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Cooperative-Competitive Networks (CCNs)
1977 Arbib and Amari

Competition and Cooperation in Neural Nets

I Excitatory units compete through the activation of
the inhibitory unit.

I Eventually the unit which receives the maximum
input stimulus win and remain in the excited state,
while all other units stay in the quiescent state:
WINNER-TAKE-ALL (WTA).

I Self-excitation maintains the winning unit in the
excited state even if another input stimulus
becomes bigger than one to the winning unit
(unless the difference is very large): HYSTERESIS.
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Cooperative-Competitive Networks (CCNs)
1998 Hansel and Sompolinsky

Modeling Feature Selectivity in Local Cortical Circuits

I Each neuron is described by a single continuous
variable which represent its activity level over a
short period of time: RATE MODEL.

I Each neuron is selective to a particular range of
orientations and it fires maximally when a particular
value of orientation is present in the input stimulus
(preferred orientation).

I Cooperative interactions are strongest in
magnitude for neurons that have identical preferred
orientation and get weaker as the difference
between preferred orientation increases.
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Rich linear and non-linear set of behaviors



Linear–Threshold–Unit WTA Circuit
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Digital circuits such as the ¯ip-¯op use feedback to achieve multi-
stability and nonlinearity to restore signals to logical levels, for
example 0 and 1. Analogue feedback circuits are generally
designed to operate linearly, so that signals are over a range,
and the response is unique. By contrast, the response of cortical
circuits to sensory stimulation can be both multistable and
graded1±4. We propose that the neocortex combines digital selec-
tion of an active set of neurons with analogue response by
dynamically varying the positive feedback inherent in its recur-
rent connections. Strong positive feedback causes differential
instabilities that drive the selection of a set of active neurons
under the constraints embedded in the synaptic weights. Once
selected, the active neurons generate weaker, stable feedback that
provides analogue ampli®cation of the input. Here we present our

model of cortical processing as an electronic circuit that emulates
this hybrid operation, and so is able to perform computations that
are similar to stimulus selection, gain modulation and spatio-
temporal pattern generation in the neocortex.

The multistability of digital circuits and the linear ampli®cation
achieved in analogue circuits are generally seen as incompatible
functions and are separated into two classes of electronic technol-
ogy. However, the neuronal circuits of the neocortex do not respect
this distinction. There, multistability coexists with analogue
response. For example, when a visual stimulus is attended at the
expense of other visual stimuliÐthe subject is concentrating on one
object in a ®eld of visionÐthen many cortical neurons tend to
respond in a graded way to the sensory attributes of the attended
stimulus, as if it were presented alone2.

We have designed a simple electronic circuit that emulates this
hybrid behaviour. The circuit comprises a ring of 16 excitatory
neurons, each of which makes synaptic connections of variable
strength onto itself and onto its nearest and next nearest neigh-
bours. These localized excitatory interactions re¯ect the preference
for local connections observed in neocortex. At the centre of the ring
is a single inhibitory neuron that receives synaptic input from all the
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excitatory neurons, and returns inhibition to them. This simple
architecture and similar variants have been used previously to
model response properties of neurons in cortex5±9 and other10±12

brain areas.
The output of each excitatory neuron is an electrical current that

is positive if the neuron is active, and zero if it is inactive. Negative
values are not possible, because the arti®cial neurons are based on
current mirrors, which have a recti®cation nonlinearity (Fig. 1b,
recti®cation).

Each excitatory neuron can be stimulated independently by an
electrical current. The response of the population to stimulation of a
single neuron is shown in Fig. 2a (red line). The response pro®le is
centred on the stimulus and extends over a large fraction of the ring.
In this way, the output currents of the circuit form a distributed
representation of stimulus location. In many brain areas8, such
distributed representations have been observed and been referred to
as population codes13,14. In our circuit, the population code arises by
recurrent excitation, which causes spreading of activity in both
directions, until it is cut off by recurrent inhibition. Beyond this cut-
off, the excitation is not strong enough to overcome the threshold
for activation set by inhibition.

