
T H E I N S I D E R S ’ G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

MICROPROCESSOR
VOLUME 12, NUMBER 6

MAY 11, 1998

REPORT
werPC
prove on MMX
by Linley Gwennap

Better late than never. Apple, IBM, and Motorola have
defined a set of multimedia extensions to the basic PowerPC
instruction set, making it the last of the six general-purpose
architectures to incorporate such a feature. The first proces-
sor to use the new AltiVec extensions will be the G4, due to
ship in systems in 1H99. If the G4 ships on schedule, it will
be more than two years behind Intel’s first MMX chips and
will appear at roughly the same time as Katmai, which will
include Intel’s second-generation MMX extensions.

Wider is better. AltiVec (formerly known as VMX)
takes a step beyond all other multimedia extensions by using
128-bit registers and ALUs, twice the width of competing
designs. The wider ALUs support a high data bandwidth for
applications that can take advantage of the greater degree of
parallelism. Alternatively, the wider registers can provide
more precision for the same number of operands.

AltiVec provides other advantages over MMX and sim-
ilar extensions, such as Sun’s VIS and MDMX for MIPS.
Whereas these extensions operate only on integer data,
AltiVec supports both integer and floating-point data types.
(We expect Intel’s Katmai to support parallel FP data as
well.) The AltiVec registers are separate from the integer and
FP registers, so there is no switching overhead. One down-
side: the wide registers and ALUs, which are separate from
the existing function units, increase the die area needed for
multimedia support in a PowerPC chip.

Apple expects to use AltiVec to improve the perfor-
mance of its Macintosh systems. Even without AltiVec, the
current G3 processors do well on multimedia tasks when
compared against Intel’s MMX processors. With AltiVec, the
G4 should significantly exceed Intel’s best performance on
some multimedia tasks.

The new extensions will also appeal to designers of
high-end embedded systems, particularly in the networking
area. Manipulating data 128 bits at a time will speed these
performance-hungry applications, but the added die area
will exclude AltiVec from low-cost designs, at least initially.

AltiVec Vectorizes Po
Forthcoming Multimedia Extensions Im
Inside: TI 2700 ♦♦ Net+ARM ♦♦ US-2
Buffed Register File Pumps Out Data
As Figure 1 shows, the AltiVec register file is bigger than the
integer register file and the FP register file combined. (In a
64-bit PowerPC chip, the integer file would be twice as wide
as shown in Figure 1, bringing the comparison with AltiVec
to parity. The G4 processor, however, implements the stan-
dard 32-bit PowerPC instruction set, and there are no 64-bit
desktop PowerPC processors planned.)

The AltiVec register file holds eight times as much data
as Intel’s MMX register file (see MPR 3/5/96, p. 1), reducing
the number of time-wasting cache accesses on some applica-
tions. Intel appears to be readying a larger register file for
Katmai (see MPR 05/11/98, p. 4), which could close this gap.

Separating the AltiVec registers from the other regis-
ters allows them to be wider. The ALUs can thus operate on
twice as much data per cycle, increasing throughput. In
addition, there is no penalty for mixing AltiVec, integer,
and FP instructions. In Intel’s design, by contrast, the
MMX registers are mapped onto the FP registers, creating
a performance penalty when switching from MMX mode
Integer

32 ×
32 bits

Floating Point

32 × 64 bits

AltiVec

32 × 128 bits

8 × 32

8 × 80

8 × 64

Integer

FP or
MMX*

PowerPC Register File x86 Register File

*Programmers can use
either the FP or MMX
registers but not both at
the same time.

Figure 1. Adding AltiVec more than doubles the size of the exist-
ing PowerPC register file due to its 128-bit registers. The AltiVec
register file can store eight times as much data as Intel’s MMX reg-
ister file and is not overlapped with the FP registers.
/360 ♦♦ Intergraph Ruling ♦♦ Dvorak

2 A L T I V E C V E C T O R I Z E S P O W E R P C
to FP mode. Sun’s VIS (see MPR 12/5/94, p. 16) has a simi-
lar penalty.

The wider AltiVec registers double the time needed to
save and restore CPU state on a context switch. To reduce this
overhead, AltiVec includes a flag that software can manipu-
late to mark whether the new multimedia registers have been
used; if the flag is not set, the registers need not be saved.

