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Outline of the talk

• Central pattern generators (CPGs) in biology
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• Adaptive frequency oscillators
• Self-tuning CPGs
• Programmable CPGs

• Online learning in modular robots



What is adaptive movement control?
Coordination of 

multiple degrees of freedom
Modulation

Visuomotor coordination
Switching between motor tasks Learning new skills



Neural control of movement
A difficult and « ill-posed » problem:

Requires good coordination (right frequencies, phases, signal 
shapes,…) of multiple degrees of freedom,

despite the multiple redundancies:
• Many possible end-point trajectories
• Many possible postures for a given end-point
• Many possible muscle activations for a given posture
• Many possible motor unit activations for a given muscle 

activations



Neural control of movement
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Central pattern generators
• Central pattern generators: neural networks capable of 

producing oscillatory patterns without oscillatory inputs

• Simple inputs complex outputs 

• Found in many animals: invertebrates
and vertebrates (e.g. lamprey)

• Locomotion: CPGs in spinal cord

• Relatively simple control signals from higher control centers
to the spinal cord (Shik and Orlosky 1966)

• Distributed system: multiple coupled oscillators, at least 
one per DOF (Cohen 1980, Grillner 1985)



Central pattern generators in robotics

CPG-like controllers can be very 
useful in robotics:

• Reduction of the dimensionality
of the control problem

• Interesting stability properties
(limit cycle behavior)

• Modulation (online trajectory 
generation)

• Integration of sensory feedback
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Work done in collaboration with

• Alessandro Crespi (EPFL)
• Jean-Marie Cabelguen (Univ. Bordeaux I and INSERM)
• Dimitri Ryczko (Univ. Bordeaux II)
• André Guignard (EPFL)
• André Badertscher (EPFL)



Models of locomotion control

HumanLamprey

Ijspeert et al, 
Adaptive Behavior 1999

Salamander

Ijspeert et al, 
Science. 2007

Cat

Buchli & Ijspeert, 
Proc. BioADIT 2004



Why modeling/studying salamanders?

1. Interesting bimodal locomotion (swimming + 
walking)

2. Its body plan has changed little over 150 
million years (Gao & Shubin, Nature, 2002). 
Key animal to study the transition from
aquatic to terrestrial locomotion during
evolution. 

3. Link between research on lamprey and 
tetrapod locomotion.

Gao & Shubin, 2002



Aquatic locomotion

(Frolich 1992, Delvolvé 1997, Ashley-Ross 2004): 
Traveling wave during swimming, (anguilliform swimming)

(Delvolvé 97)

EMG signals

Pleurodeles Waltl

Traveling wave during swimming,
Wavelength = approx one body length



Terrestrial locomotion
Standing wave during trotting

(Delvolvé 97)

EMG signals

Perfect synchrony in the trunk



Biomodal locomotion (cartoon)

Pleurodeles Waltl

Walking:
• Standing wave 
• Limb retractors/protactors
are phasic
• Longer cycle durations

Swimming:
•Traveling wave in axial muscles
•Wavelength = body length
•Limb retractors are tonic
•Short cycle durations



Biomodal locomotion (cartoon)

EMG signals

Pleurodeles Waltl
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• Limb retractors/protactors
are phasic
• Longer cycle durations

Swimming:
•Traveling wave in axial muscles
•Wavelength = body length
•Limb retractors are tonic
•Short cycle durations



Questions:
1. Which type of neural networks can produce the observed

bimodal locomotion, in particular the traveling waves for 
swimming and standing waves for walking?

2. Can a « lamprey network » be modified to control both
swimming and walking?

3. What are the mechanisms underlying gait transition? In 
particular, the automatic transition with MLR stimulation?

4. Why are walking frequencies always lower than swimming
frequencies?

Ijspeert A.J., Crespi A., Ryczko D., Cabelguen J.-M. , Science, Vol. 315., pp. 1416-1420, 2007
Ijspeert A.J., Crespi A., Cabelguen J.-M., Neuroinformatics, 3:3, pp 171-195, 2005.
Ijspeert A.J., Biological Cybernetics, 84:5, pp 331-348, 2001.



