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Why these topics?

« Implementation and detection of correlations

— Role of in neural systems
» Connects neuromorphic engineering to statistical signal processing
* Neuromorphic — mainstream application: GPS system

« Supercritical stability: feedback in sensory systems

— Role of in neural systems

» Connects neuromorphic engineering to nonlinear theory

* Neuromorphic — mainstream application: Sonar
. Frontal

Temporal Lobe

« Event-based control systems
— Closing the in sensor-actuator
systems
» Connects neuromorphic engineering to classic
control and network theory

Mandatory picture
of the brain



Implementation and Detection of Correlations

* What do we mean by correlation in the neuromorphic
context?

— We compare one signal with another to get two measures:
* How similar are they?
» How are they placed relative to one another in time and/or space?

« What kind of signals?

— Sounds (auditory system)
— Scenes (vision system)

— Patterns of neural excitation (associative or content-addressable
memory)



Key

Mainstream theory:

Recent result, not necessarily peer
reviewed:

Reckless conjecture:




The roles of correlation in sensory systems | ;
.

* Auditory system
— Detection of interaural time differences for:
» Sound localization
» Source separation
— Autocorrelation (detection of periodicities in a signal)
* Pitch perception
« Timbre processing

* Vision system
— Detection of movement

« Self motion
» Tracking of moving objects



Mathematical Correlation

« Autocorrelation function of a signal f(t):

Ry (7) = 11205 j £ (& +7)dt

« (Cross-Correlation
— Periodic

T
R (0= [ f0g+rydr

— Non-periodic

R, (7) = 13105 j F(Og(t+7)dt



Auto- and cross-correlation

correlation
function

4

Signal A HHHHH > time shift

Signal B HHHHH




The physiological origin of neural correlation

* In order to correlate we need to:
— Multiply two signals together
— Time shift one signal relative to the other
— Integrate

T
R, (1) = % jo (gt +7)dt



The physiological origin of neural correlation

Biol. Cybernetics 21, 227—236 (1976)
(€} by Springer-Verlag 1976

A Proposed Mechanism for Multiplication of Neural Signals

Mandyam V. Srinivasan and Gary D. Bernard
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Multiplication .' ;
-~

If we have two independent events A and B with probabilities p(A) and
p(B) then the probability of both A and B occurring is:

A and B) = p(A)p(B
p(Aand B) = p(A)p(B) Probability of two spikes

here and here is p1(1)p2(T+t)

v

v

T t Tt



Coincidence Detectors

404 Computational Neuroscience: A Comprehensive Approach
_ Chapter 14:
LA | By A. Borst
_/\ o Ed: Jianfang Feng
. L 1 ‘
1 — 2
Y —
; 2: | .
Kl TJ S N— First
Y . |2 : :
o Lo 12| ‘ described by
‘T' i i ’ Reichart in
12 {f 21 21 L ] ?19597?
Figure 14.2

Minimal circuit diagram of a correlation detector. It consists of two subunits.
In each subunit, the retinal signals from two neighboring locations are multi-
plied with each other (M), after one or both of them have been fed through a
temporal filter with a time constant 7. This operation is done twice in a mirror-
svimmmetrical way in both subunits. The output signals of both subunits are fi-
nally subtracted.



Development of a wide-range correlation detector

Integrate-and-fire processes

Stochastic autocorrelation

Neural simulation

Autocorrelation in the auditory nerve

A cross-correlation circuit



Integrate-and-fire process z :
.

Integrate-and-fire membrane potential:

4

v(t) = | m+E(t)+ g(0)dt

N

drift noise sTna

S

Reset to V = 0 after firing at threshold V =0



Integrate-and-fire process

» Integrate-and-fire circuit (relaxation oscillator):

F(t)
noise

comparator

q(t)

stimulus N * Mono-
v(t) stable >
—> .
N threshold spikes




Integrate-and-fire process

Typical v(t) waveform (sinusoidal input):

Interspike interval
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Stochastic autocorrelation

* The interspike interval histogram (ISIH):

spike count
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Stochastic autocorrelation

* The interspike interval histogram (ISIH):

With sine input: g(t) = Asin(wt+@)
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What do we do with the starting phase of g(t)? 1

Sine wave input with identical

parameters, except...
— Random phase stat —

— Same phase start
— Continuous (started where

— last trial ended) 7
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Neurons operate in different regimes

* Phase locking

— Simple 1:1 NN ANANA NN A S
2:1 ph lock
— Complex m:n\ phase foc / ///

input + less noise NAAAAAAARAAANAARARAA

. Refractory spiking vaw AAAARAASE A
1:1 phase |OCk el AV VAV V/]V/] V V/]l/ WV
AT “ AT N Input + noise  {]i i lql'””v}“rl! WA i,
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Stochastic autocorrelation

* The interspike interval histogram (ISIH):

< With sine input g(t)

P(1)= p(T)(1 + WR,(T))

spike count
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Stochastic autocorrelation

Autocorrelation output:

interval density
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Further examples of stochastic autocorrelation

(>9000 available)

Random periodic signal, neuron with refractory period and
quadratic leakage

interval density
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What affects the ISIH? 1
=~

1. Probability of
firing depends on
slope of v(t)
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What affects the ISIH?

