
香 港科 技大学

HONG KONG
UNIVERSITY OF
SCIENCE &
TECHNOLOGY

Building and Interpreting 
Populations of Model Visual 
Cortical Neurons

Bert SHI

Dept. of ECE, HKUST
eebert@ee.ust.hk



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 2

Overview
Visual cortical processing

Multidimensional selectivity
Orientation Selectivity

What is it?
How do we implement it?

AER Multi-chip Architecture
DSP/FPGA Architecture

Joint Orientation/Disparity Selectivity
Disparity energy model: position versus phase shifts
Population responses versus tuning curves
Bigger is not necessarily better



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 3

Cortical Visual Processing
From E. R. Kandel et. al., Principles of Neural Science

V1, primary 
visual 
cortex, or 
striate cortex

Retina
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Level of Abstraction: Minicolumn
“the effective unit of operation … is 
not the single neuron and its axon, 
but groups of cells with similar 
functional properties and 
anatomical connections.”
“The basic unit of the mature 
neocortex is the minicolumn, a 
narrow chain of neurons extending 
vertically across the cellular layers 
II–VI, perpendicular to the pial
surface (Mountcastle, 1978). Each 
minicolumn in primates contains 
~80–100 neurons, except for the 
striate cortex where the number is 
~2.5 times larger.”

V. M. Mountcastle, “The columnar 
organization of the neocortex”, 
Brain, vol. 120, pp. 701–722, 1997.
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Multidimensional selectivity

Position
Spatial frequency (size)
Temporal frequency (change)
Color
Orientation
Binocular Disparity (depth)
Direction/speed of motion
Curvature

Primary
Visual 
Cortex
(V1)

Retina/
LGN
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Examples

input

input
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Why multidimensional selectivity?

Measured in cortex
Important perceptually 

(van Ee and Anderson, Nature, 2001)
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Improvement over isolated cues
Motion only

Stereo
only

Motion and stereo
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Conclusion

V1 reformats the visual data so that it is 
easier to intepret

I/O ratio for retina: 100/1 (compression)
I/O ratio V1: input:output ratio ~ 1:50 
(expansion!)

A neuromorphic systems for visual 
perception should simultaneously integrate 
information from all cues (orientation, 
disparity, motion) at a very early stage.
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Orientation Selectivity in V1
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Orientation Map in V1
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Model of Cortical Simple Cells

Linear filtering to establish selectivity
Half-wave rectifiction
Squaring
Normalization

“half squaring”

input
image

linear
filtering

( )2  ⋅ Normalization

half-wave
rectification

squaring
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Gabor Receptive Field (RF) Profiles

Commonly used to model the 2D 
spatial receptive field profiles of 
orientation tuned cells.
Shape determined by spatial 
frequency (Ω), width (σx, σy), 
orientation (θ) and phase (φ).
Roughly speaking, describes the 
“best” stimulus for the neuron.
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Phase and Orientation Diversity
°= 0φ °= 90φ °=180φ °= 270φ

°= 0θ

°= 45θ

°= 90θ

°=135θ
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Phase Diversity
The phase f controls the type of stimulus (edge or bar) 
that best excites the detector.
Receptive fields with phases that differ 180° are tuned to 
stimuli with opposite polarity (e.g. dark bars versus light 
bars).

°= 0φ °= 90φ °=180φ °= 270φ

bar
detector

bar
detector

edge
detector

edge
detector



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 17

Two phases is enough
Cortical neurons display the full range of phases, although there is 
some evidence that phases cluster around 0°, 90°, 180° and 270°.
RFs with φ = 0° (180°) are referred to as even-symmetric.
RFs with φ = 90° (270°) are referred to as odd-symmetric.
Theoretically, we can compute the output of any phase RF given the 
just the outputs of 0° and 270°:

( ) ( ) ( ) ( ) ( )φφφ sinsincoscoscos xxx Ω+Ω=+Ω

cos(φ)

sin(φ)

°= 0φ

°= 270φ ( )φ+Ωxcos

( )xΩcos

( )xΩsin
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Orientation Energy
V1 neurons are often differentiated as either

“simple”: phase-dependent responses
“complex”: phase-independent reponses

Complex cells are often modelled as the sum of four simple cells with 
phase-quadrature RF profiles.

input
image

( )2  ⋅

( )2  ⋅

( )2  ⋅

( )2  ⋅

Σ
complex

cell
output

°= 0φ

°= 90φ

°=180φ

°= 270φ
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Phase and Orientation Diversity
°= 0φ °= 90φ °=180φ °= 270φ

°= 0θ

°= 45θ

°= 90θ

°=135θ
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Video recap

input
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Implementation: Design choices
timevalue

continuous
(asynchronous)

discrete
(clocked)

an
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AER
Multichip

DSP/FPGA
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Orientation Hypercolumns

Multi-chip
Model

Ice Cube
Model
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System Characteristics