All PowerPC operating systems must be modified to
save and restore the new registers on a context switch. As long
as only one program uses the AltiVec registers, it may work
properly on an unmodified OS, but this combination is not
recommended.

By overlapping the MMX registers with the FP regis-
ters, Intel did not add any processor state to its processors,
avoiding the need for operating-system changes. PowerPC
supports far fewer operating systems than x86, however, sim-
plifying the changeover. Motorola is already working with the
pertinent OS vendors (mainly Apple and the key RTOS com-
panies), so OS support for AltiVec should be widespread by
the time the first chips arrive.

Up to 16 Operations at Once
Like other multimedia extensions, AltiVec performs parallel
operations on a number of small operands in a SIMD (single
instruction, multiple data) format. As Figure 2 shows, each
register can hold 16 operands of 8 bits each, or 8 operands of
16 bits, or 4 operands of 32 bits. While the first two formats
support only integer data types, the third format allows either
integers or single-precision floating-point data. Thus, a single
AltiVec function unit can perform up to 16 integer operations
or 4 floating-point operations in parallel.

Except for the new data types, most AltiVec instructions
are similar to the standard PowerPC arithmetic operations.
They use three-operand (nondestructive) addressing and
operate only on registers, not memory.

AltiVec has the usual integer arithmetic operations,
such as add, subtract, and multiply. It also includes an aver-
age function ((A+B)÷2) that simply shifts the sum right by
one bit. The integer operands can be signed or unsigned.
Overflows can be handled by saturation (clamping to the
maximum or minimum value) or by modulo arithmetic
(wrapping around). AltiVec supplies the standard logical and
shift operations as well.
© M I C R O D E S I G N R E S O U R C E S M A Y 1 1
AltiVec also supports a variety of floating-point in-
structions, all of which operate on four single-precision
values in parallel. The add, subtract, and multiply-add
instructions are similar to the ones in the standard PowerPC
instruction set. Unlike the standard PowerPC, AltiVec has no
multiply instruction; to multiply, one must use multiply-add
with an addend register that has been initialized to 0.0.

The floating-point handling in AltiVec is IEEE compli-
ant but implements only the IEEE default exception handling
and only the “nearest” rounding mode. For better perfor-
mance, an even more restricted non-IEEE mode, in which
denorms are essentially ignored, is provided. Some scien-
tific code will be forced to use the standard FPU, for either
double-precision arithmetic or full IEEE support. But many
popular algorithms, particularly those for 3D graphics, can
live within the AltiVec definitions and will gain up to four
times better performance by using AltiVec.

The AltiVec units do not implement divide or square
root, as these functions require too much hardware to repli-
cate four times. Instead, AltiVec provides reciprocal estimate
and reciprocal square-root estimate. These simpler instruc-
tions can be easily implemented and fully pipelined for
high performance. The 12-bit “estimate” produced by these
instructions can be quickly refined to higher levels of preci-
sion using the Newton-Raphson method.

For example, the quotient Q=A÷B is calculated as:
y0 = VREFP B ;Estimate 1÷B
t = VNMSUBFP y0, B, 1 ;First refinement
y1 = VMADDFP y0, t, y0 ; calculated in y1
Q0 = VMADDFP A, y1, 0 ;Q=A × y1
R = VNMSUBFP B, Q0, A ;Calculate remainder
Q1 = VMADDFP R, y1, Q0 ;Refine quotient

According to Motorola, this sequence produces a quotient
(Q1) that is accurate to “almost” 24 bits of precision (unless
B is so small that VREFP generates an infinity, a case that can
be explicitly guarded against). To guarantee a full 24 bits of
precision, as required by the IEEE specification, a second
refinement must be made, adding two instructions.

Note the extensive use of the negative multiply-subtract
(VNMSUBFP) instruction, which calculates C–A×B. This
instruction was added to help speed the Newton-Raphson
C

A

B

15 00 14 00 16 0F 1A 0A 17 0C 1F 08 1D 1E 1C 05

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AF

T B5 A0 B4 A0 B6 AF BA AA B7 AC BF A8 BD BE BC

AE

AE

Figure 3. The permute instruction creates a new data word con-
taining any arbitrary set of bytes selected from either of two source
operands (A and B) by a control operand (C).
16 × 8-bit integer

8 × 16-bit integer

4 × 32-bit integer

4 × 32-bit (single-precision) floating-point

Figure 2. AltiVec supports four data formats, including one for
floating-point data.
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 A L T I V E C V E C T O R I Z E S P O W E R P C
process. This process can also be used to refine the estimates
from the floating-point reciprocal square root, log, and
exponent instructions.