2. Probability of firing at
this interval depends on

v

1. Probability of probability of firing
firing depends on here...
slope of v(t) ...and probability of
\ firing here
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—
Stochastic autocorrelation | ;
S

Modulation of slope of v(t) at threshold:

0 d e
= — m+c(t)+ o(t)dt
0 = [ e+ g0
dv(t
O s c)+2(0)
dt v—>60




Stochastic autocorrelation

Markov nature of firing times:

Prp (T‘to ) = p(f)(l + Wg(to + T))

Y (t) = Prob of sequence t=[¢], 12,... tn]

L)

Lo )X Prp (tn—Z

Yn (t) = Prp (tn Ly )X Prp (tn—l

= ﬁ Prp (tk — Ly ‘tk—l )
k=1




Stochastic autocorrelation

* Marginalize to eliminate primary Markov property:

q,,,, (r) = {Prob that first and second spikes after ¢, are separated by 7}
P00 2
- Ji, HpLP(tk _tk_l‘tk_l )dtl fort= [tl’tl + ‘L']
k=1

- .;:OpLP (tl + T‘tl )pLP (tl ‘to )dtl

(*00

= ["ple)olt, ~1, N1+ we t, + )1+ we (1),

0

(*00

= ) P(T)p(tl —1 )dtl + WJ;:OP(T)p(tl —1, )g(tl +7)dt

wwl p()olt ~1, )@t +w’ | p(e)ple —1)g (e, + g (1),

ty

Gy (D) = P + W p(@)| (1, +D)g(t))dh,

= p(r)(l + szgg (2'))



Autocorrelation in the auditory nerve

JourraL ar NouRGrIvsoLosy
Vol. 76, No. 3, September 1996, Printed in LLEA

Neural Correlates of the Pitch of Complex Tones. 1. Pitch and
Pitch Salience

PETER A. CARIANI AND BERTRAND DELGUTTE
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Autocorrelation in the auditory nerve
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Autocorrelation in the auditory nerve

Vol 76, Ko, 3, September 1996, Printed in LL5A.

Neural Correlates of the Pitch of Complex Tones. II. Pitch Shift, Pitch
Ambiguity, Phase Invariance, Pitch Circularity, Rate Pitch, and the
Dominance Region for Pitch
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Number of spikes

Pitch shift effect in a simulated spiking neuron
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Application: the Global Positioning System

2. &l satellites kl'lD'_,.‘T__l
1

1. all satellites -’F their exact position
have clodks set to " from data sent to

exackly the same time ad"'thegn flfl"I"'"' the systemn ¢
é controllers
Lk s 4. The signals travel
\ . The signals trave
L -% to the receiver delave
? by distance travele

time and orbit position

/

5. The differences
in distance traveled
make each satellite
appear to have

a different time

3. Each satellites
transmmits its position
and a time signal

6. The receiver calculates __=
the distance to each
satellite and can then
calculate its own position

Source: www.navicom.co.kr




GPS Signals: Pseudorandom codes 1
A

Binary serial codes

Designed to have noise-like character:

— Sharp autocorrelation peaks

— Near orthogonality between codes
Usually created with linear feedback shift registers
Many types

— maximum length sequences

— Gold codes

— Kasami codes

— Welch codes

Gold codes — 1023 bits, used in GPS C/A mode



Autocorrelation [V

Cross-correlation functions of Gold codes
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Spike Counts
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Tuning with Noise and Drift
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Circuits
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Circuit Output
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A cross-correlation circuit
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Why does it work?