Retinotopic arrays of neurons with Gabor-
type receptive fields 

All neurons on one chip tuned to the same 
orientation and scale (electronically adjustable)
Phase quadrature receptive fields (EVEN and 
ODD)
Half wave rectification

Continuous time operation
Neurons on different chips communicate 
with spikes (AER)
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Chip Data

Neurons: 32x64x4 neurons (8000)
Technology: TSMC 0.25um
Die size: 3.84mm x 2.54mm (9.8mm2)
Power dissipation: 3mW

(cm)
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Architectural Advantages
Since neurons have identical response properties, 
retinotopic arrays are constructed by tiling 
identical circuit blocks.
Neurons are only locally interconnected, which 
simplifies wiring.
ON-OFF and spike based representation, lowers 
power consumption and fixed pattern noise.
Continuous time operation enables feedback 
interactions between maps.
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Neuromorphic analogue of gap junctions
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From one layer to two

In

Out

Even

Odd

In
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ON/OFF Signal Representation
Complementary channels encode positive and 
negative components of a signal
Conserves metabolic resources by mapping 
background signals to near zero spike rates

ON cell OFF cell
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From two layers to four

Even/ON

Odd/ON

Odd/OFF

Even/OFF

In/ON

In/OFF

Even

Odd

In
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Feedforward System

30,000
spiking
neurons!
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Odd Response to Ring

white = ON spikes    black = OFF spikes
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The eventual system

Left
Eye

Right
Eye

Vertical Bars, Moving Left, At Fixation
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Implementation: Design choices
timevalue

continuous
(asynchronous)

discrete
(clocked)

an
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AER
Multichip

DSP/FPGA
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Goal

Rapidly reconfigurable system for 
computing and combining outputs of many 
cortically inspired maps.
Based on an expandable system 
architecture that can be translated 
eventually to multi-chip AER 
neuromorphic systems.
Operates fast enough to support behavioral 
interaction with the environment.
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System Architecture

Left
Eye

Right
Eye



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 37

Board Architecture

TI 6414
600MHz

32 MB
SDRAM

Neural
Array

Simulator

USB
Link

PC

USB2.0

O
ther Boards

Communication
ControllerLVD

S

LVD
SGPIO

O
ther Boards

4 MB
SRAM

Xilinx 
Spartan III

LVD
S

LVD
S

GPIO
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Telluride Project (Vision Systems)

First Board
Acquires image from camera 
at ~30fps
Computes Feature Maps
Converts to Spikes
Transmits to next board

Second Board
Receives Spikes
Computes Additional Feature 
Maps
Transmits data to PC which 
integrates sensor 
information to generate 
behaviour

Neural
Array

Simulator

USB
Link

Communication
Controller

PC for control

Neural
Array

Simulator

USB
Link

Communication
Controller
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Speed

Feature map computation (352 x 288 pixel 
images)

Edge map: 1.2ms
Gabor-like orientation map: 2.3ms

Inter-board map transmission
0.4ms (assuming an average of 5% 
spikes/frame)
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Power dissipation

45mW
Chip: 3mW (1% analog, 
99% digital)
Support: 42 mW

8192 neurons, 1ms 
settling time
5.4nJ/(neuron*map)

3.5W

405,504 neurons, 2.3 ms 
map computation time
19.9nJ/(neuron*map)

AER Based DSP/FPGA Based



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 46

Digital analogue of the gap junction

In

Out

convolution?
integrate the differential equations?
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Forward Backward Filtering

In

Out

In

Out
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y

z

x

3-D Structure

lu ru

Image disparity is the relative 
displacement between image 
points in the left and right 
eyes corresponding to the 
same environmental point.

Depth can be inferred from 
disparity and eye position.

Binocular disparity

rl uud −=

d
1Depth ∝
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Review: Orientation Energy

input
image

( )2  ⋅

( )2  ⋅

( )2  ⋅

( )2  ⋅

Σ
complex

cell
output

°= 0φ

°= 90φ

°=180φ

°= 270φ

input
image
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Σ
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cell
output

°= 0φ

°= 270φ

cosine

sine
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Binocular Energy Model
Zero disparity tuned complex cell:

I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, "Stereoscopic depth 
discrimination in the visual cortex: Neurons ideally suited as disparity 
detectors," Science, vol. 249, pp. 1037-1041, 1990.

left
image

Σ
complex cell output

cosine

sine

Σ

Σ

( )2  ⋅ ( )2  ⋅

right
image

cosine

sine
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°= 0φ

°= 90φ

°−= 90φ

center = 0

center = -1

center = 1

Position vs. phase shifts

Position shifts:

Phase shifts:
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Tuning Curves vs. Population Responses

Tuning curve: one neuron, many inputs

Population responses: one input, many neurons
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Phase-tuned populations are more reliable

Y. Chen and N. Qian, "A course-to-fine disparity energy model with both 
phase-shift and position-shift receptive field mechanisms," Neural 
Computation, vol. 16, pp. 1545-1578, 2004.
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Limited disparity ranges in populations

The disadvantage of phase-tuned neurons is that their 
preferred disparity range is limited by the periodicity of the 
cosine in the Gabor.

