

odelling and

Something Old, Something New...

Nic Schraudolph Telluride 2007

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

Overview

Three half-hour lectures:

Floating-Point Bit Twiddling

Fast approximate exponential, logarithm, power, logistic functions (for GPUs & microcontrollers)

Gradient-Based Optimization Review of standard methods, background for:

Stochastic Quasi-Newton Methods My latest & greatest algorithms for fast online adaptation, and learning from large sets of data.

Twiddling the Bits of IEEE-754 Floating-Point Numbers for Fun Profit

Exponentials: Ubiquitous but Slow

Exponentials ubiquitous in scientific computing:

- physics: translates energy into probability (thermodynamics, electronics, quantum anything)
- statistics: exponential family of distributions
 maximum likelihood estimation (machine learning!)

They are not cheap to compute:

- typically involves 10th order Chebyshev polynomial
- used to be slow on general-purpose CPUs (embedded systems didn't have any floating-point)
- now hardware-accelerated on general-purpose CPUs but still slow on embedded systems: GPUs, µCs, ...

IEEE-754 Floating-Point Format

- IEEE-754 value: $y = (-1)^{s} (1 + m) 2^{(x 1023)}$
- s: sign bit
- x: 11-bit *exponent* (shifted by const. *bias* $x_0 = 1023$)
- m: 52-bit mantissa, binary fraction in the range [0,1)
- stored in 8 bytes of memory as:
 sxxx xxxx | xxxx mmmm | mmmm mmmm | mmmm mmmm | mmmm mmmm | mmm...
 1
 2
 3
 4
 Simple idea: to exponentiate a number,
- write it into the IEEE-754 exponent (duh).

Specifically: to get EXP(x),

- \bigcirc multiply x by 2⁵² · In 2, cast result to integer
- ◎ add bias: 2⁵² · 1023, reinterpret as IEEE-754
- Done! Okay, some more details:
- Use C union or C⁺⁺ reinterpret_cast with 64-bit integer to directly access IEEE-754 components
- Can also use 2 32-bit integers (multiplier becomes 2²⁰ · In 2; beware of big-endian vs. little-endian h/w)
- Especially fast for quantized arguments (uses only integer arithmetic!)
- on seatbelts (beware of overflow into sign bit!)

Exponentials for Nothing, and the Interpolation's for free!

What happens to the "tail end" of that large integer we write into the IEEE-754 exponent?

- it overflows into the mantissa. Oh dear?
- actually, this performs linear interpolation for us!
 We can use a trick to improve accuracy: EXP₂(x) := EXP(x/2) / EXP(-x/2)

at the cost of a single floating-point division, we now have piecewise rational interpolation

even higher accuracy is possible, but gets increasingly expensive \Rightarrow usually not worth it

More Fast Functions

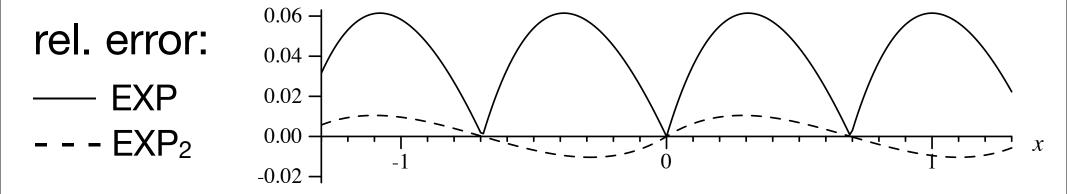
logistic function: y = 1/(1 + e^{-x}) (tanh is similar) quite important for neuromorphs...! implement this as EXP(x/2)/[EXP(x/2) + EXP(-x/2)] ⇒ accuracy like EXP₂, but no extra division

logarithms: just use EXP or EXP₂ in reverse

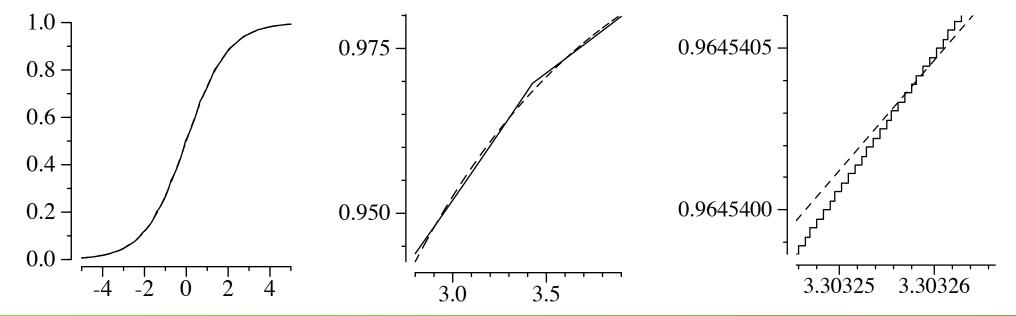
 ■ power functions: use $x^y = 2^{y \ln_2 x}$ (base 2: multiplier becomes bit shift ⇒ yet faster)

 square root: adjust for bias, shift 1 bit right (use this to initialize Newton-Raphson iterations)

How Inaccurate is it?



Logistic via 1/(1 + EXP(-x)), 32-bit integers:



sml.nicta.com.au

Conclusion

IEEE-754 bit twiddling

- vields fast, approximate exp, log, pow, tanh, sqrt, ...
- saves memory (no look-up table to store)
- preserves cache (no memory access)
- zero-cost interpolation (overflow into mantissa)

For more information:

- basic EXP (with full error analysis)
 published in Neural Computation (1998)
- everything else not yet published (but I have code if you ask nicely :-)