
ore Differences
by Brian Case

At the same clock rate, all the leading x86 cores—Pentium,
Pentium Pro, Pentium II, and K6—have similar performance
on most desktop applications. Application-level benchmarks
like Winstone and synthetic benchmarks like WinBench typ-
ically do not reveal large differences among these cores.

But the broad scope of these benchmarks masks more
significant differences underneath. Peeling the onion back
one layer reveals that these cores have performance differ-
ences as large as 2× on specific CPU-intensive tasks. Even
more surprising, the direction of the difference can be coun-
terintuitive. We found, for example, cases where the venera-
ble Pentium core takes fewer clocks than its more complex
out-of-order cousin, Pentium II.

For those interested only in average performance on PC
productivity applications, the traditional benchmark results
provide reasonable guidelines. But for those looking to use a
CPU for a specific task, and those interested in microarchi-
tectural tradeoffs, it may be worthwhile to look deeper.

Tuning for One Application Domain Can Backfire
An effort to harness the computing power inherent in the
servers and clients that form the Internet is being coordi-
nated at www.distributed.net. The effort has discovered,
through brute force, the secret keys to a couple of crypto-
graphy challenges. Available at the Web site are client key-
checking programs that coordinate to check every possible
key in the key space until the one correct key is found. The
clients implement key-checking for the DES and RC5 en-
cryption algorithms.

These client key-checkers are available for many types
of processors, and the x86 clients allow the user to select core
code that has been hand-tuned for the most popular x86
chips. While it is beyond the scope of this article to verify that
a tuned version is optimal for a given x86 chip, a quick check
indicates that the tuned versions do indeed yield good per-
formance on the intended chip. Table 1 reports the results of
running the respective hand-tuned versions.

Testing the performance of these key-checking clients on
various processors gives surprising results. Table 1 shows that
when compared at equal clock rates, the fastest DES key-
checker is the Pentium/MMX. The complexity of the P6 core
pays better dividends on the RC5 benchmark, running essen-
tially twice as fast as the Pentium. Pentium Pro and Pentium II
(Klamath, in this case) have essentially identical performance.

Tests with the L2 caches disabled and various tunings of
the BIOS memory timing parameters produced identical

Testing Reveals x86 C
Design Tradeoffs Can Create Anomalies
© M I C R O D E S I G N R E S O U R C E S J U N E 2
results. This indicates the benchmark fits in the L1 caches, so
the performance of these benchmarks depends only on the
microprocessor core and L1 caches.

While it may be startling to see the P55C microarchi-
tecture beating the dramatically more sophisticated P6 core,
the real surprise is K6, which performs poorly on these tests.

Investigation indicates that the K6 performance prob-
lem on this test stems from a single design factor: the imple-
mentation of the rotate instructions. Since these encryption
algorithms use a lot of shifting and rotating of long bit
strings, a slow implementation of rotates can significantly
reduce performance. The K6 implements the rotate-register
instruction with a microcoded ROP sequence, while the P6
implements it with a single internal ROP.

Equalizing Clock Rate Can Be Misleading
The results shown in Table 1 are both revealing and falla-
cious. The test is revealing if the goal is to expose the relative
efficiencies of different microarchitectures.

The fallacy arises because the P6 microarchitecture was
designed with a very long pipeline to enable operation at
higher clock rates, resulting in what appear to be inefficien-
cies relative to a shorter pipeline. Note that the same fabrica-
tion process that yields 233-MHz Pentiums produces 300-
MHz Pentium II CPUs, and a A 300-MHz Pentium II will
soundly trounce a 233-MHz Pentium/MMX.

Pentium Extensions Ease Performance Monitoring
With the Pentium processor, Intel introduced a host of per-
formance monitoring and debugging capabilities. Intel
added even more in the P6. Most measure specific events
such as L1 cache misses or mispredicted branches.