The measured disparities of V1 neurons ranges over a few 
degrees, but actual scene disparities range over tens of 
degrees.
Psychophysical results indicate that we fuse binocular 
stimuli only over a few degrees (Panum’s fusional area).

°= 0φ °= 90φ °=180φ °= 270φ

°= 0θ
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Detecting out of range disparities

The mismatch between the small range of preferred 
disparities in cortex and the large range of scene 
disparities suggests that there should be a mechanism for 
detecting whether a population response is due to an input 
disparity “in the range” of preferred disparites or “out of 
the range”

Unfortunately, this problem is complicated due to the fact 
that the tuning curves of disparity tuned neurons are not 
unimodal.
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False peaks in phase-tuned populations

tuning curve
of zero
disparity
tuned neuron

population
response
to input with 
disparity 20
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Phase tuned population responses

The population response of a 
phase-tuned disparity neuron 
population depends on three 
parameters:

S = average activation
P = difference between peak 
and average activation
DF = peak location

Hypothesis: Since neurons respond strongly to their 
preferred inputs, if the average (S) activation or the 
difference between the peak and average activation (P) is 
large, the response is more likely to be reliable (i.e. “in the 
range”)
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Bigger is not necessarily better
TPR = true positive rate

The fraction of “in the 
range” inputs correctly 
classified

FPR = false positive rate
The fraction of “out of 
range” inputs incorrectly 
classifed as “in the 
range.”

Thresholding S and P 
performs worse than 
chance, indicating that 
smaller responses are 
actually more indicative 
of “in the range”
disparities. 

ROCs of thresholding
classifier

ch
an

ce
 pe

rfo
rm

an
ce

better
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Normalization enables robust validation

R = P/S performs 
reliably

The difference between 
the peak and average 
activation normalized by 
the average activation.

Normalization is 
commonly used to 
account for nonlinear 
properties observed in 
cortical neurons.
These results suggest a 
functional role for 
normalization.

ROCs of thresholding
classifier

ch
an

ce
 pe

rfo
rm

an
ce

better
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Statistical Analysis

BF = Bayes factor for feature F: a measure of the 
evidence that the input disparity is “in the range”
given the observed F.

log(BF) > 0 : positive evidence for “in the range”
log(BF) > 0 : positive evidence for “in the range”
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Disparity Video

input d = 0 d = 0 d = 1 d = 2

original image gated by R>Traw
disparity
energy
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End of Presentation

Thanks for listening!

email: eebert@ee.ust.hk
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Architectural Advantages
Since neurons have identical response properties, 
retinotopic arrays are constructed by tiling 
identical circuit blocks.
Neurons are only locally interconnected, which 
simplifies wiring.
ON-OFF and spike based representation, lowers 
power consumption and fixed pattern noise.
Continuous time operation enables feedback 
interactions between maps.
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Conclusion
We have developed digital hardware for real-time 
simulations of feature maps inspired by the visual 
cortex.
This system is a rapidly reconfigurable test bed for 
investigating active visual perception based upon 
the outputs of model visual cortical columns.
Algorithms and architectures developed on this 
hardware will guide the development of mixed 
signal neuromorphic chips, and multi-chip 
networks.
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Conclusion
We have developed silicon networks of neurons 
selective for position, spatial frequency, 
orientation and (binocular disparity or
direction/speed of motion)
Neurons support both feedforward and feedback 
interactions even though they may reside on 
different chips.
The largest of these systems contains over 30,000 
recurrently connected continuous-time neurons.
Next step: Retinotopic arrays of neurons 
simultaneously selective for disparity and motion.
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Active Binocular Tracking

Version
controlled by centroid
of zero disparity cells

Vergence
controlled by difference
between near and far

disparity cells
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Chip Data

Neurons: 32x64x4 neurons (8000)
Technology: TSMC 0.25um
Die size: 3.84mm x 2.54mm (9.8mm2)
Power dissipation: 3mW

(cm)
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Estimation of Focus of Expansion
Original Image Horizontal Motion -45° Motion

+45° MotionVertical MotionEstimated FOE



Dept. of Electronic and Computer Engineering, Hong Kong Univ. of Science and Technology 73

Feedback System
A global inhibitory neuron 
pools input across 
different orientations from 
neurons tuned to the same 
retinal location with the 
same polarity (ON/OFF) 
and symmetry 
(EVEN/ODD).
The inhibitory neuron 
sends inhibition to the 
neurons that excite it.
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Feedforward System

30,000
spiking

neurons, 
all recurrently

interconnected!
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Shifts in orientation tuning
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Model vs. Implementation
Model

Graded interactions 
between neurons
Linear model

Perfect matching

Implementation
Spike interactions 
between neurons
Nonlinear model due 
to ON/OFF rectification
Lots of mismatch
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Applications

Binocular tracking
FOE estimation
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