1, (1FN2)—1, (17N (T) = {Probability that in

sequence (o pvo ) Ligew ) L2arna ) 1> T2 and 7y areseparated by 7§

= .:Opcz (fl +7lty ),001 (tl‘fo )dtl

*Lo

(® 00

= p(z)plt; — 1 N1+ wy(t, +7) N1+ wx(z,) )dt,

1

_ J; " o)l — 1 )ty +w I Jolt, —to )v(t, + 7)dt,
+ W"- tl — 1y X(fl)dtl +w j p(tl —to) (tl + Z')X(tl )dtl

~ p(r)+ w2 p(r) L Yt +7)x(ty )dt,

= o1+ R (7))
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spike count

500 - sinple integrate-and-fire

leaky integrate-and-fire
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Interaural Time Difference Detection
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Circuit

Stereo in-ear recordings

A

A
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A
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L R
Cochlea filter banks ﬁ
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compress by f neuron circuit
| |
rectify and | simple I&F ,| cross-correlation
compress by Vf neuron circuit
[ [
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compress by f neuron circuit
il [
,| rectify and -, | simple 1&F .| cross-correlation
compress by Vf neuron circuit
[[1] [
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How many (neurons X spikes)?

qt,(1FN2)—1,(1FN1) (7) = {Probability that in

sequence [# arN2 ) Warnt p R2arna )], t» and t; are separated by 7}

B Loopcz (6 + |t Joca o bty
0

This suggests that the second and subsequent spikes in a spike

train are distributed with the p.d.f. modulated by the correlation
function

We can pool the results from an ensemble of correlators

If we need S spikes to represent the function (S depends on the
complexity of the function and the level of noise), we can use N
neurons spiking M times each:

N X (M-1) >=S




Implementation and detection of correlations: Conclusions

If I&F neurons operate in a regime where they are not phase locked
(=> small signal and some noise), then the ISIH has the form of the
p.d.f. of the neuron with no signal, amplitude modulated by the
autocorrelation function of the signal.

The autocorrelation function which results is similar to that detected
in mammalian auditory nerves in respect of pitch and several well-
known psychoacoustic effects.

Understanding the source of the stochastic autocorrelation effect
allows us to design wide-range cross-correlators.

The effect can be used to extract real-world signals such as the time
delay between PRN coded signals in a GPS system, and possibly
also interaural time delays.



Local Feedback in Sensory Systems 1
B

 Why?

— Improve sensitivity
» Cochlear amplifier

— Enable sensing
« Saccadic eye movements
» Haptic sensing

— Control signal as variable
* Interaural level differences



JC2

Bigger picture: perception is an active process

Henri Poincaré, (1905). La valeur de la science. Paris: Flammarion. p. 47.

"To localize an object simply means to represent to oneself the movements that would be
necessary to reach it. It is not a question of representing the movements themselves in
space, but solely of representing to oneself the muscular sensations which accompany these
movements and which do not presuppose the existence of space”.

Rodney Brooks, (1986) "A Robust Layered Control System For A Mobile Robot", IEEE
Journal Of Robotics And Automation, RA-2, April. pp. 14-23

“The world is its own best model.”

“Roc%lggy1B|éooks,(1991) “Intelligence without representation,” Artificial intelligence 47, p
-159.

“Representation is the wrong unit of abstraction in building the bulkiest parts of intelligent systems”

Kevin O’'Regan and Alva Nog, (2001) “A sensorimotor account of vision and visual
consciousness”, Behavioral and Brain Sciences 24(5) :

“Indeed there is no "re"-presentation of the world inside the brain: the only pictorial or 3D version
required is the real outside version. What is required however are methods for probing the
outside world -- and visual perception constitutes one mode via which it can be probed.”
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Oregan: 529 citations
Brooks 91 2074 citations

Brooks 86 3789 citations
Tapson, 2007/06/26



The Cochlear Amplifier

Inner hair
cells:
sensors

waqw, BrainConnecition. com
1R Sojen i Loden ieg Cofpn

p Outer hair
cells:
1° actuators




The Cochlear Amplifier

What we know about the cochlear amplifier:

— Its existence is inferred by the sensitivity of the cochlea and proven by
the existence of otoacoustic emissions

— It appears to be implemented by electromechanical transduction in the
outer hair cells

 What we don’t know about the cochlear amplifier:

— Whether the OHCs act axially (Brownell - prestin electromotility -
mammalian picture) or transversely (Hudspeth - amphibian picture)

— How the OHCs increase the acoustic energy in the cochlea
— What the OHCs “stand on” and what they “push against”
— How the OHC motion phase-locks with the basilar membrane motion

— Where the OHCs act, with respect to frequency on the longitudinal axis
of the cochlea (and how amplifiers in different places couple together)

— Whether the amplifier is self-tuned or open-loop



Cochlea gain curves

M. A Ruggero, Curr. Opin. Neurobiol

At CF, 77 dB range of
input is compressed '
into 20 dB of output

0.1
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 Far off CF, there is no