To generate Fig. 2a, the stimulus was ®xed, and the responses of all
the neurons were measured. A similar graph is obtained if the
response of a particular neuron is plotted as a function of the
location of the stimulus, which is the traditional procedure used by
electrophysiologists to map a receptive ®eld or the tuning curve of a
cell. Neurons can maintain their tuning to a sensory variable, such as
stimulus orientation or retinal location, but respond with an amplitude
that is modulated by another variable, such as eye position or
attention. Our circuit exhibits this remarkable phenomenon, called
gain modulation, when a uniform background excitation is applied
in addition to the ®xed localized stimulus.

When we changed the amplitude of the background, the popula-
tion response remained at the same location with much the same
shape in Fig. 2a, but with an amplitude that varied with background
amplitude in an approximately linear way (Fig. 2b). Thus, the
background modulated the amplitude of the tuning curve of each
neuron. For comparison, an example of gain modulation observed
in posterior parietal cortex15 is shown in Fig. 2c. The tuning curve
indicates that the neuron is selective for the location of a visual
stimulus in retinotopic coordinates, while the amplitude of
response linearly encodes the position of the eyes. In a previous
model of gain modulation, it was assumed that excitatorily coupled
neurons in parietal cortex share the same efference copy of eye
position, which amounts to a uniform background input7.

Whereas the foreground stimulus and the background cooperate
to determine the response of the circuit in Fig. 2, two localized
stimuli compete to determine the response in Fig. 3. The circuit
selects one of the stimuli while completely suppressing its response
to the other (Fig. 3a, b). When the amplitudes of the two stimuli
are suf®ciently different from each other, the circuit always selects
the larger stimulus. This property is evident in the hysteresis curve
(Fig. 3c), which has a single branch at the extremes. By contrast,
when the stimuli have roughly equal amplitudes, the circuit may
select either one stimulus or the other. In this bistable regime, once a
choice has been made, the circuit maintains its past selection and is
insensitive to small changes in relative amplitudes of the stimuli.
Bistability enables the neurons to maintain a memory of the past,
but in spite of bistability, the neural ®ring rates remain continuously
graded. For example, if the amplitudes of the stimuli are rescaled by
the same factor, then the response amplitude is similarly rescaled.
On the other hand, in Fig. 3d, when the stimuli marked by asterisks
are moved closer to each other, then the circuit tends to interpolate
between them rather than to select one of them. The network
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Figure 2 Modulation of tuned population response. V a 2 1
� 5 mV, V a1

� 6 mV,

V a2 2
� 5 mV, V a2

� 9 mV, V a0
� 88 mV, V bi

� 11 mV and V b0
� 6 mV. a, The thick

red line represents the response of the circuit to a single stimulus applied to neuron

number 12. When a uniform background input is added, the response pro®le is modulated

but its shape remains approximately invariant. The colours indicate which output pro®le

corresponds to which input pro®le shown on the right. b, The response of neuron 12 in a is

plotted versus the amplitude of the uniform background, resulting in a linear relationship.

c, Gain modulation as observed in posterior parietal cortex (reproduced with permission

from R. Andersen; ref. 15). Firing rates for two different eye positions are plotted as a

function of the retinal horizontal eccentricity of a visual stimulus. Each data point is the

average response to eight repetitions of the stimulus. Background activity before the

stimulus presentation has been subtracted from the total activity during measurement.
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Figure 3 Multistability of selection. Synaptic strengths are the same as in Fig. 2. In

response to two identical stimuli (inset, V e9
� V e13

� 0:425 V), the circuit selects one

and suppresses the other. The left stimulus is selected in a and the right stimulus is

selected in b. c, Hysteresis is evident in a graph of the response centroid. The intensity of

the left stimulus (referred to as input current on the x-axis) is swept upward (dashed line)

and then downward (solid line), whilst the intensity of the right stimulus is held ®xed

(dotted vertical line). d, Averaging versus selection. When two identical stimuli (asterisks)

are nearby, then excitatory neurons in between the stimuli respond to their presence