To simplify working in AltiVec floating-point math, the
extensions include instructions to convert from packed FP
data to packed fixed-point data, and vice versa. These include
the unfortunately named VCFUX and VCTUXS instructions.

Highly Flexible Bit Manipulation
A highlight of AltiVec is its completely arbitrary permute
instruction. As Figure 3 shows, a data mask in one operand
(C) controls the creation of a new 128-bit value in which
each byte can be taken from any arbitrary byte in either of
two source operands (A and B). Each byte in C controls the
corresponding byte in the target register. The upper nibble
© M I C R O D E S I G N R E S O U R C E S M A Y 1 1
selects the source register, either A or B, and the lower nibble
selects any one of the 16 bytes in that register, which is then
copied to the target register.

While we can admire this flexibility, the permute unit is
designed to perform specific tasks. For example, it can pack
and unpack data as well as merge data from two registers, as
Table 1 shows. It can fill a register from a single byte (“splat”),
easily creating constants or clearing a register. It can perform
long data shifts, repair unaligned data, and perform table
lookups. Special pack and unpack instructions support
1/5/5/5 pixel format, which permits 1 bit of α and 5 bits each
of R, G, and B.

The AltiVec compare instructions perform parallel
data comparisons such as “equal to” or “greater than,” storing
the results in the target register as a series of boolean values.
By
te

H
al

fw
or

d

W
or

d

U
ns

ig
ne

d
 m

od
ul

o
U

ns
ig

ne
d

 w
/s

at
Si

gn
ed

m
od

ul
o

Si
gn

ed
 w

/s
at

Mnemonic Description
VAND Logical AND
VOR Logical OR
VXOR Logical XOR
VANDC Logical AND complement
VNOT Logical NOT
VPERM Permute bytes from A, B
VSEL Select bits from A or B
VSL/VSR Shift register left/right by bits
VSLO/VSRO Shift register left/right by bytes
VSLDOI Shift left immediate and OR
VADDFP Add floating point
VSUBFP Subtract floating point
VMAXFP Select maximum FP
VMINFP Select minimum FP
VMADDFP Fused multiply-add
VNMSUBFP Fused negative multiply-subtract
VREFP Reciprocal estimate
VRSQRTEFP Reciprocal square-root estimate
VLOGEFP Base 2 logarithm estimate
VEXPTEFP 2 to the exponent estimate
VCMPGTFP[.] Compare greater than [record]
VCMPEQFP[.] Compare equal to [record]
VCMPGEQFP[.] Compare >= [record]
VCMPBFP[.] Bounds check [record]
VRFIN Round to nearest
VRFIZ Round toward zero (truncate)
VRFIP Round toward positive infinity
VRFIM Round toward minus infinity
VCTUXS Convert to unsigned integer w/sat
VCTSXS Convert to signed integer w/sat
VCFUX Convert from unsigned integer
VCFSX Convert from signed integer
DST Data stream touch
DSTST Data stream touch for store
DSS Data stream stop
MTVSCR Move to vector control register
MFVSCR Move from vector control register

B H W UM US SM SS Mnemonic Description
▲ ▲ ▲ ■ ■ ■ VADD Add

▲ ■ VADDC Add, write carry outs
▲ ▲ ▲ ■ ■ ■ VSUB Subtract
▲ ▲ ▲ ■ ■ ■ VSUBC Subtract, write carry outs
▲ ▲ ■ ■ VMULO Multiply odd
▲ ▲ ■ ■ VMULE Multiply even

▲ ■ VMHADD Multiply high and add
▲ ■ VMHRADD Multiply high, round, add
▲ ■ VMLADD Multiply low and add

▲ ▲ ■ ■

▲ ■
VMSUM Multiply and sum

▲ ■ VSUM Sum across to one sum
▲ ■ VSUM2 Sum across to two sums

▲ ■
VSUM4 Sum across to four sums

▲ ▲ ■

▲ ▲ ▲ ■ ■ VAVG Average
▲ ▲ ▲ ■ ■ VMIN Select minimum
▲ ▲ ▲ ■ ■ VMAX Select maximum
▲ ▲ ▲ ■ ■ VCMPGT[.] Compare greater than [record]
▲ ▲ ▲ ■ VCMPEQ[.] Compare equal to [record]
▲ ▲ ▲ ------n/a------ VRL Rotate elements left
▲ ▲ ▲ ------n/a------ VSL Shift elements left
▲ ▲ ▲ ------n/a------ VSR Shift elements right
▲ ▲ ▲ ------n/a------ VSRA Shift right arithmetic

