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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.
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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
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Neuromorphic VLSI systems
An attractive alternative computing paradigm

Exploit the physics of silicon to
reproduce the bio-physics of neural
systems.
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Neuromorphic VLSI chips
Arrays of silicon synapses and integrate and fire neurons

Neuromorphic chips comprising
silicon neurons and synapses.

Time constants are
biologically plausible

Synaptic currents are
integrated in parallel

Synapses are the site of
memory and computation

Neurons generate and
transmit “spikes” in an
asynchronous (non-clocked)
fashion.



Neuromorphic VLSI chips
Arrays of silicon synapses and integrate and fire neurons

Standard CMOS Technology

Process independent

Massively parallel

Mismatch insensitive

Fault tolerant

Compact

Low-power



Neurons and synapses

Classical neural networks
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Address Event Representation
Best of both (digital & analog) worlds
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Hierarchical or multi-layer networks

The basic problem with these models is, of course, generalization:
a look-up table cannot deal with new events, such as viewing a face
from the side rather than the front, and it cannot learn in the predic-
tive sense described earlier. One of the simplest and most powerful
types of algorithm developed within learning theory corresponds to
networks that combine the activities of ‘units’, each broadly tuned to
one of the examples (Box 1). Theory (see references in Box 1) shows
that a combination of broadly tuned neurons — those that respond
to a variety of stimuli, although at sub-maximal firing rates — might
generalize well by interpolating among the examples.

In visual cortex, neurons with a bell-shaped tuning are common.
Circuits in infratemporal cortex and prefrontal cortex, which com-
bine activities of neurons in infratemporal cortex tuned to different
objects (and object parts) with weights learned from experience, may
underlie several recognition tasks, including identification and
categorization. Computer models have shown the plausibility of this
scheme for visual recognition and its quantitative consistency with
many data from physiology and psychophysics2–5 .

Figure 2 sketches one such quantitative model, and summarizes a
set of basic facts about cortical mechanisms of recognition established
over the last decade by several physiological studies of cortex6–8. Object
recognition in cortex is thought to be mediated by the ventral visual
pathway running from primary visual cortex, V1, over extrastriate
visual areas V2 and V4 to the inferotemporal cortex. Starting from
simple cells in V1, with small receptive fields that respond preferably to
oriented bars, neurons along the ventral stream show an increase in
receptive field size as well as in the complexity of their preferred stimuli.
At the top of the ventral stream, in the anterior inferotemporal cortex,
neurons respond optimally to complex stimuli such as faces and other
objects. The tuning of the neurons in anterior inferotemporal cortex
probably depends on visual experience9–19. In addition, some neurons
show specificity for a certain object view or lighting condition13,18,20–22.
For example, Logothetis et al.13 trained monkeys to perform an object
recognition task with isolated views of novel three-dimensional objects
(‘paperclips’; Fig. 1). When recording from the animals' inferotemporal
cortex, they found that the great majority of neurons selectively tuned
to the training objects were view-tuned (see Fig. 1) to one of the training
objects. About one tenth of the tuned neurons were view-invariant,
consistent with an earlier computational hypothesis23.

In summary, the accumulated evidence points to a visual recog-
nition system in which: (1) the tuning of infratemporal cortex cells is
obtained through a hierarchy of cortical stages that successively
combines responses from neurons tuned to simpler features; and (2)
the basic ability to generalize depends on the combination of cells
tuned by visual experience. Notice that in the model of Fig. 2, the
tuning of the units depends on learning, probably unsupervised (for
which several models have been suggested24; see also review in this
issue by Abbott and Regehr, page 796), since it depends only on
passive experience of the visual inputs. However, the weights of the
combination (see Fig. 3) depend on learning the task and require at
least some feedback (see Box 2). 