(lower traces). When the two stimuli are further apart, then the circuit selects one of the

stimuli (here, the left stimulus, top trace).
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VLSI Spiking Cooperative-Competitive Networks

I DeYong et al. 1992 The Design, Fabrication, and Test of a New
VLSI Hybrid Analog-Digital Neural Processing Element

I all-to-all inhibitory connections
I 4 neurons

I Hylander et al. 1993 VLSI implementation of Pulse Coded
Winner Take All Networks

I global inhibition
I 3 neurons

I Indiveri et al. 2001 A Competitive Network of Spiking VLSI
Neurons

I global inhibition and first neighbors lateral excitation
I 32 neurons



VLSI Spiking Cooperative-Competitive Networks

I Oster and Liu 2004 A Winner-take-all Spiking Network with
Spiking Inputs

I all-to-all inhibitory connections and self excitation
I 64 neurons

I Chicca et al. 2004 An Event Based VLSI Network of
Integrate-and-Fire Neurons

I global inhibition, first and second neighbors lateral excitation
I 31 neurons

I Abrahamsen et al. 2004 A Time Domain Winner-Take-All
Network of Integrate-and-Fire Neurons

I global reset
I 3 WTA: 2×48 neurons + 1×4 neurons
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The IFRON Chip

Technology: AMS 0.8µm
Size: 1.1×1.9mm2

Neurons: 32
AER Synapses: 16×32
Local Synapses: 6×31

E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems. IEEE, 2004, pp. V–357–V–360.



The IFRON Chip – Network architecture

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
I

I I

E
E

E
I
I

E
E

E
I
I

E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate–and–fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V–357–V–360.



The IFRON Chip – Network architecture

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
I

I I

E
E

E
I
I

E
E

E
I
I

E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V–357–V–360.



The IFRON Chip – Network architecture

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I
I I I

E
E

E
I
I

E. Chicca, G. Indiveri, and R. J. Douglas, “An event based VLSI network of integrate-and-fire neurons,” in Proceedings of IEEE
International Symposium on Circuits and Systems, 2004, pp. V–357–V–360.



A Spike–Based neuromorphic VLSI System

E. Chicca, V. Dante, A. M. Whatley, P. Lichtsteiner, T. Delbruck, G. Indiveri, P. Del Giudice and R. J. Douglas, “Multi–chip Pulse
Based Neuromorphic Systems: A Communication Infrastructure and an Application Example” submitted to IEEE Circuits and
Systems I, 2006.



Experimental Results

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n 

ad
dr

es
s

Input Stimulus

0 50 100
Mean  f (Hz)

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
I

I I

E
E

E
I
I

E
E

E
I
I



Experimental Results

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n 

ad
dr

es
s

Feedforward Network

0 20 40
Mean  f (Hz)

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
I

I I

E
E

E
I
I

E
E

E
I
I



Experimental Results

0 2 4 6 8 10
0

5

10

15

20

25

30

Time (s)

N
eu

ro
n 

ad
dr

es
s

Feedback Network

0 20 40
Mean  f (Hz)

E E E E E E

AER OUTPUT

AER INPUT

A
E

R
 IN

P
U

T E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I
I

E
E
E
E
E
E

E

I

I

E
E
E
E
E
E

E

I

I

E
E
E
E
I

I I

E
E

E
I
I

E
E

E
I
I



Experimental Results

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
M

ea
n 

Fr
eq

ue
nc

y 
(H

z)

Neuron address

Feedforward Network
Feedback Network



Experimental Results

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
M

ea
n 

Fr
eq

ue
nc

y 
(H

z)

Neuron address

Feedforward Network
Feedback Network



Experimental Results

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
M

ea
n 

Fr
eq

ue
nc

y 
(H

z)