▲ ▲ ■ ■ VPKU Pack unsigned integer
▲ ▲ ■ ■ VPKS Pack signed integer

▲ ■ VPKPX Pack into 1/5/5/5 pixels
▲ ▲ ■ VUPK[H/L] Unpack integer high/low

▲ ■ VUPKPX[H/L] Unpack 1/5/5/5 pixels
▲ ▲ ▲ ------n/a------ VMRG[H/L] Merge high/low
▲ ▲ ▲ ------n/a------ VSPLT Splat (replicate data)
▲ ▲ ▲ ------n/a------ VSPLTIS Splat signed immediate
---n/a--- ------n/a------ LVEX, LVEXL Load 128 bits into register
---n/a--- ------n/a------ STVEX, STVEXL Store 128 bits to memory
▲ ▲ ▲ ------n/a------ LVExX Load element of width x
▲ ▲ ▲ ------n/a------ STVExX Store element of width x
---n/a--- ------n/a------ LVSL, LVSR Calculate alignment control value

Table 1. AltiVec adds 162 new instructions that operate on the 128-bit vector registers in a SIMD fashion. Instructions on left side of the
table take up to three options for operand width (▲) and up to four options for overflow handling (■); instructions on right side use a single
operand format and do not overflow. Floating-point instructions shown in purple. x=byte, halfword, or word n/a=not applicable
, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

4 A L T I V E C V E C T O R I Z E S P O W E R P C
If the comparison is true, the target word is set to all ones; if
the comparison is false, it is set to all zeroes. The resulting
string of boolean values can be used as a bit mask by the log-
ical operations. It can also be used by the select (VSEL)
instruction, which transfers bits from one source register or
the other, depending on the contents of the bit mask.

This technique can be used for video masking (e.g.,
blue screening) and 3D clipping functions. Compilers can
also use it to eliminate some branch instructions by comput-
ing both paths of the branch in parallel. The correct results
can then be selected using the conditional instructions.

In addition to the basic integer and FP comparisons,
Altivec includes a special bounds-check (VCMPBFP) instruc-
tion. This instruction actually performs two comparisons on
each value, determining if –B≤A≤B. In other words, this
instruction checks if the absolute value of A is within the
limit specified by B (i.e., |A|≤B).

Some algorithms need to examine the result of a series
of comparisons. For example, software may want to check if
any word has exceeded a saturation value. Using the “record”
option (indicated by [.] in PowerPC notation), the compare
instructions can be set to modify the PowerPC condition-
code register (CR) if all parallel comparisons are true (all
ones) or if all comparisons are false (all zeroes). The former
case sets CR bit 24; the latter sets CR bit 26. These bits can be
checked by subsequent conditional-branch instructions.

Wide Loads and Stores Boost Bandwidth
AltiVec has obligatory load and store instructions to move
data into and out of the new registers. Because these loads
and stores handle 128 bits of data at a time, they may be used
for block memory accesses, as they are four times as efficient
as the usual integer loads and stores. The address is calcu-
lated from the integer registers using the normal register-
indirect-with-index addressing mode.

Unlike the standard PowerPC load and store
instructions, the AltiVec instructions do not support
unaligned addresses. If software must manipulate data struc-
© M I C R O D E S I G N R E S O U R C E S M A Y 1 1
tures that are not aligned, they can be loaded into
the vector registers “as is” and aligned using the per-
mute (VPERM) instruction. To assist in such align-
ment, the LVSL and LVSR instructions do not load
data but instead take an unaligned address and com-
pute the necessary control word that allows the
VPERM instruction to properly align the data. Thus,
unaligned data can be loaded using a three-instruc-
tion sequence (LVEX, LVSL, VPERM).

AltiVec also includes a set of “data stream
touch” instructions that allow software to attempt to
manage the cache/memory hierarchy. These instruc-
tions assume the existence of a software- controlled
prefetch engine, which apparently will be included
in the G4 processor. The DST instructions pass an
address to the prefetch engine, which presumably
begins fetching a data stream (which may have an

arbitrary stride) starting at that address. Variations of the
instruction inform the prefetcher whether the data will be
used once or frequently, and whether it might be written.
The DSS instruction terminates prefetching of one or all data
streams.