: 0.01
compression

1 1 1 1
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Frequency (kHz)

FIG 1. Laser velocimetric data from a living chinchilla’s
cochlea displaving the root-mean-square velocity of one point
on the basilar membrane as a function of driving frequency.
Each curve represents a different level of stimulation. labeled in
decibels sound-pressure level. The characteristic frequency at
the position of measurement 15 9 kHz. Notice that at 4 kHz. the
curves from 40 to 80 dB span two decades (40 dB). whereas at
0 kHz the curves from 3 to 80 dB span just under one decade
{20 dB). Note that the response at 9 kHz saturates bevond
60 dB. At 4 kHz, the response rises an average of 1 dB per
decibel. whereas at 9 kHz the response nises only 0.3 dB per
decibel. Note furthermore the dramatic increase in bandwidth
as the intensity increases.



Gold’s Hypothesis: Regenerative Amplification

Gold, T. (1948). Hearing. Il. The physical basis of the action of the cochlea.
Proc. Roy. Soc. Lond. B Biol. Sci., 135, 492-498.

Gold, T. (1989). Historical background to the proposal 40 years ago
of an active model for cochlear frequency analysis.

In Cochlear Mechanisms - structure function and models

Eds. J.P. Wilson, D.T. Kemp, Plenum Press, New York, 299-305.
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Regenerative receiver (Edwin Armstrong 1911)
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The Hopf Bifurcation Hypothesis

Bifurcation: a smooth change in system parameters causes a
qualitative change in the state of stability.

Hopf bifurcation:(practically) the change is from a stable fixed point to
a stable limit cycle. The change is smooth and
reversible.

« Eguilez et al. (2000)
. . dz . 2
— Nonlinear oscillator of form E =(u+iwy)z— ‘z‘ z+ Fe

— Where from?
» Electrical amplifier on IHCs
e Hair bundle oscillations

1t

V. M. Eguiluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O. Magnasco, Essential Nonlinearities in
Hearing, Phys. Rev. Lett., 84 (22), 5232-5235, 2000.



Hopf Bifurcations and Supercritical Stability
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Transients
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The Hopf Bifurcation Hypothesis ’ ‘I\M
~

« Camalet et al. (2000)

. . 2
— Same dynamics iz(,uﬂa)o)z—\z\ z+ Fe

1t

2
— Self tuning feedback dow_1)z"
u ot t|s2

— Mechanism — dynein motor in kinocilium

« Kern and Stoop (2003)

— Physiologically realistic coupling required for accurate reproduction
of auditory nonlinearities.



Digression: Sensors - Bandwidth and Q

Bandwidth of sensors is generally limited to reduce noise
— Need to accommodate the signal carrier bandwidth and the transient response

Sensors are often mechanically or electrically resonant to enhance response
Resonant characteristic is expressed as Q

Low Q => wide bandwidth, high noise

High Q => narrow bandwidth, low noise

A

response

v

frequency



Sensors as Matched Filters . ; :ﬁ
=

A sensor can be thought of as a transducer and matched filter combined
together

The designer has to make an ab initio decision on the filter characteristics,
which is also affected by the physics of transduction

The usual method is to make a wideband transducer followed by a
narrowband filter

Physical Matched
—— Transducer ——{ .
system Filter




Designer’s Problem Statement 1
A

Unless the signal characteristics are stationary, the matched filter must
adapt according to signal strength

Weak signal => narrow bandwidth filter
Strong signal => wide bandwidth filter

Note that bandwidth is a tradeoff:
Narrow bandwidth => slow transient response

It is assumed that Q x bandwidth is a constant



Supercritically Regenerative Receivers
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Supercritical stability block diagram
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Transfer Function and Describing Function
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Resonant Quality Factor
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Performance

« (Can use correlation and coherence as measures of SNR

 Cross-correlation 0
Ryy (7) = [x(2)y(t+7)dt

e (Coherence

Gy (f)=2 [ Ryy (£)e 7.

—00

Gy (1)
Gy (/)Gyy (f)
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Coherence — LRC sensor

coherence

0 5 10 15 20
Anplitude [dBm

The uppermost curve (0) represents the circuit detecting a signal at the resonant frequency. The coherence, even at
1dBm input, is 96%. By contrast, with the feedback disabled (o), the coherence drops to 26%. The lower four curves
show closed-loop (CL) detection for input signals at 0.9 f and 1.1 f, measured at the resonant frequency f_(+ and x)

and also at the input frequency (A and m).
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Coherence — Sonar circuit
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Autocorrelation as a test of accuracy — sonar circuit

Transducer driven with 50% duty cycle
on-off keying (OOK)
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Variation in Q — sonar circuit
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Variation in Q — sonar circuit (2)
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Supercritical stability: feedback in sensory systems
Conclusions

There is a growing consensus that the cochlear amplifier, and
perhaps some other sensory systems, self-tune their sensitivity and
may use regenerative feedback to add energy to the input signal.