Biological data on salamander CPG

• Locomotion controled by a spinal 
Central Pattern Generator (Delvolvé et 
al 1999)

• The CPG is distributed along the 
spinal cord

• Localized limb neural oscillatory
centers (Szekely et al 1976), with
independent flexor and extensor
centers (Cheng et al 1998)

• Locomotion and gait transition can be
induced by electrical stimulation of the 
MLR



Stimulation of MLR

MLR: Mesencephalic Locomotor Region
Cabelguen et al, Journal of Neuroscience, 23 (6), 2003

Low current 
stimulation:

(slow) stepping

Larger current 
stimulation:

(fast) swimming



Latest model based on phase oscillators

• System of coupled amplitude-controlled phase oscillators
• Suitable both for biological modeling and for a robotic 

implementation

• Explains:
• Control of speed, direction, and type of gait
• Automatic gait transition from walking to swimming with 

MLR stimulation
• Why swimming frequencies are systematically higher 

than walking frequencies

From swimming to walking with a salamander robot driven by a spinal cord model, 
A. J. Ijspeert, A. Crespi, D. Ryczko, J.-M. Cabelguen, Science, Vol. 315. no. 5817, 
pp. 1416 - 1420, 2007



Hypotheses underlying the latest model
• Hypothesis 1: The isolated body CPG is lamprey-like and 

spontaneously produces traveling waves when activated with 
a tonic drive. The limb CPG, when activated, forces the 
whole CPG into the walking mode.

B BBody CPGL L

Forelimb 
CPG

Hindlimb 
CPG



Hypotheses (continued)

• Hypothesis 2: the strengths of the couplings from limb to 
body oscillators are stronger than those from body to body 
oscillators and from body to limb oscillators.

• Hypothesis 3: Limb oscillators can not oscillate at high 
frequencies, that is, they saturate and stop oscillating at high 
levels of tonic drive.

• Hypothesis 4: For the same tonic drive, limb oscillators 
have lower intrinsic frequencies than the body oscillators.

ObservationObservation



From a lamprey robot to a 
salamander robot



Snake robots: related work

Helix-I + ACM-R5
(Hirose et al.)

Lamprey robot
(Ayers et al.)

Lamprey robot
(Arena et al.)

Polychaete-like robot
(Sfakiotakis et al.)

REEL II
(McIsaac and Ostrowski)

WormBot
(Conradt and 
Varshavskaya)



Salamander robots: related work

Geo, Tony Lewis
Salamander robot, Hiraoka and Kimura

Robo-salamander, Breithaupt



Amphibot II

Crespi A. et al, Robotics and Autonomous Systems,  2004.
Crespi A. et al, ICRA2005, Ijspeert and Crespi, ICRA 2007

9.5 cm PID controller board Power board



Example

From
serpentine locomotion

to 
anguilliform swimming

Ijspeert and Crespi, ICRA 2007



CPG and robot
866 MHz

d_left
d_right

The CPG fits on a 
PIC microcontroller 

on board of the robot



New model: CPG configuration

Hyp. 1: Lamprey-like body body 
CPGCPG extended with a limb limb 

CPGCPG



Oscillator model
• A segmental oscillator is modeled as an amplitude-controlled 

phase (Kuramoto-like) oscillator (e.g. Cohen et al 1982):

))cos(1(

)(
4

)sin(2

iii

iii
i

ii

j
ijijijjii

rx

rrRaar

wr

θ

φθθνπθ

+=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

−−+= ∑

&&&

&

iNii xx +−=ϕSetpoints:

Phase:

Amplitude:

Output:



x

r

θ

Example with two oscillators

21
211

21 ))(2arcsin( φννπφ −
−

=∞ wR

21 θθφ −=The phase difference 
between two oscillators 
converges to

1 2

( )

))cos(1(

)(
4

)sin(2

iii

iii
i

ii

j
ijijijjii

rx

rrRaar

wr

θ

φθθνπθ

+=

⎟
⎠
⎞

⎜
⎝
⎛ −−=

−−+= ∑

&&&

&



Oscillator model: saturation function
• This simple model has independent (and explicit) parameters 

for the intrinsic frequency νi and the amplitude of oscillators 
Ri of each oscillatory center i

