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• Implementation and detection of correlations
– Role of stochastic processes in neural systems

• Connects neuromorphic engineering to statistical signal processing
• Neuromorphic → mainstream application: GPS system

• Supercritical stability: feedback in sensory systems
– Role of local feedback in neural systems

• Connects neuromorphic engineering to nonlinear theory
• Neuromorphic → mainstream application: Sonar

• Event-based control systems
– Closing the control loop in sensor-actuator 

systems
• Connects neuromorphic engineering to classic 

control and network theory

Mandatory picture 
of the brain

Why these topics?



Implementation and Detection of Correlations

• What do we mean by correlation in the neuromorphic 
context?
– We compare one signal with another to get two measures:

• How similar are they?
• How are they placed relative to one another in time and/or space?

• What kind of signals?
– Sounds (auditory system)
– Scenes (vision system)
– Patterns of neural excitation (associative or content-addressable 

memory)



Key

• Mainstream theory:

• Recent result, not necessarily peer 
reviewed:

• Reckless conjecture:



The roles of correlation in sensory systems

• Auditory system
– Detection of interaural time differences for:

• Sound localization
• Source separation

– Autocorrelation (detection of periodicities in a signal)
• Pitch perception
• Timbre processing

• Vision system
– Detection of movement

• Self motion
• Tracking of moving objects



Mathematical Correlation

• Autocorrelation function of a signal f(t):

• Cross-Correlation
– Periodic

– Non-periodic
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Auto- and cross-correlation

Signal A time shift

correlation 
function

Signal B



The physiological origin of neural correlation

• In order to correlate we need to:
– Multiply two signals together
– Time shift one signal relative to the other
– Integrate
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The physiological origin of neural correlation



Multiplication

If we have two independent events A and B with probabilities ρ(A) and 
ρ(B) then the probability of both A and B occurring is:

ρ(A and B) = ρ(A)ρ(B)

ρ1(τ)

ρ2(τ)

τ

ρ2(τ+t)

τ+t

Probability of two spikes
here and here is ρ1(τ)ρ2(τ+t)

t



Coincidence Detectors

Chapter 14:

By A. Borst

Ed: Jianfang Feng

First 
described by 
Reichart in 
?1959?



Development of a wide-range correlation detector

• Integrate-and-fire processes

• Stochastic autocorrelation

• Neural simulation

• Autocorrelation in the auditory nerve

• A cross-correlation circuit



Integrate-and-fire process

• Integrate-and-fire membrane potential:

Reset to V = 0 after firing at threshold  V = θ
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• Integrate-and-fire circuit (relaxation oscillator):

Integrate-and-fire process
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• Typical v(t) waveform (sinusoidal input):
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Stochastic autocorrelation

• The interspike interval histogram (ISIH):
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ρ(τ) = interspike 
interval density 
(with drift and 
noise only)



Stochastic autocorrelation

• The interspike interval histogram (ISIH):
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With sine input: g(t) = Asin(ωt+φ)



What do we do with the starting phase of g(t)?

• Sine wave input with identical 
parameters, except…
– Random phase start
– Same phase start
– Continuous (started where 
– last trial ended)

ρ(τ)

ρ(τ,t)
ρ(τ,φ)



Neurons operate in different regimes

• Phase locking
– Simple 1:1
– Complex m:n

• Refractory spiking

• Unsynchronized

1 1000input

Input + noise

1:1 phase lock

Input + less noise

2:1 phase lock



Stochastic autocorrelation

• The interspike interval histogram (ISIH):
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With sine input g(t)

ρ(τ)= ρ(τ)(1 + wRgg(τ))



Stochastic autocorrelation

• Autocorrelation output:
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Further examples of stochastic autocorrelation 
(>9000 available)

• Random periodic signal, neuron with refractory period and 
quadratic leakage
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What affects the ISIH?
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What affects the ISIH?
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Stochastic autocorrelation

• Modulation of slope of v(t) at threshold:
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• Markov nature of firing times:
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Stochastic autocorrelation

• Marginalize to eliminate primary Markov property:

( )

( ) ( )

( ) ( )( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 11101
2

1101

1101101

11101

10111

11

2

1
111

0

)()()(

)(

)(1)(1

                                    for 

}by  separated are after  spikes second andfirst  that Prob{)(

00

00

0

0

0

12

dttgtgttwdttgttw

dttgttwdttt

dttwgtwgtt

dttttt

τ,ttdtttt

tq

tt

tt

t

LPt LP

t
k

kkkLP

tt

τρτρρτρ

τρτρρτρ

τρτρ

ρτρ

ρ

ττ

+−+−+

+−+−=

+++−=

+=

+=−=

=

∫∫

∫∫

∫

∫

∫ ∏

∞∞

∞∞

∞

∞

∞

=
−−

−

][t 

( )( )ττρ

ττρτρτ

gg

ttt

Rw

dttgtgwq

2

111
2

1)(

)()()()()(
0

12

+=

++= ∫
∞

−



Autocorrelation in the auditory nerve



Autocorrelation in the auditory nerve



Autocorrelation in the auditory nerve



Pitch shift effect in a simulated spiking neuron
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Application: the Global Positioning System