Neuron address

Feedforward Network
Feedback Network



Digital versus neural systems

State # 26

0

0

1

1

1

26

1/25

1/29

1/18

1/7

1/19



CCNs Applied to Orientation Selectivity

1995 Somers et al.
An Emergent Model of Orientation Selectivity in Cat Visual
Cortical Simple Cells

The Journal of Neuroscience, August 1995, 7~178) 5449 

Feedforward Inhibitory Recurrent 

Figure 1. Models of visual cortical orientation selectivity. a, In feedforward models all “first-order” cortical neurons (triangle, excitatory; hexagon, 
inhibitory) receive converging input (gray arrow) from a population of LGN neurons that cover a strongly oriented region of visual space. The 
bandwidth or sharpness of a cortical cell’s orientation tuning is determined by the aspect ratio of its LGN projection. b, Many inhibitory models 
employ a mild feedforward bias to establish the initial orientation preference of cortical neurons and utilize inhibitory inputs (white arrows), from 
cortical neurons preferring different orientations, to suppress nonpreferred responses. Here, we present a model, c, in which recurrent cortical 
excitation (hluck arrows) among cells preferring similar orientations, combined with iso-orientation inhibition from a broader range of orientations, 
integrates and amplifies a weak thalamic orientation bias, which is distributed across the cortical columnar population. 

(Ferster, 1986; Douglas et al., 1991a; for a differing view, see 
Pei et al., 1994). Such inhibitory tuning conflicts with cross- 
orientation inhibitory models (Bishop et al., 1973; Morrone et 
al., 1982), and strong iso-orientation suppression poses problems 
even for models that use other forms of hyperpolarizing inhi- 
bition to sharpen thalamocortical input (e.g., Wiirgotter and 
Koch, 1991). Furthermore, recent results from our laboratory 
conflict with all orientation models that rely heavily on direct 
inhibitory input. Whole-cell, intracellular blockade of inhibition 
had negligible effect on sharpness of orientation tuning of 
blocked cells (Nelson et al., 1994). These results also appear to 
conflict with reports that orientation tuning can be abolished by 
bicuculline-induced extracellular inhibitory blockade (Sillito et 
al., 1980; Nelson, 1991). 

Here, we demonstrate that this apparent paradox can be re- 
solved by considering the effects the two inhibitory blockades 
have on the tuning of cortical excitatory inputs. Our computer 
simulations also demonstrate that local, recurrent cortical exci- 
tation can generate sharp, contrast-invariant orientation tuning 
in circuits that have strong iso-orientation inhibition and weakly 
oriented thalamocortical excitation (see Fig. 1~). This model pri- 
marily addresses the circuitry within a single cortical “hyper- 
column”; effects of adding long-range cortical connections to 
this circuitry are addressed elsewhere (Somers et al., 1994). 

Some of these results have been published in preliminary 
form (Somers et al., 1993, 1995). 

Materials and Methods 
The model 

A model visual cortical circuit was implemented in large- 
scale computer simulations. The model represented cortical 

layer IV circuitry under a 1700 pm by 200 p,m patch of 
cortical surface and was composed of more than 3000 spik- 
ing neurons with over 180,000 synapses. Cortical excitatory 
and inhibitory neurons were modeled separately using intra- 
cellular parameters from regular-spiking and fast-spiking 
neurons (Connors et al., 1982; McCormick et al., 1985). Ret- 
inal and geniculate cell populations spanning a 4” by 4” mo- 
nocular patch of the central visual field were also represent- 
ed. The model was organized as three sequential layers: ON 
and OFF retinal ganglion cells, ON and OFF lateral genic- 
ulate nucleus neurons, and simple cells in layer IV of cortical 
area 17. Oriented flashed bar stimuli were presented to the 
retinal cells and the response properties of cortical cells were 
studied. 