Thus, generalization in the brain can emerge from the linear com-
bination of neurons tuned to an optimal stimulus — effectively
defined by multiple dimensions25,23,26. This is a powerful extension of
the older computation-through-memory models of vision and
motor control. The question now is whether the available evidence
supports the existence of a similar architecture underlying general-
ization in domains other than vision. 

insight review articles

Figure 1 Tuned units in inferotemporal cortex. A monkey was trained to recognize
a three-dimensional ‘paperclip’ from all viewpoints (pictured at top). The graph
shows tuning to the multiple parameters characterizing each view summarized in
terms of spike rate versus rotation angle of three neurons in anterior inferotemporal
cortex that are view-tuned for the specific paperclip. (The unit corresponding to the
green tuning curve has two peaks — to a view of the object and its mirror view.) A
combination of such view-tuned neurons (Fig. 2) can provide view-invariant, object
specific tuning as found in a small fraction of the recorded neurons. Adapted from
Logothetis et al.13.
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Figure 2 A model of visual learning. The model summarizes in quantitative terms
other models and many data about visual recognition in the ventral stream pathway
in cortex. The correspondence between the layers in the model and visual areas is
an oversimplification. Circles represent neurons and arrows represent connections
between them; the dots signify other neurons of the same type. Stages of neurons
with bell-shaped tuning (with black arrow inputs), that provide example-based
learning and generalization, are interleaved with stages that perform a max-like
operation3 (denoted by red dashed arrows), which provides invariance to position
and scale. An experimental example of the tuning postulated for the cells in the
layer labelled inferotemporal in the model is shown in Fig. 1. The model accounts
well for the quantitative data measured in view-tuned inferotemporal cortex cells10

(J. Pauls, personal communication) and for other experiments55. Superposition of
gaussian-like units provides generalization to three-dimensional rotations and
together with the soft-max stages some invariance to scale and position. IT,
infratemporal cortex, AIT, anterior IT; PIT, posterior IT; PFC, prefrontal cortex.
Adapted from M. Riesenhuber, personal communication. 
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Hardware implementations of spiking neurons

Hardware implementations of this model date back to the period when
McCulloch and Pitts proposed the first artificial neuron model (1943)

VLSI implementations of spiking neurons are relatively new.
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VLSI implementations of spiking neurons are relatively new.

One of the most influential circuits that implements
an integrate and fire model of a neuron was
proposed by Carver Mead in the late 1980s.



Hardware implementations of spiking neurons

Hardware implementations of this model date back to the period when
McCulloch and Pitts proposed the first artificial neuron model (1943)

VLSI implementations of spiking neurons are relatively new.

In 1991 Misha Mahowald and
Rodney Douglas proposed a
conductance-based silicon
neuron and showed that it had
properties remarkably similar to
those of real cortical neurons.



Hardware implementations of spiking neurons

Hardware implementations of this model date back to the period when
McCulloch and Pitts proposed the first artificial neuron model (1943)

VLSI implementations of spiking neurons are relatively new.

The whole community kept on
developing various flavors of
spiking VLSI neurons.



The low-power I&F neuron
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The low-power I&F neuron
Positive Feedback (low power)
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The low-power I&F neuron
Adaptation (intrinsic plasticity)
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Synapses

Real synapses Artificial synapses
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Synapses are often modeled as
instantaneous multipliers.

Science and Engineering Visualization Challenge
http://www.sciencemag.org/sciext/vis2005/
show/slide1.dtl
2005 winner, Graham Johnson, Medical Media, Boulder,
Colorado.

http://www.sciencemag.org/sciext/vis2005/show/slide1.dtl
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The diff-pair integrator (DPI) circuit
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Diff-pair integrator step-response

AMPA time constants (large Iτ )
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“Elaborate” dynamic behavior
NMDA, conductance-based and short-term depression
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Conductance-based synapse
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Voltage-gated (NMDA) synapse
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Short-term depressing synapse
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Spike-timing dependent plasticity

STDP mechanism
1 If a pre-synaptic spike arrives at the

synaptic terminal before a
post-synaptic spike is emitted, within
a critical time window, the synaptic
efficacy is increased.