While Intel’s competitors have not copied all these
capabilities, one very useful feature seems ubiquitous: the
Time Stamp Counter (TSC). The TSC value advances at the
processor core clock rate and is always running. The RDTSC
K6 0.82 0.38168% 58%

Microprocessor
(all @ 233/66 MHz)

Pentium/MMX

Pentium Pro*
Pentium II

1.20

1.08
1.09

DES-II

0.334

0.654
0.656

RC5-64

Mkeys/s

100%

90%
91%

% Max Mkeys/s

51%

100%
100%

% Max

Table 1. The DES-II and RC5 decryption clients are CPU-bound
programs that fit in the L1 caches; thus L2 cache, memory, I/O,
and display performance are irrelevant. *Pentium Pro-200 over-
clocked to 233 MHz. (Tests run as “rc5des -c n -benchmark” using
client version 2.7020.403 under Linux.) (Source: MDR)
2 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://www.distributed.net

2 T E S T I N G R E V E A L S X 8 6 C O R E D I F F E R E N C E S
instruction reads the value of the 64-bit TSC into EDX:EAX.
By sampling the TSC with a pair of RDTSC instructions, a
program can measure the elapsed number of cycles between
two points in a program (see sidebar, next page).

Characterizing Rotate Performance
Table 2 shows the measurements obtained using RDTSC to
count the execution times of several loops.

The P6 core executes the empty decrement/jump-not-
zero loop slower than the other processors. With branch pre-
diction and the capability to retire two or more instructions
per cycle, the natural assumption is that a two-instruction
loop will execute at the rate of one iteration per cycle, as
shown by the K6 and Pentium/MMX, but the P6 can decode
branches only in its first decoder position. In real programs,
empty loops are not very useful, so the suboptimal perfor-
mance of the P6 in this case is unimportant.

As the table shows, the P6 can overlap up to two inde-
pendent ROL instructions with the loop overhead. Although
not shown, a third ROL adds a single cycle because the P6 has
only one shift execution unit. The inclusion of two indepen-
dent increment instructions adds only a single cycle to the
count, since the P6 has two execution units capable of integer
addition; P6 performance is unaffected by the static schedul-
ing of the instruction sequence (columns 4 and 5).

Each ROL adds a cycle to the count for Pentium/MMX,
because ROL is not a pairable instruction. Even though Pen-
tium/MMX has two integer execution units, the static
scheduling of the sequence with two ROLs and two INCs

matters, since the in-order microengine has no capability to
reorder instructions.

Each ROL adds two cycles to the total for the K6, be-
cause ROL is a microcoded instruction. Not only does the
microcoded sequence of ROPs take longer, but it also mono-
polizes the decoders while the ROP sequence is generated, as
© M I C R O D E S I G N R E S O U R C E S J U N E 2
illustrated by the difference in the cycle counts in columns 4
and 5. In the first sequence, the first ROL stalls the decode,
but the two INCs get decoded together and executed in paral-
lel. In the second sequence, with the ROL and INC instruc-
tions interleaved, all four ROL and INC instructions are
decoded separately. The ROLs and INCs are independent, but
this decoder bottleneck starves the execution units.

The last two columns in Table 2 show the effect of
adding one and two more independent INCs to the sequence
from column 4. For the K6 and Pentium/MMX, the addi-
tional INCs in columns 6 and 7 do not add to the execution
time, because they are paired and can use otherwise idle
decode and execution resources.

The oddity in the cycle count for the P6 core on the
code in column 6 indicates the sequence executes in three
cycles for half the iterations and in four cycles on the other
half. This is probably caused by instruction pairing across the
loop boundaries.

The IPC (instructions per cycle) columns in Table 2
are a measure of how effectively the execution hardware is
used. For these code sequences, only the K6 and Pen-
tium/MMX ever achieve their theoretical maximum of two
instructions decoded, executed, and retired per cycle. The
P6 core has a theoretical maximum of three IPC, but this
peak is not achieved for these sequences. With two integer
execution units and one load/store unit, P6 can only achieve
three IPC when loads or stores are present. The P6 does,
however, exhibit the most consistent performance, which
illustrates the power of a general out-of-order micro-
architecture.