Retinal ganglion cells. Four hundred forty-one ON and 
441 OFF retinal ganglion cells (RGCs) were configured as 
two 21 by 21 arrays of neurons with center-surround recep- 
tive field antagonism. Center fields were 30’ wide and the 
center-to-center spacing between neighboring receptive 
fields was 12’ of visual angle. The ganglion cell model uti- 
lized was developed elsewhere and has been shown to pro- 
duce realistic temporal responses to visual stimuli (Weh- 
meier et al., 1989; Worgotter and Koch, 1991). We con- 
firmed that our implementation yielded responses to flashed 
stimuli that qualitatively matched sustained and transient re- 
sponse components of X-type cells (Rodieck and Stone, 
1965). Average firing rates were generated by subtracting 
surround responses from center responses. Each retinal sub- 
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Figure 2. Response of a cell selective for 0” stimuli. a, Simulated intracellular trace from one cell in the model network in response to flashed 
dark bars oriented at 0”, 22.5”, 45”, and 90”. Horizontal bars on time nxis indicate 500 msec stimulus presentation. b and c, Thalamic (b) and 
cortical (c) input fields of this cell. ON (white) and OFF (black) thalamic subfields exhibited only a mild orientation bias for 0” stimuli. Cortical 
excitatory (triangles) and inhibitory (circles) inputs arose most densely from cells within the 0” column. Cortical connection probabilities fell off 
with distance, and no connections were permitted beyond the 60” column. Inhibitory distribution was broader than the excitatory distribution. 

Sharp orientation selectivity was observed across a broad 
range of stimulus contrasts. Mean HW tuning (n = 105) for 5%, 
15%, and 100% contrast stimuli were 18.3” 2 0.6” SD, 17.4“ -t 
0.7” SD, and 17.7” + 0.6” SD, respectively. As stimulus contrast 
increased from 5% to 100% average peak responses of excitato- 
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Figure 3. Figure 3. Sharpness of orientation selectivity remained approximately Sharpness of orientation selectivity remained approximately 
constant across stimulus contrast values. As contrast increased, peak constant across stimulus contrast values. As contrast increased, peak 
response increased but selectivity did not broaden. response increased but selectivity did not broaden. 

ry neurons increased by 122% [22.1 t- 4.8 sp/s (&SD) vs 49.1 
? 17.1 sp/s]. This contrast invariance of orientation tuning in 
the model replicates experimental findings (Sclar and Freeman, 
1982). Figure 3 displays orientation response curves at three 
different contrasts for an example cell. 

The mechanisms underlying orientation tuning of the model 
were investigated by measuring the postsynaptic potentials 
(PSPs) contributed by different synaptic input sources. Both ex- 
citatory and inhibitory PSPs were strongest at the preferred ori- 
entation (see Fig. 4a,b). Notably, stimulus-evoked IPSPs (in ex- 
cess of spontaneous levels) were, on average, 8.3 times as strong 
for the preferred orientation as for the orthogonal or cross-ori- 
entation (90”) stimulus. These PSP tuning properties of the mod- 
el are consistent with intracellular reports of weak cross-orien- 
tation IPSPs and strong iso-orientation IPSPs (Ferster, 1986; 
Douglas et al., 1991a). 

In the model, the EPSP tuning resulted from a combination 
of broadly tuned thalamocortical input and sharply tuned corti- 
cocortical excitation. Broad tuning of thalamocortical input re- 
sulted from the low length-to-width ratios of the (regions of 
thalamic convergence onto) cortical subfields (see Fig. 2~). 
Sharp tuning of cortical EPSPs reflected input from well-tuned 
cortical excitatory cells with similar orientation preferences. 
Cortical inhibitory inputs were also drawn most heavily from 
within the preferred orientation column (see Fig. 2b) and these 
cells were also well tuned. Cortical inhibitory inputs were drawn 
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Figure 5. Recurrent network tuning properties compared to those of 
the network components (see Results). The thalamocortical connections 
of the network alone (feedforward) generated broad orientation tuning 
and moderate responses. Intracortical inhibitory connections enhanced 
orientation tuning, but did so at the cost of reduced responsiveness. 
Without cortical excitation the (Inhib 1) network failed to achieve mean 
physiological values for orientation selectivity. Doubling the strength of 
inhibition (Inhib 2), further reduced responses but provided only a mod- 
est sharpening of orientation tuning. In contrast, the full recurrent net- 
work exhibited both physiologically sharp orientation tuning and robust 
responses. n = 84 cells; error bars indicate SD. 