2 If the post-synaptic spike is emitted
soon before the pre-synaptic one
arrives, the synaptic efficacy is
decreased.

Abbot, Nelson, 2000

Hafliger et al. 1997, Bofil, Murray, 2001, Indiveri 2002, Arthur, Boahen 2005



STDP is not enough
for learning complex spatio-temporal patterns

Senn, Biological Cybernetics, 2002
[...] additional nonlinearities are required if
STDP should be relevant for both
encoding information represented in a
spike correlation code and a mean rate
code without spike correlations



STDP is not enough
for learning complex spatio-temporal patterns

Lisman and Spruston, Nature
Neuroscience, 2005
Postsynaptic depolarization requirements
for LTP and LTD: a critique of spike timing-
dependent plasticity



STDP is not enough
for learning complex spatio-temporal patterns

Gütig and Sompolinsky, Nature
Neuroscience, 2006
We propose a new, biologically plausible
supervised synaptic learning rule that
enables neurons to efficiently learn a
broad range of decision rules, even when
information is embedded in the
spatio-temporal structure of spike patterns
rather than in mean firing rates. [...]
Our neuron model consists of a leaky
integrate-and-fire neuron driven by
exponentially decaying synaptic currents
[...]



Physical implementations of learning mechanisms
Hard constraints

When constructing physical implementations of learning mechanisms
one is immediately confronted with two hard constraints on the
synaptic efficacies:
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Physical implementations of plastic synapses
Limited resolution

Maximum number of patterns p that can be stored in an associative
memory:

p <− log(Nsyn)(√
Q+−

√
Q−

)2
+

(√
Q+Q−
n2

)
Nsyn =Total number of synapses.

n = number of synaptic states.

Q+ =LTP Probability

Q− =LTD Probability

Balanced case: p ≈ n2.
Inbalanced case: p does not depend on n.

Fusi, Abbot, Nature Neuroscience 2007



Recipe for efficient VLSI implementation
Basic specifications:

1 Bistability: use just two synaptic states (n = 2).
2 Redundancy: implement many (imprecise) synapses that see the

same pre- and post-synaptic activity.
3 Stochasticity & inhomogeneity: induce LTP or LTD in a randomly

selected subset of synapses.

Pros and Cons

- Requires a large number of synapses.

- Learning is slow: only a fraction of the synapses
memorize the training pattern.

+ We are not fighting against technology (large-scale
integration, mismatch and fault tolerance).

Indiveri, NIP-LR, 2007
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A new spike-based synaptic plasticity mechanism

Stop Learning
Update weight only when necessary. Stop learning if

1 the desired activity is high and the neuron responds with a high
activity to the input pattern

2 the desired activity is low and the neuron responds with a low
activity to the input pattern

Powerful
Can learn complex correlated patterns. SW simulations comparable
with state of the art classifiers (e.g. MNIST character classification
benchmark).

Brader et al., Neural Computation, 2007



Spike-based plasticity circuits
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Stochastic LTP
Single synapse
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network develops over time? The answer that is begin-
ning to emerge is that cortical and hippocampal neur-
ons regulate their own firing rates by scaling the
strength of their synaptic inputs up or down as a 
function of activity35–38.

In cultured cortical neurons, the strength of excita-
tory synaptic connections between pyramidal neurons
can be scaled up or down globally as a function of fir-
ing rate (Fig. 3A). When firing rates increase, excita-
tory synaptic strengths are scaled down, and when fir-
ing rates decrease, excitatory synaptic strengths are
scaled up35. This occurs through increases or decreases
in the quantal amplitude of the AMPA receptor-medi-
ated component of excitatory neurotransmission,
which mediates the bulk of excitatory transmission
between neurons in the CNS. This change in quantal