Source: www.navicom.co.kr



GPS Signals: Pseudorandom codes

• Binary serial codes
• Designed to have noise-like character:

– Sharp autocorrelation peaks
– Near orthogonality between codes

• Usually created with linear feedback shift registers
• Many types 

– maximum length sequences
– Gold codes
– Kasami codes
– Welch codes

• Gold codes – 1023 bits, used in GPS C/A mode



Cross-correlation functions of Gold codes
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Autocorrelation functions of Gold codes:
ISIHs



Tuning with Noise and Drift

Different drift terms Different noise

(stochastic resonance)



Circuits
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Circuit Output
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A cross-correlation circuit
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leaky integrate-and-fire

simple integrate-and-fire
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Interaural Time Difference Detection

Right ear 
increasing delay Left ear 

increasing delay

centre 
[zero delay]

Time
Spikes



Circuit
Stereo in-ear recordings

L R

Cochlea filter banks

cross-correlation 
circuit

rectify and 
compress by √f

simple I&F 
neuron

cross-correlation 
circuit

rectify and 
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simple I&F 
neuron
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How many (neurons x spikes)?

• This suggests that the second and subsequent spikes in a spike 
train are distributed with the p.d.f. modulated by the correlation 
function

• We can pool the results from an ensemble of correlators
• If we need S spikes to represent the function (S depends on the 

complexity of the function and the level of noise), we can use N
neurons spiking M times each:

N x (M-1) >= S
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Implementation and detection of correlations:  Conclusions

• If I&F neurons operate in a regime where they are not phase locked 
(=> small signal and some noise), then the ISIH has the form of the 
p.d.f. of the neuron with no signal, amplitude modulated by the 
autocorrelation function of the signal.

• The autocorrelation function which results is similar to that detected 
in mammalian auditory nerves in respect of pitch and several well-
known psychoacoustic effects.

• Understanding the source of the stochastic autocorrelation effect 
allows us to design wide-range cross-correlators.

• The effect can be used to extract real-world signals such as the time 
delay between PRN coded signals in a GPS system, and possibly 
also interaural time delays.



Local Feedback in Sensory Systems

• Why?
– Improve sensitivity

• Cochlear amplifier
– Enable sensing

• Saccadic eye movements
• Haptic sensing

– Control signal as variable
• Interaural level differences



Bigger picture: perception is an active process

Henri Poincaré, (1905). La valeur de la science. Paris: Flammarion. p. 47.

"To localize an object simply means to represent to oneself the movements that would be 
necessary to reach it. It is not a question of representing the movements themselves in 
space, but solely of representing to oneself the muscular sensations which accompany these 
movements and which do not presuppose the existence of space". 

Rodney Brooks, (1986) "A Robust Layered Control System For A Mobile Robot", IEEE 
Journal Of Robotics And Automation, RA-2, April. pp. 14-23 

“The world is its own best model.”

“Rodney Brooks,(1991)  “Intelligence without representation,” Artificial intelligence 47, p 
139-159. 

“Representation is the wrong unit of abstraction in building the bulkiest parts of intelligent systems”

Kevin O’Regan and Alva Noë, (2001) “A sensorimotor account of vision and visual 
consciousness”, Behavioral and Brain Sciences 24(5) : 

“Indeed there is no "re"-presentation of the world inside the brain: the only pictorial or 3D version 
required is the real outside version. What is required however are methods for probing the 
outside world -- and visual perception constitutes one mode via which it can be probed.”

JC2



Slide 49

JC2 Oregan: 529 citations
Brooks 91 2074 citations
Brooks 86 3789 citations
Tapson, 2007/06/26



Inner hair 
cells: 

sensors

Outer hair 
cells: 

actuators

The Cochlear Amplifier



The Cochlear Amplifier

What we know about the cochlear amplifier:
– Its existence is inferred by the sensitivity of the cochlea and proven by 

the existence of otoacoustic emissions
– It appears to be implemented by electromechanical transduction in the 

outer hair cells

• What we don’t know about the cochlear amplifier:
– Whether the OHCs act axially (Brownell - prestin electromotility -

mammalian picture) or transversely (Hudspeth - amphibian picture)
– How the OHCs increase the acoustic energy in the cochlea
– What the OHCs “stand on” and what they “push against”
– How the OHC motion phase-locks with the basilar membrane motion
– Where the OHCs act, with respect to frequency on the longitudinal axis 

of the cochlea (and how amplifiers in different places couple together)
– Whether the amplifier is self-tuned or open-loop



Cochlea gain curves

• At CF, 77 dB range of 
input is compressed 
into 20 dB of output

• Far off CF, there is no 
compression



Frequency 
selective 
network

LNA

Ka(t)

Regenerative receiver (Edwin Armstrong 1911)

Gold’s Hypothesis:  Regenerative Amplification
Gold, T. (1948).  Hearing. II. The physical basis of the action of the cochlea. 
Proc. Roy. Soc. Lond. B Biol. Sci., 135, 492-498.