This network (“inhib 1”) exhibited tuning sharper than that of 
the feedforward network, but significantly broader than that of 
the full feedback network. Mean excitatory cell HW tuning was 
38.4” +- 22.7” SD (n = 84). Mean inhibitory cell HW tuning 
was 60.7” ? 20.3” SD (n = 21). Only 9 of 84 excitatory cells 
exhibited HW tuning < 20”, while 12 excitatory neurons were 
classified as unoriented. This network also exhibited lower re- 
sponse rates than either the full network or the feedforward net- 
work. Mean peak response of excitatory neurons was 9.8 spls 
2 2.3 spls SD. Due to broad tuning of inhibitory neurons in the 
“inhib 1” network, the IPSP tuning was nearly flat across ori- 
entations with a mild bias for the preferred orientation. The tun- 
ing advantage that this inhibitory network enjoys over the feed- 
forward network therefore can be attributed to an “iceberg” 
effect, providing “flat,” hyperpolarizing inhibition is equivalent 
to raising the spike threshold. 

To further investigate iceberg-type effects in this model, the 
maximal inhibitory synaptic conductances were doubled (g~-~.r~ 
= 10 nS) and cortical excitation remained off (&TX.EX = 0 nS). 
This (“inhib 2”) network exhibited only a mild improvement in 
orientation tuning over the “inhib 1” network. Mean excitatory 
cell HW tuning was 35.2” +- 24.2“ SD. Mean inhibitory cell HW 
tuning was 57.5” +- 20.7” SD. The increase in inhibition pref- 
erentially enhanced the tuning of cells that received more strong- 
ly oriented thalamocortical input. Cells receiving unoriented 
thalamocortical input remained unoriented. The HW tuning of 
25% (21/84) of excitatory neurons and none of the inhibitory 
neurons was less than 20”, while the tuning of 14% (12/84) of 
excitatory and 24% (5121) of inhibitory neurons was classified 
as unoriented. The increase in inhibition also resulted in a further 
reduction of response rates. The mean peak response of cortical 
excitatory neurons was 4.0 sp/s + 2.0 spls SD. 

The results of these network simulations are summarized in 
Figure 5. Thalamocortical inputs alone yielded broad tuning with 
a large variance in tuning. Addition of intracortical inhibition 
enhanced tuning, but did so at the cost of substantially reducing 

responsiveness. The spatial pattern of inhibition used in the 
model enhanced thalamocortical orientation biases, but could 
not, de nova, create orientation tuning. This inhibition mildly 
increased the variance in orientation tuning across cells. The full 
network (with corticocortical excitation) overcame the limita- 
tions of the feedforward and inhibitory networks. All neurons, 
even those with unoriented patterns of thalamocortical input, 
exhibited sharp orientation tuning. Unlike in the inhibitory net- 
works, this tuning enhancement was accompanied by amplifi- 
cation of the peak response. Strikingly, the strong inhibitory 
(“inhib 2”) network exhibited a peak response only 8.1% as 
strong as that of the full network, yet generated HW tuning that 
was still twice as broad as the full network. These results dem- 
onstrate that the orientation tuning properties of the model can- 
not be accounted for by either the thalamocortical or intracortical 
inhibitory connections it utilized. Thus, these results demonstrate 
the utility of local, recurrent, cortical excitatory connections in 
the generation of sharp orientation selectivity by the model. 

Analysis of orientation tuning requirements 

To further illuminate the mechanism by which this model 
achieved sharp orientation tuning and robust responses (despite 
utilizing poorly oriented thalamocortical inputs and iso-orienta- 
tion inhibition), additional analysis was performed. Figure 6a 
displays the mean orientation response curve for cells in the 
thalamocortical network and an example of a “desired” orien- 
tation response curve with HW tuning of 20” (typical tuning for 
simple cells; Orban, 1984). The desired tuning curve was scaled 
so that the peak responses of the two curves were equal. For 
cells to achieve 20” HW tuning, the difference between the de- 
sired orientation tuning response and the thalamocortical re- 
sponse must be provided by cortical inputs. Therefore, the dif- 
ference curve (see Fig. 6~2) reveals the shape of orientation tun- 
ing of the net cortical contribution required to achieve sharp 
orientation selectivity. This curve indicates that net cortical in- 
hibition should be strongest at approximately 20-40” from the 
preferred orientation. Mild net cortical inhibition is required at 
the cross-orientation. Since the desired response is roughly zero 
at the cross-orientation, increased levels of cross-orientation cor- 
tical inhibition are also consistent with these curves; however, 
additional cross-orientation inhibition is not required to achieve 
physiological tuning values. 