Twice As Wide As Competition
AltiVec offers a more complete feature set than any of the
other multimedia extensions, as Table 2 shows. The big-
gest difference is the width of the registers. With 128-bit
operands, AltiVec instructions will, each cycle, operate
on twice as much data as competing implementations. In
theory, this should result in twice the peak performance,
although clock speed and other architectural considerations
come into play.

The other key advantage of AltiVec is its floating-
point support. MIPS V (see MPR 11/18/96, p. 24) is the
only other announced architecture with this capability, but
Silicon Graphics’ recent termination of its future MIPS pro-
jects (see MPR 4/20/98, p. 1) leaves no planned processors
to implement MIPS V. Intel’s MMX2, also known as the
Katmai New Instructions (KNI), is expected to include sim-
ilar parallel floating-point instructions, although the com-
pany has not revealed whether they will handle two or four
operands at once.

AltiVec is designed as a general-purpose architecture
instead of being optimized for a single application. For
example, it does not include a SAD (sum of absolute differ-
ences) instruction, which is found in both VIS and Alpha’s
MVI (see MPR 11/18/96, p. 24). This instruction is the core
of most motion-estimation algorithms, such as MPEG-2
video encoding, and greatly speeds these applications.

AltiVec offers partial compensation with its “sum
across” instructions, but a complete SAD operation requires
four instructions. Motorola points out that the more accu-
rate SDS (sum of differences squared) method, after some
mathematical transformation, can be performed using an
inner loop consisting only of a single VMSUM instruction.

res to
re set.
rs)

lpha
VI

 × 64
teger
 bit
No
one
one
/Max

Yes
one
No
Q96
Q97
Table 2. Although PowerPC is the last of the major desktop architectu
introduce multimedia extensions, AltiVec offers the most complete featu
†saturating and nonsaturating adds, subtracts, compares. (Source: vendo

Register File
Mapped Onto
Integer Support
FP Support
The Usual Stuff†
Multiply / MAC
Min / Max /Avg
Pack / Unpack
Byte Reordering
Unaligned Data
Announced
First Shipped

PowerPC
AltiVec

Intel
MMX

Sun
VIS

MIPS V/
MDMX

HP
MAX2

A
M

32 × 128
Separate
8/16/32

Yes
Lots
Lots
Yes
Yes
All

3 instr
2Q98

Mid-99

8 × 64
FP

8/16/32
MMX2

Lots
Mult
No
Yes

Some
No

2Q96
1Q97

32 × 64
FP

8/16/32
No
Lots
Mult
No
Yes

Some
2 instr
4Q94
4Q95

32 × 64
FP

8/16 bit
MIPS V

Lots
Lots

Min/Max
Yes

Many
Yes

4Q96
None

32 × 64
Integer

16/32 bit
No

Some
Some
Avg
Yes
All
No

4Q95
2Q96

32
In
8

N
N

Min

N

4
4

, 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

5 A L T I V E C V E C T O R I Z E S P O W E R P C
Thus, the SDS loop can compute 16 results per cycle, the
same speed as if a hard-wired SAD instruction were avail-
able. This eliminates the need for special-purpose SAD hard-
ware that would be used only in a single application. The
company claims the G4 processor will be able to handle
MPEG-2 encoding using the SDS method.

AltiVec’s performance on other applications will vary.
Considering only the SIMD instructions, peak performance
on inner loops will be four times greater than with standard
PowerPC instructions. Compared with MMX or VIS, peak
performance will be doubled for integer operands (assuming
similar clock speeds and implementations) and quadrupled
for single-precision floating-point operands.

Peak performance could be even better for code that
takes advantage of permute and other special instructions.
Because overhead (nonarithmetic) instructions will not be
sped up by AltiVec, however, actual throughput will lag peak
performance, often by a large amount. More performance
data will be published once G4 prototypes are available.

AltiVec Eats Silicon
The biggest drawback of AltiVec is its size. The 128-bit reg-
isters and operations require a separate register file and
separate ALUs (both integer and floating-point), both twice
as large as the existing units. This overhead requires a phys-
ically large implementation. In contrast, most other multi-
media designs share an existing register file and existing
ALUs, adding only decode logic and a bit of special-pur-
pose logic.