The actual mechanism is not yet clear. Current models (except
maybe Kern and Stoop) do not adequately address the coupling
Issues.

It is possible to model the system in dynamical systems terms (Hopf
bifurcation) or conventional electronics and control terms
(regenerative amplifiers & describing functions). The two
representations are equivalent.

It is possible to build a conventional sonar system that uses this
principle and achieves better SNR than a standard system.



Event-based control systems . ; :
g\

 Classical control theory
— Discrete time (fixed sampling)
— Discrete levels  (quantization)
— Works well in highly deterministic synchronous systems

* Event-based control systems
— Continuous in time (irregular events)
— Continuous or discrete in amplitude

— Works well in asynchronous systems (neural, wireless control
networks, ...)



Early days

1990 A Neuron-based Pulse Servo
for Motion Control

Steve DeWeerth®, Lars Nielsen®®, Carver Mead®, Karl Astrém **

*Department of Computer Science, California Institute of Technology, Pasadena, Ca 91125, USA
**Department of Automatic Control, Lund Institute of Technology, Box 118, 221 00 Lund, Sweden

We see this technology as having applications in
many areas. A very promising set of applications comes
from biology itself. The control of artificial motor systems
to mimic the behaviors of animals should be much more
attainable if the low-level computational structures are
also biclogically related.



2002

Early days.......

Proceedings of the 415t IEEE
Conference oa Decigion and Control
Las Vegas, Nevada USA, December 2002 WeP02-3

Comparison of Riemann and Lebesgue Sampling for
First Order Stochastic Systems

K. J. Astrém B. M. Bernhardsson
Department of Mechanical & Environmental Engineering Ericsson Mobile Platforms
University of California, Santa Barbara, CA 93 106 Nya Vattentornet, SE-221 83 Lund, Sweden

astrom@engineering.ucsh.edu bo.bernhardsscn@emp.ericsson.se



Astrom '02: His conclusions

The simple problems
solved in this paper indicate that Lebespue sampling
may be worth while to pursue. The field of Lebesgue
sampling is still in its infancy. There are many prob-
lems that may be worth while to pursue. The signal
representation which is a mixture of analog and dis-
crete is interesting, it is a good model for signals
in biclogical systems. It would be very attractive to
have a system theory similar to the one for periodic
sampling. Particularly since many senscrs that are
commonly used today have this character. The de-
sign problem in the general case is still largely an
unsolved problem. Implementation of controller of
the type discussed in this paper can be made us-
ing programmable logic arrays without any need for
AD and DA converters. There are many generaliza-
tions of the specific problems discussed in this paper
that are worthy of further studies for example higher
order systems and systems with output feedback.




Earlydays.....................

« 2005 Varaiya Symposium, June 5, 2005 K. J. Astrém

Little system theory is available!

Conclusions

 Event based control can deal with multi-rate, asynchronism
and latency which give great difficulties for classical
sampled data systems

* Simple examples indicate that event based control can
give good performance, react quickly to disturbances and
do nothing when errors are within the tolerance

« Interesting signal form and system structure

- Pulse trains, interval observer and pulse former
— Implication for systems architecture

« Natural approach distributed autonomous systems
e Natural for modeling biological systems
* Many interesting open research problems



Earlydays................ooolll

« 2006 CASY Workshop Bertinoro, May 2006 K. J. Astrém

Traditional sample-data control requires 4.7 times faster
sampling than event based control to give the same error
variance!

Conclusions

e« Event based control can deal with multi-rate, asynchronism
and latency which give great difficulties for classical
sampled data systems

e Simple examples indicate that event based control can
give good performance, react quickly to disturbances and
do nothing when errors are within the tolerance

¢ Interesting signal form and system structure

— Pulse trains, interval observer and pulse former
— Implication for systems architecture

e Natural approach distributed autonomous systems
e Natural for modeling biological systems
« Many interesting open research problems



Event-Based Control: Conclusions

There has been limited progress (or interest) since 1990.

As with most neuromorphic circuits, it is clear that asynchronous
control offers considerable power saving potential, and possibly
significantly better robustness to disturbance.

Lack of a coherent mathematical structure is holding the field back
from the point of classical control, but need not be an impediment to
neuromorphic progress.
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