• But real oscillatory centers produce oscillatory bursts in 
which frequency and amplitude are correlated, and 
which are limited to specific frequency ranges

• we introduce a saturation function



Oscillator model: saturation function
• The oscillators are controlled by a tonic drive d. Both the 

frequency and the amplitude of the oscillations linearly 
increase with d between a lower and upper threshold:

Hypotheses 3 and 4: 
limb oscillators are slower 

and
saturate at a lower drive
than the body oscillators

Drive d

R

ν [Hz]

Body oscillatorBody oscillator

Limb oscillatorLimb oscillator
Frequency

Amplitude



Sweep of the drive signal

Body Body osciloscil..
0.5 0.5 -- 1.3 Hz1.3 Hz

Limb Limb osciloscil..
0.2 0.2 -- 0.6Hz0.6Hz

x

θ

r

drive

Time [s]



CPG couplings
The couplings are defined as follows:

10,
8

2
=±= ijij wπφTraveling wave

10, == ijij wπφAntiphase

30,0 == ijij wφIn phase

Hyp. 2: strong limb to body couplings



Swimming
High drive

xbody

Freq [Hz]

drive

xlimb



Swimming



Aquatic locomotion

(Frolich 1992, Delvolvé 1997, Ashley-Ross 2004): 
Traveling wave during swimming, (anguilliform swimming)

(Delvolvé 97)

EMG signals

Pleurodeles Waltl

Traveling wave during swimming,
Wavelength = approx one body length



Swimming kinematics



Swimming kinematics



xbody

Freq [Hz]

drive

xlimb

Walking Low drive



Walking



Terrestrial locomotion
Standing wave during trotting

(Delvolvé 97)

EMG signals

Perfect synchrony in the trunk



Walking kinematics



Walking kinematics



From walking to swimming

Standing Standing 
wavewave

Traveling Traveling 
wavewave

Limb Limb osciloscil. . 
saturatesaturate

Rapid Rapid 
frequency frequency 
increaseincrease

and and 
frequency frequency 

gapgap

Linear Linear 
increase increase 

of the driveof the drive



Kinematic and EMG studies
The frequencies of swimming are systematically 

higher than those of stepping in freely behaving animals

Stepping:
0.6-1.2 Hz

Swimming:
1.6-3.0 Hz



Fictive rhythms

New experiment: 
measuring frequencies of limb and body CPGs

10 s

iFn

iVR10

iHn 20 µV

50 µV

50 µV



Limb oscillators are slower!

Before transection



Limb oscillators are slower!

Before transection After transection



Limb oscillators are slower!

Before transection After transection



Limb oscillators are slower!

Hypothesis 4 is confirmed



Transitions between walking and swimming



Real salamander: from walking to swimming



Real salamander: from swimming to walking



Turning with asymmetric left/right drive



Turning

xb_left

ϕ

drive

xb_right

Asymmetric drive:
Oscillators remain 
synchronized and 
only amplitudes 

change



Control of direction



The body limb coordination 
optimizes speed



Conclusion
The new CPG model provides an explanation for: 
• The automatic transition from walking to swimming by simple 

electrical stimulation, 
• The rapid increase of frequency at the gait transition
• The lack of overlap between walking and swimming 

frequencies
• the control of speed and direction by the modulation of a 

simple tonic drive.

Evolution: addition of oscillatory centers with different 
intrinsic frequencies and saturation frequencies to a 
lamprey CPG

In addition, the CPG model offers an interesting way to do online
locomotion control for robots with multiple d.o.f.s.
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Central pattern generators for robotics

• Problem: not yet a clear methodology for designing 
CPGs

• Most approaches use either hand-coding or off-line 
optimization algorithms

• Alternatives that we are currently testing: 

1) A system based on adaptive frequency oscillators
for learning rhythmic trajectories as limit cycles

2) Online optimization (later)



Adaptive frequency oscillators
• Designed jointly by Jonas Buchli and Ludovic Righetti
• Example: an adaptive frequency Hopf oscillator receiving a 

periodic input F(t).

