Cooperation and Competition in VLSI Networks of Spiking Neurons

Elisabetta Chicca

Institute of Neuroinformatics University | ETH Zurich

Neuromorphic Engineering Workshop Telluride, 7 July 2007

uni | eth | zürich

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Neural computation \rightarrow neurotechnologies

Binzegger et al. 2004

1977 Arbib and Amari

Competition and Cooperation in Neural Nets

uni|eth|zürich ♦ ► ■ ৩৫০

1977 Arbib and Amari

Competition and Cooperation in Neural Nets

s(x,t)

uni|eth|zürich ♦ ► ■ ৩৫০

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

1977 Arbib and Amari

Competition and Cooperation in Neural Nets

Dynamic Neural Fields:

The neural network is described as a continuous medium rather than a set of discrete neurons. A differential equation describes the activation of the *neural tissue* at different positions in the continuous network.

s(x,t)

イロト 不得 とうほう イヨン

э

 Excitatory units compete through the activation of the inhibitory unit.

- Excitatory units compete through the activation of the inhibitory unit.
- Eventually the unit which receives the maximum input stimulus win and remain in the excited state, while all other units stay in the quiescent state: WINNER-TAKE-ALL (WTA).

uni | eth | zürich

- Excitatory units compete through the activation of the inhibitory unit.
- Eventually the unit which receives the maximum input stimulus win and remain in the excited state, while all other units stay in the quiescent state: WINNER-TAKE-ALL (WTA).

1998 Hansel and Sompolinsky

Modeling Feature Selectivity in Local Cortical Circuits

Each neuron is described by a single continuous variable which represent its activity level over a short period of time: RATE MODEL.

uni | eth | zürich 《 ㅁ › 《 쿱 › 《 클 › 《 클 · 홈 · ⑦ < ⓒ

1998 Hansel and Sompolinsky

Modeling Feature Selectivity in Local Cortical Circuits

- Each neuron is described by a single continuous variable which represent its activity level over a short period of time: RATE MODEL.
- Each neuron is selective to a particular range of orientations and it fires maximally when a particular value of orientation is present in the input stimulus (preferred orientation).

1998 Hansel and Sompolinsky

Modeling Feature Selectivity in Local Cortical Circuits

- Each neuron is described by a single continuous variable which represent its activity level over a short period of time: RATE MODEL.
- Each neuron is selective to a particular range of orientations and it fires maximally when a particular value of orientation is present in the input stimulus (preferred orientation).
- Cooperative interactions are strongest in magnitude for neurons that have identical preferred orientation and get weaker as the difference between preferred orientation increases.

A B > A B > A B >

Э

Rich linear and non-linear set of behaviors

uni|eth|zürich ◆□▶ ▲문▶ ▲토▶ ▲토 · 오익 ·

Linear-Threshold-Unit WTA Circuit

Hahnloser et al. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, 2000

unilethlzürich ► ► ❤ ∽ ۹ @

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆

VLSI Spiking Cooperative-Competitive Networks

 DeYong et al. 1992 The Design, Fabrication, and Test of a New VLSI Hybrid Analog-Digital Neural Processing Element

- all-to-all inhibitory connections
- 4 neurons
- Hylander et al. 1993 VLSI implementation of Pulse Coded Winner Take All Networks
 - global inhibition
 - 3 neurons
- Indiveri et al. 2001 A Competitive Network of Spiking VLSI Neurons
 - global inhibition and first neighbors lateral excitation

uni leth I zürich

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

32 neurons

VLSI Spiking Cooperative-Competitive Networks

 Oster and Liu 2004 A Winner-take-all Spiking Network with Spiking Inputs

- all-to-all inhibitory connections and self excitation
- 64 neurons
- Chicca et al. 2004 An Event Based VLSI Network of Integrate-and-Fire Neurons
 - global inhibition, first and second neighbors lateral excitation

uni Leth Lzürich

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- 31 neurons
- Abrahamsen et al. 2004 A Time Domain Winner-Take-All Network of Integrate-and-Fire Neurons
 - global reset
 - 3 WTA: 2×48 neurons + 1×4 neurons

VLSI Spiking Cooperative-Competitive Networks

 Oster and Liu 2004 A Winner-take-all Spiking Network with Spiking Inputs

- all-to-all inhibitory connections and self excitation
- 64 neurons
- Chicca et al. 2004 An Event Based VLSI Network of Integrate-and-Fire Neurons
 - global inhibition, first and second neighbors lateral excitation

uni Leth Lzürich

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- 31 neurons
- Abrahamsen et al. 2004 A Time Domain Winner-Take-All Network of Integrate-and-Fire Neurons
 - global reset
 - 3 WTA: 2×48 neurons + 1×4 neurons

The IFRON Chip

Technology:	AMS 0.8 μ m
Size:	1.1 × 1.9 <i>mm</i> ²
Neurons:	32
AER Synapses:	16 imes 32
Local Synapses:	6 imes 31