Winstone results indicate that the K6’s poor IPC num-
bers on these microbenchmarks are not representative of the
chip’s performance on common PC applications; rather, they
are a direct result of a design tradeoff that sacrifices the per-
formance of rotate instructions. For the vast majority of
L1: DEC EAX
JNZ L1

L1: ROL EBX,3
DEC EAX
JNZ L1

L1: ROL EBX,3
ROL ECX,3
DEC EAX
JNZ L1

L1: ROL EBX,3
INC EDI
INC ESI
ROL ECX,3
DEC EAX
JNZ L1

L1: ROL EBX,3
INC EDI
ROL ECX,3
INC ESI
DEC EAX
JNZ L1

Processor

L1: ROL EBX,3
INC EDI
INC ESI
ROL ECX,3
INC EDX
INC EBP
DEC EAX
JNZ L1

L1: ROL EBX,3
INC EDI
INC ESI
ROL ECX,3
INC EDX
DEC EAX
JNZ L1

Cycles IPC Cycles IPC Cycles IPC Cycles IPC Cycles IPC Cycles IPC Cycles IPC

Test Loop
Instruction
Sequence

1 2 3 4 5 6 7

1 2 3 4 5Pentium/MMX 552 1.5 1.33 1.5 1.2 1.61.4

2 2 2 3 3Pentium Pro 43.51 1.5 2 2 2 22

2 2 2 3 3Pentium II 43.51 1.5 2 2 2 22

1 3 5 6 7K6 772 1 0.8 1 0.86 1.141

Table 2. The empty loop executes faster on the K6 and Pentium/MMX than on the P6-based processors. The increasing cycle counts for
the K6 show how a microcoded instruction reduces efficiency by stalling decode. The fourth and fifth code sequences illustrate the advan-
tage of out-of-order execution: the P6 can reorder the instruction sequence to achieve maximum performance, whereas the Pentium/MMX
cannot. (Source: MDR)
2 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

© M I C R O D E S I G N R E S O U R C E S J U N E 2

3 T E S T I N G R E V E A L S X 8 6 C O R E D I F F E R E N C E S
popular PC applications, this tradeoff causes little measur-
able performance degradation.

Different Caches Perform Differently
Especially for the x86, a fast instruction-execution engine is
of little use without a fast data cache to serve the high density
of load and store operations in x86 programs. To test the per-
formance of the three levels of a PC memory hierarchy, we
designed a tiny loop and a linked-list data structure to allow
an arbitrarily long sequence of memory references with con-
trolled cachability.

Figure 1 shows the code sequence, which consists of a
load-indirect MOV instruction surrounded by our familiar
DEC/JNZ loop. The MOV loads a value from a base register
directly into that same base register, so the new value will be
used as the memory address on the next iteration. This
causes the MOV to be dependent on itself, which ensures that
the cycle count for the loop will include the entire execution
time of the MOV. It can at most be overlapped with the
DEC/JNZ, which has known execution time.

Setting the values of a sequence of memory locations to
form a ring, causes this simple code sequence to follow the
chain of pointers around in a circle until the count in EAX is
exhausted. With the correct number of nodes and addresses
of the nodes in the linked list, a cache of a given size and
associativity can be overwhelmed, thus causing it to miss on
each execution of the MOV instruction.

Table 3 shows the results of using this technique to
determine the speed of x86 caches. All processors were run-
ning at 233 MHz, and the bus speed of the K6 and Pentium
Memory Contents

0xC0000: 0xC1000

0xC1000: 0xC2000

0xC2000: 0xC3000

0xC3000: 0xC0000

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Line 0

Line 1

Line 0

Line 1

Line 0

Line 1

Line 0

Line 1

Line 0

Line 1

Line 0

Line 1

Line 0

Line 1

.

.

.

L1 Cache Contents

Tag 0

Tag 1

Tag 0

Tag 1

Tag 0

Tag 1

Tag 0

Tag 1

Tag 0

Tag 1

Tag 0

Tag 1

Tag 0

Tag 1

Set
0

Set
1

Set
2

Set
3

Set
4

Set
126

Set
127

4K bytes

4K bytes

4K bytes

L1: MOV EBX,(EBX)
DEC EAX
JNZ L1

Cache Test
Instruction Sequence:

Figure 1. The linked-list data structure is set up such that when the
cache test loop runs, the number of elements in the list will exceed
the associativity of the cache in which misses are desired. Also, the
addresses of the elements in the linked list are chosen so that they
map into the same cache set.
C y c l e C o u n t i n g W i t h R D T S C
The Time Stamp Counter and the RDTSC instruction

were added to the x86 architecture with the introduction
of the Pentium processor. The TSC is a 64-bit counter that
is initialized to zero following hardware reset. It then
increments by one with each internal processor cycle even
when the processor is halted by the HLT instruction or the
external STPCLK pin.

