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Classical Gradient Methods

• Note simultaneous course at AMSI (math)

summer school: Nonlin. Optimization Methods

(see http://wwwmaths.anu.edu.au/events/amsiss05/)

• Recommended textbook (Springer Verlag, 1999):

Nocedal & Wright, Numerical Optimization

• Here: just quick overview, unconstrained only

• But will consider large, nonlinear problems
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Function Optimization

• Goal: given (diff’able) function

find minimum

• Gradient methods find only local minimum

• For convex functions, local min. = global min.

In machine learning,

• Fn. is defined over data:

• May comprise loss and regularization terms
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Methods by Gradient Order

• 0th order (direct, gradient-free) methods use

only the function values themselves

• 1st order gradient methods additionally use

function’s gradient

• 2nd order gradient methods also use the

function’s Hessian
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Direct (Gradient-Free) Methods

Many distinct algorithms:

• Simulated annealing, Monte Carlo optim.

• Perturbation methods, SPSA, Tabu search

• Genetic algorithms, evolutionary strategies,

ant colony optimization, …

Differ in many implementation details but all

share a common approach.
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Prototypical Direct  Method

Randomly initialize pool W of candidates

Repeat until converged:

pick parent(s) wi from

generate child(ren) wi’ = perturb(wi)

compare child to parent (or entire pool):

! = f(wi’) - f(wi)

if ! < 0 accept wi’ into W (may replace wi)

else if global optimization:

accept wi’ into W with probability P(e
-!)
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Direct Methods: Advantages

• No need to derive or compute gradients

• Can solve discrete/combinatorial problems

• Can address even non-formalized problems

• Can find (non-convex fn.’s) global optimum

• Highly and easily parallelizable

• Very fast iteration when perturbation and
evaluation are both incremental, i.e. O(1)
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Direct Methods: Disadvantages

• No sense of appropriate direction or size of
step to take (perturbation is random)

• Some algorithms try to fix this heuristically

• Takes too many iterations to converge

• Global optim. requires knowing acceptance
of inferior candidates " slower still

• No strong mathematical underpinnings
" jungle of ad-hoc heuristics
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Gradient Descent

• Perturbs parameter vector in steepest downhill

direction (= neg. gradient):

• Step size # can be set

• to small positive constant: simple gradient descent

• by line minimization: steepest descent

• adaptively (more on this later)

Advantage:

• Cheap to compute: iteration typically just O(n)
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Gradient Descent: Disadvantages

• Line minimization may be expensive

• Convergence slow for ill-conditioned problems:

#iterations $ condition#                  of Hessian
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Newton’s Method

• Local quadratic model

has gradient

therefore let
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Newton’s Method

Big advantage:

• Jumps directly to minimum of quadratic bowl
(regardless of ill-conditioning)

Disadvantages:

• Hessian expensive to invert: nearly O(n3)

• Hessian must be positive definite:

• May make huge, uncontrolled steps
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Gauss-Newton Approximation

Let                                       = model, l = loss

Then

Gauss-Newton:  Gf                     Jacobian:

• Hl ! 0 " Gf ! 0

• At minimum,  Gf = Hf

• For sum-squared loss:  Hl = I

and

pseudo-inverse
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Levenberg-Marquardt

• Gt is Gauss-Newton approximation to Ht

(guaranteed positive semi-definite)

• % ! 0 adaptively controlled, limits step to an

elliptical model-trust region

• Fixes Newton’s stability issues, but still O(n3)
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Quasi-Newton: BFGS

• Iteratively updates estimate B of H-1

• Guarantees BT = B and B > 0

• Reduces complexity to O(n2) per iteration

• Requires line minimization (direction         )

• Update formula:

        where
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Conjugate Gradient

                                   set by line minimization

Search directions

are conjugate:

 (= orthogonal in local          (Hestenes-Stiefel, 1952)

   Mahalonobis metric)          (a.k.a. Beale-Sørenson)

NB: other formulae for & (Polak-Ribiere, Fletcher-Reeves)

equivalent for quadratic but inferior for nonlinear fn.s!
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Conjugate Gradient: Properties

• No matrices " each iteration costs only O(n)

• Minimizes quadratic fn. exactly in n iterations

• Restart every n iterations for nonlinear fn.s

• Optimal progress after k < n iterations

An incremental 2nd-order method! Revolutionary.

• Drives nearly all large-scale optimization today.


