Classical Gradient Methods

Note simultaneous course at AMSI (math)
summer school: Nonlin. Optimization Methods
(see http://wwwmaths.anu.edu.au/events/amsiss05/)

Recommended textbook (Springer Verlag, 1999):
Nocedal & Wright, Numerical Optimization

Here: just quick overview, unconstrained only
But will consider large, nonlinear problems
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Function Optimization

e Goal: given (diff’able) function § :iR"” — (%
fmd m|n|mum e I = Jru* wnm;(J)

e Gradient methods find onIy local minimum
e For convex functions, local min. = global min.
In machine learning,

e Fn. is defined over data: j(@W) = Bz[f(@; %)
 May comprise loss and regularization terms
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Methods by Gradient Order

e Oth order (direct, gradient-free) methods use
only the function values themselves

* 1st order gradient methods additionally use
function’s gradient O (urf)
e 2nd order gradient methods also use the
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Direct (Gradient-Free) Methods

Many distinct algorithms:
e Simulated annealing, Monte Carlo optim.
 Perturbation methods, SPSA, Tabu search

* Genetic algorithms, evolutionary strategies,
ant colony optimization, ...

Differ in many implementation details but all
share a common approach.
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Prototypical Direct Method

Randomly initialize pool W of candidates
Repeat until converged:

pick parent(s) w, from

generate child(ren) w,” = perturb(w,)

compare child to parent (or entire pool):
A= £f(w') - £(w,)

if A < 0 accept w;,’ into W (may replace w;)

else if global optimization:

accept w,’ into W with probability P (e™)

MLSS Canberra 2005



Direct Methods: Advantages

No need to derive or compute gradients
e Can solve discrete/combinatorial problems
e Can address even non-formalized problems

Can find (non-convex fn.’s) global optimum
Highly and easily parallelizable

Very fast iteration when perturbation and
evaluation are both incremental, i.e. O(1)
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Direct Methods: Disadvantages

No sense of appropriate direction or size of
step to take (perturbation is random)

e Some algorithms try to fix this heuristically
Takes too many iterations to converge

Global optim. requires knowing acceptance
of inferior candidates = slower still

No strong mathematical underpinnings
=> jungle of ad-hoc heuristics
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Gradient Descent

e Perturbs parameter vector in steepest downhill
direction (= neg. gradient):
e Step size n can be set

e to small positive constant: simple gradient descent
* by line minimization: steepest descent
e adaptively (more on this later)

Advantage:
e Cheap to compute: iteration typically just O(n)
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Gradient Descent: Disadvantages

e Line minimization may be expensive

e Convergence slow for ill-conditioned problems:

?\ A1 L0
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of Hessian

#iterations = condition# = -
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Newton’s Method

e Local quadratic model

has gradient

therefore let 4, =@ — £
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Newton’'s Method

Big advantage:

e Jumps directly to minimum of quadratic bowl
(regardless of ill-conditioning)

Disadvantages:

* Hessian expensive to invert: nearly O(n3)

e Hessian must be positive definite: At > 0
 May make huge, uncontrolled steps
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Gauss-Newton Approximation

Let 7= lowm, w: R"*— i¥=model, | = loss

Then

Gauss-Newton: éf

*H20=G;20

e At minimum, Gf= Hf

e For sum-squared |OSS' Hl= I pseudo-inverse
__Jr 1
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Levenberg-Marquardt

PN B 27 B
Alepo((Crs ) )~

* G, is Gauss-Newton approximation to H,
(guaranteed positive semi-definite)

e A =0 adaptively controlled, limits step to an
elliptical model-trust region

* Fixes Newton’s stability issues, but still O(#3)

15

MLSS Canberra 2005



Quasi-Newton: BFGS

lteratively updates estimate B of H!
Guarantees B'=B and B > 0

Reduces complexity to O(n?) per iteration
Requires line minimization (direction £,;)
Update formula'
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Conjugate Gradient

1% @ set by line minimization

Search directions -
are conjugate:

vy = Wy pligy =10

e |

(= orthogonal in local (Hestenes-S 1952)
Mahalonobis metric) (a.k.a. Beale-Sarenson)

NB: other formulae for 8 (Polak-Ribiere, Fletcher-Reeves)
equivalent for quadratic but inferior for nonlinear fn.s!
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Conjugate Gradient: Properties

 No matrices = each iteration costs only O(n)
e Minimizes quadratic fn. exactly in n iterations
* Restart every n iterations for nonlinear fn.s

e Optimal progress after k < n iterations

An incremental 2"9-order method! Revolutionary.

* Drives nearly all large-scale optimization today.
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