Architecturally, RDTSC is guaranteed to return a mono-
tonically increasing unique value on each execution, except
in the case when the counter wraps around, which will not
occur for years after processor reset.

On an in-order processor, the RDTSC instruction
could be used to obtain very accurate measurements of
instruction sequences. The architectural definition of
RDTSC, however, specifies that RDTSC is not serializing
and can be executed out of order with respect to other
instructions. Thus, a given RDTSC may be executed
before preceding instructions or after following instruc-
tions. Theoretically, the uncertainty of the execution order
of a RDTSC is determined by the size of the window an
out-of-order processor uses to buffer waiting instructions.
In practical situations, execution of a RDTSC is fairly pre-
dictable due to dependencies.

To filter out uncertainties in the execution order of a
pair of RDTSC instructions and to stabilize cache behavior,
instruction sequences investigated in this article were
incorporated into the following framework:

An instruction sequence to be measured is inserted in
a loop that executes for 1,000 iterations. The RDTSC
instructions precede and follow the loop. This strategy has
the property that each cycle attributable to an instruction
in the loop will cause an increment of 1,000 in the cycle
count; any transient cycles—due to the uncertainties in
the execution scheduling of the RDTSCs and the over-
head of saving the TSC count (PUSH EAX) and setting up
the loop count—will appear in the low three digits of the
measured cycle count. No uncertainty or transient will
amount to more than a few tens of cycles at most.

The execution time for the empty loop (consisting of
only DEC/JNZ) is one or two cycles on all processors
tested, as Table 2 shows, so loop overhead can be fac-
tored out of the final cycle count.

RDTSC
PUSH EAX
MOV EAX,1000

.align 32
L1: Instruction 1

Instruction 2
...
Instruction n
DEC EAX
JNZ L1

RDTSC
POP EBX
SUB EAX,EBX
2 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

4 T E S T I N G R E V E A L S X 8 6 C O R E D I F F E R E N C E S
MMX was 66 MHz. The cycle counts in the table are for an
actual instruction sequence and reflect the true cost of exe-
cuting worst-case code that delivers an operand to a waiting
processor register, not just an isolated parameter such as
SRAM access time. In real applications, similar pathological
access patterns do arise, but they would not dominate the
run time of most nontrivial programs. Database programs,
however, may be a significant exception.

The long latencies shown for L2 misses result in a full
cache line being loaded, and so, in real programs, the cycle
counts in Table 3 are typically amortized over at least a series
of sequential accesses to the same cache line.

There are several observations of interest. First, note
that the K6 and Pentium/MMX have the fastest L1 caches for
32-bit aligned loads. Any misalignment adds only a single
cycle to the execution time for the K6, but Pentium/MMX
pays a three-cycle penalty.

The execution time for various alignments highlights
one of the improvements Intel made in Pentium II com-
pared with Pentium Pro. Pentium II tolerates misalignment
on all accesses except those that cross a 32-byte cache line,
but Pentium Pro takes a five-cycle hit when crossing an 8-
or 16-byte boundary within a cache line. This Pentium II
refinement was probably made possible because its L1
caches are twice the size of Pentium Pro’s: the extra 8K of
cache can be accessed in parallel, and a multiplexer/shifter
can then select the proper group of four bytes. Both proces-
sors pay a nine-cycle penalty for accesses that cross a cache
line boundary.

The penalty for an L1-cache miss varies greatly, de-
pending on how the L2 is implemented and connected to the
processor. The best by far is Pentium Pro, which can deliver a
32-bit operand with less than half the latency of the Pentium
© M I C R O D E S I G N R E S O U R C E S J U N E 2
II in most cases. Both Pentium II and Pentium Pro processor
chips have a dedicated L2 cache bus, which provides fast
access to the L2, but Pentium II uses commodity L2 SRAMs,
which run at half the speed of the custom Pentium Pro L2
SRAMs. Because its L2 cache is so fast, L1 cache hits for some
alignments in Pentium Pro are slower than L1 misses for
other alignments.