amplitude appears to occur at all of
the synapses in a neuron, probably
as a result of changes in postsynap-
tic AMPA-receptor number35,38.
This ‘synaptic scaling’ differs in a
number of important ways from
Hebbian, synapse-specific forms of
synaptic plasticity such as LTP
(Ref. 5) and long-term depression
LTD (Ref. 6.) First, it appears to be
independent of NMDA-receptor
activation. Second, it is somewhat
slow, requiring hours or days of
altered activity to modify synaptic
strengths. This is probably impor-
tant for allowing neurons to inte-
grate average activity over a long
time scale, without their respond-
ing to moment-to-moment fluctu-
ations in firing rates. Finally, this
form of plasticity occurs through
the scaling of all synaptic strengths
up or down by the same multi-
plicative factor (Fig. 3B)35. This
multiplicative scaling of synaptic
strengths has the right characteris-
tics to preserve relative differences
between inputs (such as those pro-
duced by LTP or LTD), while allow-
ing a neuron to adjust the total
amount of synaptic excitation it
receives (Fig. 3C).

An interesting aspect of synaptic
scaling is that it can promote com-
petition between synaptic inputs
to a particular neuron. Activity-
dependent competition for the for-
mation and stabilization of inputs
is thought to have an important
role in the fine-tuning of synaptic
connections during develop-
ment3,7,8. One way that competi-
tion can occur is if strengthening
of some inputs leads to weakening
of others. Several forms of het-
erosynaptic depression, where
potentiation of one set of inputs
depresses other inputs to the same
neuron or muscle fiber, have been
described39,40. Interestingly, synap-
tic scaling can also promote com-

petition, because if some inputs are strengthened and
the postsynaptic firing rate begins to rise, all of the
neuron’s inputs will be scaled down in strength. If
synaptic weakening is the prelude to elimination, as
has been suggested40–43, then synaptic scaling could
allow a neuron to shed its weakest inputs in response
to the strengthening of others.

Neurotrophins and homeostasis in cortical
networks

An important aspect of synaptic scaling in cultured
cortical networks is that the direction of change of a
synapse depends on both the nature of the synapse
and the nature of the postsynaptic neuron35–37.
Cortical pyramidal neurons are embedded in complex
networks with extensive recurrent excitatory and
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Putting all the pieces together...
...and getting them to work

1 Neuromorphic VLSI chips (sensors,
learning chips, analog filters, . . . ).

2 Industry-strength commodity circuits
(asynchronous logic, temperature
compensated bias generators, . . . ).

3 Printed Circuit Boards (PCBs) for
hosting the neuromorphic chips.

4 On-board communication logic.
5 Off-board communication interfaces.
6 Board-PC interfaces.
7 Low-level PC drivers.
8 Software user-interfaces, Matlab

toolboxes, etc.
9 . . .



Reliable computation
With plastic cooperative-competitive networks
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520MHz ARM architecture
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Reliable interfaces to PCs
with custom firmware and software

High performance linux
kernel driver.

libusb platform
independent library
(user space) driver.

C, Java, and Matlab
user interfaces

jAER open source
project, Matlab
Spike-Toolbox



Promises, promises, promises. . .
are we there yet?

Preliminary results in all our labs

Preliminary results in Telluride 2006

Preliminary results in Telluride 2007?

Tough job
Going from preliminary results to practical,
reliable and competitive applications is
hard.

Slow progress
The overall resources used by the
community at large are less than 3
man/year on any of one of these tasks →

1 Neuromorphic VLSI chips (sensors,
learning chips, analog filters, . . . ).

2 Industry-strength commodity circuits
(asynchronous logic, temperature
compensated bias generators, . . . ).

3 Printed Circuit Boards (PCBs) for hosting
the neuromorphic chips.
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Serial AER
Disadvantages

Extra chip (SerDes) or

IP-core on expensive (<=130nm) processes

Maybe higher communication power consumption

4+ layer PCB required for impedance control

Advantages
Cheap wiring & connectors (i.e. SATA)

Differential signaling, thus:

Common mode noise immunity (RF noise)
No net current flow

Redundant encoding (8b/10b)

Clock recovery
Error detection
Extra tokens (i.e. IDLE, error)
DC-free

Full AC coupling

No global GND reference
No ground bounce problems

Flow control instead of full handshake

Higher bandwidths
No line delay limitations
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