In Sun’s UltraSparc design, for example, the VIS logic
adds only 3% to the total die area, about 4 mm2 in a 0.29-
micron process. We estimate the P55C, which has physically
separate registers and ALUs for MMX, devotes to its multi-
media functions about 15 mm2 in a similar process. In con-
trast, the AltiVec logic is likely to be twice that size if imple-
mented in a similar process, according to Motorola.

Because the G4 will be built in a more advanced 0.25-
micron process, however, the actual area impact will be only
about 17 mm2. While this will represent a sizable fraction of
the G4’s die area, Motorola says the G4 will still weigh in well
below 100 mm2, hardly a monster-sized chip. If necessary,
Motorola could trim the die size further by getting rid of
AltiVec’s FP support, which is unneeded in many embedded
applications.

Taking Aim At Embedded
Motorola hopes to drive the G4 and other AltiVec proces-
sors into embedded applications. The target applications
are distinguished by a willingness to pay a premium for
processors that can process data by the bucketful. These
applications include network routers, voice over IP (VoIP),
encryption and decryption, multichannel modems, speech
processing, and video processing. Potential customers
include Cisco and other networking companies, as well as
telecom vendors.
© M I C R O D E S I G N R E S O U R C E S M A Y 1
Motorola’s competition in these areas comes from a
variety of sources. Cisco, for example, uses standard MIPS
processors in many of its systems. MIPS has developed a set
of integer multimedia instructions called MDMX (see MPR
11/18/96, p. 24) that are similar to AltiVec but provide half
the processing power. Like AltiVec, MDMX has yet to ship.

Many of the telecom vendors use DSP chips instead of
general-purpose CPUs. Therefore, Motorola has compared
the G4’s AltiVec-enhanced performance against that of Texas
Instruments’ C62xx (see MPR 2/17/97, p. 14), a VLIW-based
high-performance DSP. The Philips TM-1 media processor
may even compete with the G4 in some situations. Motorola
believes its chip will offer superior price/performance, but it
is impossible to evaluate this claim until the company reveals
the price and performance of the G4.

While the AltiVec extensions might be useful in other
embedded applications, the initial cost of the chip is likely to
be too high. For example, in a set-top box the G4 could per-
form audio and video decoding and even support video con-
ferencing or a cable-modem interface. Perhaps a future 0.18-
micron version could be cost-effective enough for this type
of consumer device.

A New Processor Paradigm
The new extensions will have a greater impact on the desk-
top, at least initially. AltiVec will help Apple’s Mac systems
compete against Katmai-powered PCs on 3D and multi-
media software. We expect IBM will use AltiVec in its work-
stations to improve performance on many graphics and sci-
entific applications, although the new instructions will not
help applications that require double-precision math or
obscure IEEE modes.

The initial set of multimedia extensions (MAX, VIS,
MMX) took a step forward by establishing a new data type
for audio and video. These first attempts, however, devoted
the minimum possible amount of silicon to the new features,
treating multimedia as a second-class citizen.

With AltiVec, the PowerPC vendors have taken a differ-
ent approach, moving multimedia to the front of the bus. By
devoting a significant portion of the die to AltiVec, the G4
processor emphasizes the growing role of multimedia. Most
of the performance-hungry applications today can be vec-
torized to take advantage of AltiVec. If multimedia perfor-
mance becomes the driving factor in the PC market, AltiVec’s
128-bit architecture could tip the performance scales in
PowerPC’s favor. M
F o r M o r e I n f o r m a t i o n

The VMX extensions are not available in a shipping
PowerPC processor. For more information about the
extensions, contact your local Motorola representative or
check the Web at motorola.com/AltiVec.
1 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

http://motorola.com/AltiVec

	AltiVec Vectorizes PowerPC
	Buffed Register File Pumps Out Data
	Figure 1. Adding AltiVec more than doubles the size...
	Up to 16 Operations at Once
	Figure 2. AltiVec supports four data formats...
	Figure 3. The permute instruction creates a new...
	Table 1. AltiVec adds 162 new instructions that operate...
	Highly Flexible Bit Manipulation
	Table 2. Although PowerPC is the last of the major...
	Wide Loads and Stores Boost Bandwidth
	Twice As Wide As Competition
	AltiVec Eats Silicon
	Taking Aim At Embedded
	A New Processor Paradigm

	For More Information