Once again, examining these processors at equal clock
rates may lead to a distortion. The advantage of the Pentium
Pro L2 over the Pentium II L2 is probably slightly less than
shown in Table 3, because the initial latency of the Pentium
Pro custom cache chips is tuned for 200-MHz operation,
while the initial latency of the Pentium II cache chips is
tuned for 266-MHz (or even 300-MHz) operation. Thus,
while the forthcoming Pentium II Xeon CPUs will have a
much faster L2 cache than that of the Pentium II, the advan-
tage may be slightly less than Table 3 indicates. For example,
an aligned L1 miss/L2 hit may take eight or nine cycles
instead of Pentium Pro’s seven.

Beware of Benchmarks
Benchmarks like Winstone and Winbench are reasonable
indicators of the relative performance of different CPUs and
how well they will perform overall. But such benchmarks are
designed to test all aspects of PC performance, which makes
them poor indicators of how well a processor will perform
on a specific task.

For example, as we showed in this article, the K6 may
not be the best choice for cryptography applications that
depend heavily on rotate operations. On the other hand, the
K6 could perform significantly better than the others on
applications where misaligned data is prevalent, such as
applications that access legacy data structures in network

transmission packets.
The results shown here compare

cores at the same clock rate. In practice,
however, these cores do not all run at
the same maximum clock rate. So while
Pentium may have better per-clock per-
formance than Pentium II in some
cases, Pentium II’s deeper pipeline al-
lows it to run significantly faster. This,
in fact, may be the more significant con-
tributor to Pentium II’s bottom-line
performance advantage than its out-of-
order microarchitecture.

If you have a specific job in mind
for a processor, you may not want to
rely on traditional benchmark results to
make your decision. By performing a
clock-accurate analysis of the processor
running code that is representative of
your application, you may be able to
select a processor that gives you better
performance or saves you money. M

entium Pro

1
it

34

12

7

12

L1 Miss
L2 Hit

P55C

5

5

5

5

L1
Hit

7 2

 shown in Figure 1.
 bus. In some cases,
 load address. The
alty compared with
ver Pentium II. The
ible and so are not
Address
Alignment

(bytes)

29, 30, 31

25, 26, 27

21, 22, 23

17, 18, 19

13, 14, 15

9, 10, 11

5, 6, 7

1, 2, 3

K6

3

3

3

3

L1
Hit

56

28

28

28

L1 Miss
L2 Hit

Pentium II

12

3

3

3

L1
Hit

54

28

16

24

L1 Miss
L2 Hit

P

12

8

3

8

L
H

Interpretation

Misaligned, but does
not cross 8-byte or
16-byte boundary

Crosses 8-byte but
not 16-byte boundary

Crosses 16-byte
boundary

Crosses 32-byte
cache-line boundary

0, 4, 8, 12,
16, 20, 24, 28

2 28 3 16 3Naturally aligned on
four-byte boundary

Table 3. Cycle counts for the 32-bit memory load instruction in the loop
All processors are running at 233 MHz; the K6 used a 66-MHz external
cache performance varies greatly depending on the alignment of the
half-speed cache of the Pentium II more than doubles the L1 miss pen
Pentium Pro. Pentium II Xeon is likely to enjoy a similar advantage o
P55C (Pentium/MMX) results for L1 miss/L2 hit were not reproduc
reported. (Source: MDR)
2 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

	Testing Reveals x86 Core Differences
	Tuning for One Application Domain Can Backfire
	Equalizing Clock Rate Can Be Misleading
	Pentium Extensions Ease Performance Monitoring
	Table 1. The DES-II and RC5 decryption clients...
	Characterizing Rotate Performance
	Table 2. The empty loop executes faster on the...
	Different Caches Perform Differently
	Figure 1. The linked-list data structure is set up...
	Table 3. Cycle counts for the 32-bit memory load...
	Beware of Benchmarks

	Cycle Counting With RDTSC