E. Chicca, G. Indiveri, and R. J. Douglas, "An event based VLSI network of integrate-and-fire neurons," in *Proceedings of IEEE International Symposium on Circuits and Systems*. IEEE, 2004, pp. V–357–V–360.

uni | eth | zürich

3

ヘロト 人間 とくほとく ほとう

The IFRON Chip - Network architecture

E. Chicca, G. Indiveri, and R. J. Douglas, "An event based VLSI network of integrate-and-fire neurons," in *Proceedings of IEEE International Symposium on Circuits and Systems*, 2004, pp. V-357–V-360.

uni | eth | zürich

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣

The IFRON Chip - Network architecture

E. Chicca, G. Indiveri, and R. J. Douglas, "An event based VLSI network of integrate-and-fire neurons," in Proceedings of IEEE International Symposium on Circuits and Systems, 2004, pp. V–357–V–360.

uni | eth | zürich

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The IFRON Chip - Network architecture

E. Chicca, G. Indiveri, and R. J. Douglas, "An event based VLSI network of integrate-and-fire neurons," in Proceedings of IEEE International Symposium on Circuits and Systems, 2004, pp. V–357–V–360.

uni | eth | zürich

3

・ロト ・聞 ト ・ ヨト ・ ヨト

A Spike–Based neuromorphic VLSI System

E. Chicca, V. Dante, A. M. Whatley, P. Lichtsteiner, T. Delbruck, G. Indiveri, P. Del Giudice and R. J. Douglas, "Multi–chip Pulse Based Neuromorphic Systems: A Communication Infrastructure and an Application Example" submitted to *IEEE Circuits and Systems I*, 2006.

uni | eth | zürich

Input Stimulus

uni | eth | zürich

AER INPUT

Feedforward Network

uni | eth | zürich

æ

Feedback Network

uni | eth | zürich ≣ ► ≣ ∽৭...

イロト イ理ト イヨト イヨト

æ

Digital versus neural systems

ヘロト 人間 とくほ とくほとう

uni | eth | zürich

CCNs Applied to Orientation Selectivity

1995 Somers et al.

An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells

CCNs Applied to Orientation Selectivity

1995 Somers et al.

An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells

▲ Excitatory Cell ●Inhibitory Cell

uni | eth | zürich

イロト イポト イヨト イヨ

CCNs Applied to Orientation Selectivity

1995 Somers et al.

An Emergent Model of Orientation Selectivity in Cat Visual Cortical Simple Cells

uni | eth | zürich

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Orientation Selectivity Experiment

uni | eth | zürich

・ロト ・ 理ト ・ ヨト ・ ヨト

Orientation Selectivity Experiment

E. Chicca, P. Lichtsteiner, T. Delbruck, G. Indiveri, and R. J. Douglas, "Modeling Orientation Selectivity Using a Neuromorphic Multi–Chip System" in *Proceedings of IEEE International Symposium on Circuits and Systems*, 2006.

uni | eth | zürich

э

イロト イポト イヨト イヨト

Orientation Selectivity Experiment

Least-squares Fit of the Tuning Curves

	FF	FB
A (Hz)	16	30
HWHH (°)	30	23
R-square (%)	98.7	99.3

uni|eth|zürich ◆□ → ∢舂 → ∢≧ → ∢≧ → ミー 少へへ

Least-squares Fit of the Tuning Curves

uni | eth | zürich

 Spiking CCNs exhibit rich linear and non-linear set of behaviors (e.g. selective amplification, noise suppression, feature selectivity) in the mean rate domain.

- Spiking CCNs exhibit rich linear and non-linear set of behaviors (e.g. selective amplification, noise suppression, feature selectivity) in the mean rate domain.
- VLSI spiking CCNs are robust to noise and perform computation in real-time.

uni | eth | zürich

- Spiking CCNs exhibit rich linear and non-linear set of behaviors (e.g. selective amplification, noise suppression, feature selectivity) in the mean rate domain.
- VLSI spiking CCNs are robust to noise and perform computation in real-time.
- Possibility to use the time domain as additional dimension to perform computation.

- Spiking CCNs exhibit rich linear and non-linear set of behaviors (e.g. selective amplification, noise suppression, feature selectivity) in the mean rate domain.
- VLSI spiking CCNs are robust to noise and perform computation in real-time.
- Possibility to use the time domain as additional dimension to perform computation.
- General computational module that can be used for sensory input filtering, learning enhancement, relational networks.