Righetti, Buchli and Ijspeert, Physica D, 2006, 

Tuning of the intrinsic frequency

Teaching signal



Adaptive Hopf oscillators

Righetti, Buchli and Ijspeert, Physica D, 2006



Adaptive Hopf oscillators

Righetti, Buchli and Ijspeert, Physica D, 2006

Input signalInput signal Input signalInput signalErrorError ErrorError



Applications

Adaptive frequency oscillators

SelfSelf--tuning CPGstuning CPGs

Unsupervised learning

Automatic tuning to 
resonant frequencies of 
compliant robots

Jonas Buchli

Programmable CPGsProgrammable CPGs

Supervised learning

Transforming periodic 
signals into limit cycles

Ludovic Righetti



Self-tuning CPGs
• Idea: use the adaptive frequency oscillators to tune 

themselves to resonant frequencies of a compliant 
robot

Work done in collaboration with Fumiya Iida and Rolf Pfeifer at 
the University of Zurich (also part of RobotCub)

Buchli et al, IROS 2006



Self-tuning CPGs

Buchli et al, IROS 2006

Joint angle sensor



Results: tuning of the frequency

Buchli et al, IROS 2006



Self-tuning CPGs

accelerometer

Buchli et al, IROS 2006



Results: tuning of the frequency

Movie

Movie slowed down

Buchli et al, IROS 2006



Results: tuning of the frequency

Inertial sensorFrequency parameter

Buchli et al, IROS 2006



Results: adjusting to a change of weight

Buchli et al, IROS 2006



Results: locomotion

Buchli et al, IROS 2006



Applications

Adaptive frequency oscillators

SelfSelf--tuning CPGstuning CPGs

Unsupervised learning

Automatic tuning to 
resonant frequencies of 
compliant robots

Jonas Buchli

Programmable CPGsProgrammable CPGs

Supervised learning

Transforming periodic 
signals into limit cycles

Ludovic Righetti



Programmable CPGs

Righetti et al, AMAM2005, ICRA 2006



Programmable CPGs: equations

Righetti et al, AMAM2005, ICRA 2006



Example of learning



Example of learning

Correct 
frequencies

Correct 
amplitudes



Example of learning

Teacher signal

Learned signal

Righetti et al, AMAM2005, ICRA 2006



Interesting properties



Application to locomotion control

Three oscillators per dof

Righetti et al, ICRA 2006



Application to locomotion control



Application to locomotion control

Righetti et al, ICRA 2006



Simple feedback terms
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Preventing leaning too much forward or backward:
Ψ:   forward leaning angle (from gyroscope)

Ψ0:   reference angle



Application to locomotion control

Righetti et al, ICRA 2006



Interesting properties



Adaptive frequency oscillators: summary

Interesting properties:

• Frequency adaptation with any initial frequency (not 
mere synchronization)

• Works with arbitrary input waveforms
• Works for several nonlinear oscillators
• Convergence proven for the adaptive frequency 

Hopf oscillators
• No external optimization algorithm (learning is part of 

the dynamical system)
• Can implement a kind of dynamic Fourier transform



Outline of the talk

• Central pattern generators (CPGs) in biology

• Modeling the salamander CPG

• Adaptive frequency oscillators
• Self-tuning CPGs
• Programmable CPGs

•• Online learning in modular robotsOnline learning in modular robots



Work done in collaboration with

• Alexander Sproewitz
• Rico Moeckel, Daniel Marbarch, Michel Yerli



Modular robotics: characteristics

• Robots made of multiple units
• Possiblity of self reconfiguration
• Versatility, robustness against lesions
• Two types of locomotion: 

• «flow-like», locomotion through
continuous reconfiguration

• «actuated joints», locomotion 
through the actuation of joints

CONRO

MTRAN

TELECUBE POLYBOT

CRYSTALLINE 
ROBOT



Modular robotics: challenges

• Efficient locomotion despite unknown configurations
• Configurations that change over time
• Distributed control