Gold, T. (1989).  Historical background to the proposal 40 years ago 
of an active model for cochlear frequency analysis.  
In Cochlear Mechanisms - structure function and models
Eds. J.P. Wilson, D.T. Kemp, Plenum Press, New York, 299-305.



Frequency 
selective 
network

LNA

Ka(t)

Superregenerative receiver (Armstrong 1921)

Quench 
oscillator

Superregenerative receiver



The Hopf Bifurcation Hypothesis

Bifurcation: a smooth change in system parameters causes a 
qualitative change in the state of stability. 

Hopf bifurcation:(practically) the change is from a stable fixed point to 
a stable limit cycle.  The change is smooth and 
reversible.

• Eguilez et al. (2000)
– Nonlinear oscillator of form
– Where from?

• Electrical amplifier on IHCs
• Hair bundle oscillations 

V. M. Eguíluz,  M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco,  Essential Nonlinearities in 
Hearing, Phys. Rev. Lett., 84 (22), 5232-5235, 2000.
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Hopf Bifurcations and Supercritical Stability
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Transients

• Phase plane
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The Hopf Bifurcation Hypothesis

• Camalet et al. (2000)
– Same dynamics

– Self tuning feedback

– Mechanism – dynein motor in kinocilium

• Kern and Stoop (2003)
– Physiologically realistic coupling required for accurate reproduction 

of auditory nonlinearities.
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Digression:  Sensors - Bandwidth and Q

• Bandwidth of sensors is generally limited to reduce noise
– Need to accommodate the signal carrier bandwidth and the transient response

• Sensors are often mechanically or electrically resonant to enhance response 
• Resonant characteristic is expressed as Q
• Low Q => wide bandwidth, high noise
• High Q => narrow bandwidth, low noise
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Sensors as Matched Filters

• A sensor can be thought of as a transducer and matched filter combined 
together

• The designer has to make an ab initio decision on the filter characteristics, 
which is also affected by the physics of transduction

• The usual method is to make a wideband transducer followed by a 
narrowband filter

Physical 
system Transducer Matched 

Filter



Designer’s Problem Statement

• Unless the signal characteristics are stationary, the matched filter must 
adapt according to signal strength

• Weak signal => narrow bandwidth filter

• Strong signal => wide bandwidth filter

• Note that bandwidth is a tradeoff:
Narrow bandwidth => slow transient response

• It is assumed that Q x bandwidth is a constant



Supercritically Regenerative Receivers
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Supercritically stable receiver (Tapson 2006)
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Supercritical stability block diagram



Transfer Function and Describing Function
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Resonant Quality Factor
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Sensitivity
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Circuits
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Performance

• Can use correlation and coherence as measures of SNR

• Cross-correlation

• Coherence
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Coherence – LRC sensor
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1dBm input, is 96%.  By contrast, with the feedback disabled (□), the coherence drops to 26%.  The lower four curves 
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and also at the input frequency (∆ and ■).



Coherence – Sonar circuit
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Autocorrelation as a test of accuracy – sonar circuit

• Transducer driven with 50% duty cycle 
on-off keying (OOK)
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Variation in Q – sonar circuit
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Variation in Q – sonar circuit (2)
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Supercritical stability: feedback in sensory systems 
Conclusions

• There is a growing consensus that the cochlear amplifier, and 
perhaps some other sensory systems, self-tune their sensitivity and 
may use regenerative feedback to add energy to the input signal.

• The actual mechanism is not yet clear.  Current models (except 
maybe Kern and Stoop) do not adequately address the coupling 
issues.

• It is possible to model the system in dynamical systems terms (Hopf 
bifurcation) or conventional electronics and control terms 
(regenerative amplifiers & describing functions).  The two 
representations are equivalent.

• It is possible to build a conventional sonar system that uses this 
principle and achieves better SNR than a standard system.



Event-based control systems

• Classical control theory
– Discrete time (fixed sampling)
– Discrete levels (quantization)
– Works well in highly deterministic synchronous systems 

• Event-based control systems
– Continuous in time (irregular events)
– Continuous or discrete in amplitude
– Works well in asynchronous systems (neural, wireless control 

networks, …)



Early days

• 1990



Early days.......

• 2002
classic event-based



Astrom ’02: His conclusions



Early days…………………

• 2005

Little system theory is available!



Early days……………………….

• 2006

Traditional sample-data control requires 4.7 times faster 
sampling than event based control to give the same error 
variance!



Event-Based Control: Conclusions

• There has been limited progress (or interest) since 1990.

• As with most neuromorphic circuits, it is clear that asynchronous 
control offers considerable power saving potential, and possibly
significantly better robustness to disturbance.

• Lack of a coherent mathematical structure is holding the field back 
from the point of classical control, but need not be an impediment to 
neuromorphic progress.
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