uni leth I zürich

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Constrains Satisfaction and Relational Networks using CCNs

uni|eth|zürich 《 미 > 《 문 > 《 문 > 《 문 > 《 문 > 《 문 > 《 문) 이 Q @

Constrains Satisfaction and Relational Networks using CCNs

uni | eth | zürich ≣ ▶ ≣ ∽۹۹ ে

ヘロト 人間 とくほ とくほとう

Simple relations for computation

Simple relations for computation

uni|eth|zürich 《 미 > 《 문 > 《 문 > 《 문 > 《 문 > 《 문 > 《 문) 이 Q @

Simple relations for computation

The IFSLWTA chip

Technology:	AMS 0.35µm
Total area:	3.94 <i>mm</i> × 2.54 <i>mm</i>
Core area:	2.6 <i>mm</i> × 1.9 <i>mm</i>
Neurons:	128 (124 exc. + 4 inh.)
Synapses:	32 × 128
Dendritic tree multiplexer:	32x128 64x64 2048x2 4096x1

uni | eth | zürich

・ロト ・ 四ト ・ ヨト ・ ヨト

Address Event Representation (AER) used to implement contraints between CCNs

uni | eth | zürich

Shifted Inverse Identity Relation X + Y = a

Blobby Connectivity Implements Analog Input to Discrete Output Relation

uni | eth | zürich

▲□▶▲□▶★□▶★□▶ = つく⊙

A 2D Spiking Cooperative-Competitive Network - Motivations

Implement several relations on a single chip.

A 2D Spiking Cooperative-Competitive Network - Motivations

uni | eth | zürich

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Implement several relations on a single chip.
- 2D feature selectivity.

A 2D Spiking Cooperative-Competitive Network - Motivations

- Implement several relations on a single chip.
- 2D feature selectivity.
- Explore different connectivity patterns between the excitatory and the inhibitory populations.

uni Leth Lzürich

\circ \circ \circ \circ \circ \circ \circ \bigcirc \bigcirc

uni | eth | zürich

\bigcirc \bigcirc $\circ \circ$ \bigcirc \bigcirc \circ \circ \circ \circ \circ \circ \circ \circ $\bigcirc \bigcirc \bigcirc$ \bigcirc \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc

uni | eth | zürich হ ১ হ ৩৭৫

▲ロト ▲圖 と ▲ 国 と ▲ 国 と -

uni | eth | zürich ≣ ▶ ≣ ∽९९२

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

uni | eth | zürich ≣ ▶ ≣ ∽۹ペ ি

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

uni | eth | zürich ≣ ▶ ≣ ∽۹۹ ে

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

uni | eth | zürich ≣ ▶ ≣ ∽ ९९ ে

ヘロト 人間 とく ヨト く ヨト

Single cell components

- 1 I&F neuron
- 1 self-excitatory synapse
- 1 local excitatory integrator
- 10 nMOS for local excitory weights
- 2 nMOS + 1 pMOS for membrane voltage output

イロト イポト イヨト イヨ

uni Leth Ezürich

- 2 AER excitatory synapses
- 1 AER inhibitory synapse

2D System - Cooperation and Competition

unilethlzürich ■ ► ■ ∽۹۹

ヘロト 人間 ト 人 臣 ト 人 臣 トー

The 2DIFWTA chip

uni | eth | zürich

・ロト ・ 四ト ・ ヨト ・ ヨ

Technology:	AMS 0.35μ m
Area:	5.14 <i>mm</i> × 2.94 <i>mm</i>
Neurons:	2048 (32 $ imes$ 64)
AER Synapses:	2048 imes 3
Local Synapses:	2048 imes 11

Conclusions and Outlook

VLSI spiking cooperative competitive networks (CCNs)

- We can implement VLSI spiking CCNs.
- In the mean rate domain, VLSI spiking CCNs perform as well as models.

uni | eth | zürich

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Time domain can be exploited.

Conclusions and Outlook

VLSI spiking cooperative competitive networks (CCNs)

- We can implement VLSI spiking CCNs.
- In the mean rate domain, VLSI spiking CCNs perform as well as models.
- Time domain can be exploited.

Relational networks

- Relational networks can be built as combinations of CCNs.
- The hardware to build simple relational networks is already available.

uni leth I zürich

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Preliminary results are promising.

Conclusions and Outlook

VLSI spiking cooperative competitive networks (CCNs)

- We can implement VLSI spiking CCNs.
- In the mean rate domain, VLSI spiking CCNs perform as well as models.
- Time domain can be exploited.

Relational networks

- Relational networks can be built as combinations of CCNs.
- The hardware to build simple relational networks is already available.
- Preliminary results are promising.

2D VLSI spiking CCN chip

- 2D feature selectivity
- Arbitrary connectivity between excitatory and inhibitory populations

uni leth I zürich

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Complex relational networks

Acknowledgments

Giacomo Indiveri

Rodney J. Douglas

PCI-AER Board (Hardware and Software)

Vittorio Dante

Adrian Whatley

Orientation selectivity experiment

Patrick Lichtsteiner Tobi Delbruck

Relational networks

Emre Neftci Matthew Cook Jean-Jacques Slotine

uni leth I zürich

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Supported by the EU grants ALAVLSI (IST-2001-38099), CAVIAR (IST-2001-34124) and DAISY (FP6-2005-015803) and the Swiss National Science Foundation (PMPD2-110298/1).

... for your attention.

1969 Kilmer, McCulloch and Blum

Model of the role of the vertebrates' reticular formation of the brainstem in deciding the overall mode of behavior (e.g. sleeping, fighting, fleeing or feeding).

1975 Dev

Model of the use of stereopsis to recognize depth in space.

1976 Didday

Model of how the frog's tectum decides the snapping position.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

uni Leth Lzürich