The net cortical tuning curve indicates that little or no iso- 
orientation inhibition is required; an iso-orientation-specific in- 
crease in inhibition would both reduce responsiveness and 
broaden tuning. Since experimental intracellular recordings in- 
dicate that cortical inhibition is actually strongest at the iso- 
orientation (Ferster, 1986; Douglas et al., 1991a; but see Pei et 
al., 1994), the net cortical orientation tuning curve cannot be 
accounted for solely by the cortical inhibitory inputs. However, 
the net cortical curve can be matched by combination of rela- 
tively broad iso-orientation cortical inhibition and relatively nar- 
row iso-orientation cortical excitation. Such a “center-surround” 
structure is functionally similar to difference of gaussian (DOG) 
operators that are commonly used in computer vision models 
(e.g., Marr and Hildreth, 1980; Grossberg, 1983; Grossberg and 
Mingolla, 1987). Figure 6b displays the average cortical excit- 
atory and inhibitory inputs (PSPs) to excitatory cortical cells (n 
= 84) in the full model. The net cortical orientation tuning curve 
produced by their sum exhibits the same center-surround struc- 
ture displayed in the difference curve of Figure 6~. These curves 
differ primarily in the presence of net cortical iso-orientation 
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CCN Summary

I Spiking CCNs exhibit rich linear and non-linear set of behaviors
(e.g. selective amplification, noise suppression, feature
selectivity) in the mean rate domain.

I VLSI spiking CCNs are robust to noise and perform computation
in real-time.

I Possibility to use the time domain as additional dimension to
perform computation.

I General computational module that can be used for sensory input
filtering, learning enhancement, relational networks.
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The IFSLWTA chip

Technology: AMS 0.35µm
Total area: 3.94mm×2.54mm
Core area: 2.6mm×1.9mm
Neurons: 128 (124 exc. + 4 inh.)
Synapses: 32×128
Dendritic tree multiplexer: 32x128 | 64x64 | ... | 2048x2 | 4096x1|



Address Event Representation (AER) used to implement
contraints between CCNs



Shifted Inverse Identity Relation X +Y = a
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Blobby Connectivity Implements Analog Input to Discrete
Output Relation
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A 2D Spiking Cooperative-Competitive Network - Motivations

I Implement several relations on a single chip.

I 2D feature selectivity.

I Explore different connectivity patterns between the excitatory and
the inhibitory populations.
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2D Network - Cooperation
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2D System - Cooperation and Competition
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The 2DIFWTA chip

Technology: AMS 0.35µm
Area: 5.14mm×2.94mm
Neurons: 2048 (32×64)
AER Synapses: 2048×3
Local Synapses: 2048×11



Conclusions and Outlook

I VLSI spiking cooperative competitive networks (CCNs)
I We can implement VLSI spiking CCNs.
I In the mean rate domain, VLSI spiking CCNs perform as well as

models.
I Time domain can be exploited.

I Relational networks

I Relational networks can be built as combinations of CCNs.
I The hardware to build simple relational networks is already

available.
I Preliminary results are promising.

I 2D VLSI spiking CCN chip

I 2D feature selectivity
I Arbitrary connectivity between excitatory and inhibitory

populations
I Complex relational networks
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Cooperative-Competitive Networks (CCNs)

1969 Kilmer, McCulloch and Blum
Model of the role of the
vertebrates’ reticular formation of
the brainstem in deciding the
overall mode of behavior (e.g.
sleeping, fighting, fleeing or
feeding).

1975 Dev
Model of the use of stereopsis to
recognize depth in space.

1976 Didday
Model of how the frog’s tectum
decides the snapping position.


