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Neural computation — neurotechnologies
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Cooperative-Competitive Networks (CCNs)

1977 Arbib and Amari
Competition and Cooperation in Neural Nets
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Cooperative-Competitive Networks (CCNs)

1977 Arbib and Amari
Competition and Cooperation in Neural Nets

Dynamic Neural Fields:

The neural network is described as a continuous medium rather than a
set of discrete neurons. A differential equation describes the activation
of the neural tissue at different positions in the continuous network.
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Cooperative-Competitive Networks (CCNSs)

» Excitatory units compete through the activation of
the inhibitory unit.
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Cooperative-Competitive Networks (CCNs)

» Excitatory units compete through the activation of
the inhibitory unit.

» Eventually the unit which receives the maximum
input stimulus win and remain in the excited state,
while all other units stay in the quiescent state:
WINNER-TAKE-ALL (WTA).

» Self-excitation maintains the winning unit in the
excited state even if another input stimulus
becomes bigger than one to the winning unit
(unless the difference is very large): HYSTERESIS.
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Cooperative-Competitive Networks (CCNs)

1998 Hansel and Sompolinsky
Modeling Feature Selectivity in Local Cortical Circuits

» Each neuron is described by a single continuous
variable which represent its activity level over a
short period of time: RATE MODEL.
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1998 Hansel and Sompolinsky
Modeling Feature Selectivity in Local Cortical Circuits

» Each neuron is described by a single continuous

variable which represent its activity level over a A "‘ﬁ
4 %{1@ "

short period of time: RATE MODEL.

» Each neuron is selective to a particular range of % e
orientations and it fires maximally when a particular
value of orientation is present in the input stimulus
(preferred orientation).
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Cooperative-Competitive Networks (CCNs)

1998 Hansel and Sompolinsky
Modeling Feature Selectivity in Local Cortical Circuits

» Each neuron is described by a single continuous Q rew
variable which represent its activity level over a r [ ‘V_L I
short period of time: RATE MODEL. A LN
» Each neuron is selective to a particular range of ] / /T h

orientations and it fires maximally when a particular
value of orientation is present in the input stimulus
(preferred orientation).

» Cooperative interactions are strongest in
magnitude for neurons that have identical preferred
orientation and get weaker as the difference
between preferred orientation increases.
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Rich linear and non-linear set of behaviors

linear

linear analog gain locus invariance non-linear gain control
(above threshold) (by common mode input)

non-linear

non-linear selection signal restoration multi-stability
(<soft> winner-take-all) (invariance)
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Linear—Threshold—-Unit WTA Circuit
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VLSI Spiking Cooperative-Competitive Networks

» DeYong et al. 1992 The Design, Fabrication, and Test of a New
VLS! Hybrid Analog-Digital Neural Processing Element

» all-to-all inhibitory connections

> 4 neurons
» Hylander et al. 1993 VLSI implementation of Pulse Coded
Winner Take All Networks
» global inhibition
» 3 neurons
» Indiveri et al. 2001 A Competitive Network of Spiking VLSI
Neurons

» global inhibition and first neighbors lateral excitation
» 32 neurons
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VLSI Spiking Cooperative-Competitive Networks

» Oster and Liu 2004 A Winner-take-all Spiking Network with
Spiking Inputs
» all-to-all inhibitory connections and self excitation
> 64 neurons
» Chicca et al. 2004 An Event Based VLSI Network of
Integrate-and-Fire Neurons
» global inhibition, first and second neighbors lateral excitation
» 31 neurons
» Abrahamsen et al. 2004 A Time Domain Winner-Take-All
Network of Integrate-and-Fire Neurons

» global reset
» 3 WTA: 2x48 neurons + 1x4 neurons
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The IFRON Chip

Technology: AMS 0.8um
Size: 1.1 x 1.9mm?
Neurons: 32
AER Synapses: 16 x 32
Local Synapses: 6 x 31

E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems. |EEE, 2004, pp. V-357-V-360.
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The IFRON Chip — Network architecture
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E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate—and—fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V-357-V-360.
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The IFRON Chip — Network architecture
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E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V-357-V-360.
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The IFRON Chip — Network architecture
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E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V-357-V-360.
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A Spike—Based neuromorphic VLS| System

PCI-AER
board
Chip 0" or
Sequencer

Cable Adapter
board

Label, Req, Ack

Receiver Chips

E. Chicca, V. Dante, A. M. Whatley, P. Lichtsteiner, T. Delbruck, G. Indiveri, P. Del Giudice and R. J. Douglas, “Multi—chip Pulse
Based Neuromorphic Systems: A Communication Infrastructure and an Application Example” submitted to /EEE Circuits and
Systems 1, 2006.
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Experimental Results
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Experimental Results

