0 +n@)~(s,, ) +n,0)
Peak detector output is given by,

e, ) -¢, ())+le, (-6, ()
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Varying Time-constants
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Example showing usefulness of

varying TC

BPF speech spectrum (same time constants)
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Results - Speech versus non-speech
classification
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Results — Speech recognition

Speech Recognition Results - NRAF and NRAF-TC
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Gain Adaptation

Processing Lab
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Adaptive Normalization

= Use Kalman filter to track the mean and variance of the test data.

True and estmated mean for the first 9 features averaged over all exam ples
7
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Features
Tracking of mean for Features 1,2 and 9
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Estimated

True and estmated variance for the first 9 features averaged over all examples
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Adaptive Normalization Results
(Speech vs non-speech classification)

Processing Lab

Performance of with Adaptive Normalization
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Affect of AGC on Noisy Speech
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Results — Speech Recognition Noise Suppression

3 3
~ ~
g g
§ NRAF NRAF-AGC §
8 K=0.05  K=0.01  K=0.005 g
N Clean 99.51 99.48 99.42 99.23 N
~ ~
20 dB 97.73 98.13 98.10 98.04

15 dB 95.73 96.50 96.56 96.90

10 dB 90.76 92.39 92.54 93.03

5dB 79.71 83.02 83.79 84.92

0dB 59.69 64.54 65.67 69.08

-5dB 37.80 41.51 42.19 44.24
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i/ Processing Lab

Part Il — Classification Structure
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Signal Processing Lab

Pattern Classification

m Pattern Classification can be viewed as the mapping of the feature space into the
decision space.

Feature 2
>
=

k/ﬁ
Feature 1

Feature Space Decision Space
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Classification Methods

Y

= Gaussian Mixture Models
Models each class with a N-dimensional Gaussian

= Artificial Neural Network Classifier
Auditory features tend to work better with neural

nets based classifier/ recognizer

= AdaBoost based classifier

= Support Vector Machines
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Description of problem

Humans are much more effective at audio understanding than machines.
We can distinguish subtle changes in speech or a variety of other sounds
that are difficult to quantify for a computer.

This research is focused on developing front-end feature extraction and

classification systems for audio signals inspired by the human auditory
system.

Speech Correct
Musi
usic —| Feature Classifier — Class
Noise Extractor Label
Animal Sounds
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Cortical Model

. «  Scale Axis S}rmme"'y
NArmoWw| ¥l A
wned J,l_} A Axis
inhibited by
symmetrically decreasing
inhibim} frequency
Low BF IERY High BF
Tonotopic
inhibited by Axis
increasing
frequency, broadly tuned
: R +
Rate
. [
SALESIT @©Georgia Institute of Technology o i -

May 2005

Lab

ssing

nal Proce.

AdaBoost Classifier

Given examples (X4, Y4),--..,(X,, ¥,) where y, = 0,1 for negative
and positive examples respectively.
Initialize weights w, ; = 1/(2m), 1/(2n) for y; = 0,1 respectively, where
m and n are the number of negatives and positives respectively.
Fort=1toT

1. Normalize weights,

Wi = Wi /(z Wt,j)
J
2. Trainh;; error, &, - Z wolh(x;)=y,]
i
3. Choose classifier ht, with the least g,

4. Update weights: Wt+1,i — Wt,i (ﬂt)(l_ei)
ﬂr = gt /(1—8t)

/\ ! g=0 if x, if classified correctly,
e bl 1 otherwise & g o

May 2005
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The final strong classifier is:

no=1 i iazhz(x)Z(lﬂ)iw

where, o, = log(1/,)
=0 else

Convert to multi-class problem by using several 1-versus-1 classifiers.
Deadlocks resolved by normalized confidence measure.
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Main Results I

@
.
Using boosting for classification and features derived from an
advanced auditory model we achieved 97.7 % classification. Confusion
matrix is as shown below,

True Class >

Noise Animal Music Speech
4\ Noise 344 20 0 0
%)
<
ko] Animal 0 157 2 0
g
s
1 Music 0 3 352 0
<
—_—
©) Speech 0 0 0 246

We see that most of the errors are when animal sounds are wrongly
classified as noise. The misclassified sounds were even hard for
human listeners to categorize.
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ain Results 11 Results

| |
& | Phonak Database 8
~ ~
() ()
.E Phonak Version 1 Version 2 Version 3 Version 4 Version 5 .E
% (30 sec data) (1 sec data) (1 sec data) (1 sec data) (1 sec data) (30 sec data) a
Q Q
g 8| Phonak Database
t Music 80 % 87.9% 921 % 93.3 % 84.8 % 100 % t
~ ~ Phonak Version 1 Version 2 Version 3 Version 4 Version 2
(30 sec data) (1 sec data) (1 sec data) (1 sec data) (1 sec data) (30 sec data)
S Speech 90 % 82.9 % 84.5% 854 % 88.1 % 91.6 % j
Overall 78.85 % 83 % 85.3 % 86.3 % 87.7 % 95.8 %
Noise 80 % 9% 84.05 % 84.05 % 91.8 % 91.6 %
Tel-03 Database
Noisy Speech 65 % 84.1% 80.6 % 825 % 86.5 % 100 %
GMM AdaBoost 1 AdaBoost 2 AdaBoost 3 Cascade
Overall 78.8 % 83 % 85.3 % 86.3 % 87.8 % 95.8 %
Overall 92.7 % 93.3 % 93.6 % 95.5% 97.8%

Using the Phonak database, we outperformed their classification using
only 1 second segments. (They require 30 seconds of data to make the
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Complete Table (Hit Rate) Complete Table (False Rate)
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a Phonak Database a Phonak Database
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~ Phonak Version 1 Version 2 Version 3 Version 4 Version 5 ~ Phonak Version 1 Version 2 Version 3 Version 4 Version 2

(30 sec data) (1 sec data) (1 sec data) (1 sec data) (1 sec data) (30 sec data) L} (30 sec data) (1 sec data) (1 sec data) (1 sec data) (1 sec data) (30 sec data)
Music 80 % 87.9% 921 % 93.3% 84.8% 100 % Music 10 % 27% 34 % 33% 28% 0%
Speech 90 % 82.9 % 84.5% 85.4 % 88.1 % 91.6 % Speech 78% 1.6 % 20% 1.9 % 34 % 0%
Noise 80 % 79% 84.05 % 84.05 % 91.8% 916 % Noise 10 % 6.2% 57% 51% 4.4% 0%
Noisy Speech 65 % 84.1% 80.6 % 825% 86.5% 100 % Noisy Speech 7.8% 1.2% 8.3% 78% 5.6 % 41%
Overall 78.8 % 83 % 85.3 % 86.3 % 87.8% 95.8 %
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GMM and AdaBoost
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