• Traditional model-based control is not well suited
• Interesting domain for adaptive locomotion

• Sofar few approaches use online learning, i.e. 
learning while moving without requiring a simulator



Our approach

CPGs Online
optimization

YAMOR units



Yamor: key characteristics
• One-DOF

• Autonomous: each unit 
has its own battery and 
microprocessor (micro 
controller and FPGA)

• Wireless bluetooth
communication

• Connections: strong velcro 
or screws and bolts



Yamor: content
ServoServo

Sensor boardSensor board ARM boardARM boardFPGA boardFPGA board

Fixation elementsFixation elements

LeverLever

BatteryBattery

BT boardBT board

Power boardPower board

Battery Battery 
boardboard



YAMOR Examples

Michel Yerly



Designing CPGs for the YaMoR modules

Typically, the CPG connectivity matches the mechanical connections:



Bluetooth communication protocol

• Scatternet protocol, 
• Transparent communication between modules
• Oscillators coupled in the CPG network communicate states

Rico Moeckel



Oscillator model
Amplitude controlled phase oscillator (Kuramoto-like):
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Example of CPG output modulation

θ i

0
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2

r i
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To be optimized for each oscillator:

The amplitude R

The offset X

The relative phase 
lag Δφ (the coupling 
parameters ω and φ)

= 4 (or more) parameters per module



Different algorithms tested

Optimization

Stochastic

Heuristic

Genetic algorithm

Powell’s method

Particle Swarm opt.

Simulated annealing

Fitness function: distance covered



Stochastic optimization

Yvan Bourquin



Stochastic optimization: results

Yvan Bourquin
Approx. 100 hours: too slow!



Online optimization using
Powell’s method

• Multidimensional optimization method which does
not require gradient computation

• Fast enough to be used online

• Idea: 
• use Brent’s method for unidimensional

optimization
• Carefully choose direction sets for 

multidimensional optimization

• Numerical Recipes in C, W.H. Press, S.A. 
Teukolsky



Unidimensional optimization : 
Brent’s method

Combination of

Successive bracketing    and    parabolic interpolation



Powell’s optimization method

Method for choosing directions for one-dimensional opt.



Experimental setup

Distributed CPGDistributed CPG

Centralized Centralized 
optimizationoptimization



Example of results

Before After20 minutes

Simple test with two open parameters: amplitude and phase lag



Example of results
• Convergence to the same gait
• Same solution as found by a systematic 
search (in much less time)



Optimization can run in parallel with CPG
Modifications of parameters without 

stopping/resetting the robot



Example of results

Before After40 minutes

Six open parameters



Example of results
• Convergence to interesting gaits
• Larger variety of gaits



More modules in simulation

Time = 0.0, starting from random initialization



More modules in simulation

Resulting gait after 30 minutes



Summary of results

CPG models are well suited for modular robots:
• Distributed implementation
• Natural synchronization properties
• Robust against time delays and lost

packets
• Production of smooth trajectories, despite

abrupt parameter changes 
• Allows one to run an optimization algorithm

in parallel to locomotion control



Future work

• Adapting to lesions and/or body 
reconfigurations

• Control of speed and direction

• Distributed (local) learning algorithm



Take home message 1

CPGs are CPGs are sophisticatedsophisticated control control 
circuits circuits thatthat cancan produceproduce and and 
modulatemodulate complexcomplex locomotion locomotion 
patternspatterns

Modulation of speed, direction, and type Modulation of speed, direction, and type 
of of gaitgait



Take home message 2

CPGCPG--likelike controllerscontrollers offeroffer an an interestinginteresting solution solution 
for the control of robot locomotion:for the control of robot locomotion:

CPGs are CPGs are usefuluseful for for reducingreducing the the 
dimensionalitydimensionality of the control of the control problemproblem

InterestingInteresting propertiesproperties::
SmoothSmooth online online trajectorytrajectory generationgeneration,,
PossibilityPossibility to to integrateintegrate sensorysensory feedbackfeedback
PossibilityPossibility to to modulatemodulate locomotionlocomotion
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