Feedforward Network
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Experimental Results
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Experimental Results
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Experimental Results
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Digital versus neural systems
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CCNs Applied to Orientation Selectivity

1995 Somers et al.
An Emergent Model of Orientation Selectivity in Cat Visual
Cortical Simple Cells

Feedforward Inhibitory Recurrent
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CCNs Applied to Orientation Selectivity

1995 Somers et al.

An Emergent Model of Orientation Selectivity in Cat Visual

Cortical Simple Cells
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CCNs Applied to Orientation Selectivity

1995 Somers et al.
An Emergent Model of Orientation Selectivity in Cat Visual
Cortical Simple Cells
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Orientation Selectivity Experiment
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Orientation Selectivity Experiment
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E. Chicca, P. Lichtsteiner, T. Delbruck, G. Indiveri, and R. J. Douglas, “Modeling Orientation Selectivity Using a Neuromorphic
Multi-Chip System” in Proceedings of IEEE International Symposium on Circuits and Systems, 2006.
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Orientation Selectivity Experiment
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Least—squares Fit of the Tuning Curves
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Least—squares Fit of the Tuning Curves
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CCN Summary

» Spiking CCNs exhibit rich linear and non-linear set of behaviors
(e.g. selective amplification, noise suppression, feature
selectivity) in the mean rate domain.
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CCN Summary

» Spiking CCNs exhibit rich linear and non-linear set of behaviors
(e.g. selective amplification, noise suppression, feature
selectivity) in the mean rate domain.

» VLSI spiking CCNs are robust to noise and perform computation
in real-time.

» Possibility to use the time domain as additional dimension to
perform computation.

» General computational module that can be used for sensory input
filtering, learning enhancement, relational networks.
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Constrains Satisfaction and Relational Networks using CCNs
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Constrains Satisfaction and Relational Networks using CCNs
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Simple relations for computation

X+Y=a X+Y<b Y=£(X)
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Simple relations for computation

X+Y=a X+Y<b Y=£(X)
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Simple relations for computation
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The IFSLWTA chip

Technology: AMS 0.35um
Total area: 3.94mm x 2.54mm
Core area: 2.6mmx1.9mm
Neurons: 128 (124 exc. + 4 inh.)
Synapses: 32 x128
Dendritic tree multiplexer: | 32x128 | 64x64 | ... | 2048x2 | 4096x1|

[m] =l =
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Address Event Representation (AER) used to implement
contraints between CCNs

(b) VLSI CCN
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Shifted Inverse Identity Relation X+ Y = a
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Blobby Connectivity Implements Analog Input to Discrete
Output Relation
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A 2D Spiking Cooperative-Competitive Network - Motivations

» Implement several relations on a single chip.
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A 2D Spiking Cooperative-Competitive Network - Motivations

» Implement several relations on a single chip.
» 2D feature selectivity.

» Explore different connectivity patterns between the excitatory and
the inhibitory populations.
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2D Network - Cooperation
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2D Network - Cooperation
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2D Network - Cooperation
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2D Network - Cooperation
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2D Network - Cooperation

Single cell components
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2D System - Cooperation and Competition

Excitatory Neurons
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The 2DIFWTA chip

Technology: AMS 0.35um
Area: 5.14mm x 2.94mm
Neurons: 2048 (32 x 64)
AER Synapses: 2048 x 3
Local Synapses: 2048 x 11 uni | eth | zirich




Conclusions and Outlook

» VLSI spiking cooperative competitive hetworks (CCNs)
» We can implement VLSI spiking CCNs.
> In the mean rate domain, VLSI spiking CCNs perform as well as
models.
» Time domain can be exploited.
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Conclusions and Outlook

» VLSI spiking cooperative competitive networks (CCNs)
» We can implement VLSI spiking CCNs.
> In the mean rate domain, VLSI spiking CCNs perform as well as
models.
» Time domain can be exploited.
> Relational networks
» Relational networks can be built as combinations of CCNs.
» The hardware to build simple relational networks is already
available.
» Preliminary results are promising.

» 2D VLSI spiking CCN chip

» 2D feature selectivity

> Arbitrary connectivity between excitatory and inhibitory
populations

» Complex relational networks
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Thank you ...

... for your attention.
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Cooperative-Competitive Networks (CCNSs)

1969

1975

1976

Kilmer, McCulloch and Blum
Model of the role of the
vertebrates’ reticular formation of
the brainstem in deciding the
overall mode of behavior (e.g.
sleeping, fighting, fleeing or
feeding).

Dev

Model of the use of stereopsis to
recognize depth in space.
Didday

Model of how the frog’s tectum
decides the snapping position.
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