
ch Is Controversial
ISC Architectures, May Be Better

■ V I E W P O I N T
by Brian Case

For me and at least a few other computer architects, the Intel
and HP disclosure of the IA-64 architecture at Microproces-
sor Forum last October was a little troubling. I feel that by
relying on static scheduling, Intel has chosen a path for its
future microprocessors that may prevent the company from
delivering the best possible products. Since the world proba-
bly will get most of its compute power from Intel over the
next decade, there is ample reason for concern.

The Forum presentation (see MPR 10/27/97, p. 1) was
far from a complete explanation of the architecture, but it
revealed that IA-64 has an instruction set designed to sup-
port modern compiler code optimization through static
scheduling. To drive home the point about static scheduling,
which is the guiding philosophy behind IA-64, Intel coined
the term Explicitly Parallel Instruction Computing (EPIC) to
describe this style of instruction-set design.

Dynamic Scheduling Is Complex
Modern out-of-order superscalar microprocessors use dy-
namic scheduling to increase the number of instructions exe-
cuted per cycle. These processors maintain a fixed-size win-
dow into the instruction stream, analyzing the instructions in
the window to determine which can be executed out of order
to improve performance. To keep the window full, these
processors employ branch prediction, register renaming (to
reduce unnecessary dependencies between instructions), and
a result-buffering technique to maintain the in-order execu-
tion model required by the architecture. The result buffer
holds values produced out of order until the processor can
retire the corresponding instructions in program order.

Dynamic scheduling takes an inherently serial instruc-
tion stream and, through run-time analysis in hardware, dis-
covers opportunities to execute multiple instructions at a
time. The capabilities of dynamic scheduling are powerful,
but the required hardware makes the processor complex. Part
of the problem is that existing architectures are antagonistic
to dynamic scheduling in some ways. For example, the x86
provides too few registers, thereby creating an excess of loads
and stores.

Static Scheduling Makes Parallelism Explicit
Static scheduling is simply the process of favorably arranging
instructions before the program binary is executed. Instruc-
tions are reordered and possibly slightly modified to take
advantage of the characteristics of the target processor. Static

IA-64’s Static Approa
Dynamic Scheduling, Used by Today’s R
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
scheduling is typically performed by the compiler and may
also be done by the assembler, the linker, and the loader. Even
for modern out-of-order processors with dynamic schedul-
ing, some static scheduling can help performance by work-
ing around implementation limitations.

The extreme example of static scheduling is a VLIW
machine. VLIW instructions consist of several simple in-
structions bolted together to form a long instruction word
with multiple operations. The machine fetches these long
instructions and sends the individual operations to the
appropriate execution units. The compiler is responsible for
filling the long instructions with independent operations so
the hardware is kept busy and execution time is minimized.

Architectural support increases the effectiveness of sta-
tic scheduling. Such support could include a large number of
general-purpose registers, explicit instruction grouping
information in the instruction stream, predicated execution,
and speculative loads—all of which are in IA-64 but not in
x86 and only partially present in some RISCs.

Static Scheduling Saves Hardware
A key advantage of static scheduling over dynamic schedul-
ing is a reduction in hardware complexity. Register renam-
ing, inter-instruction dependency analysis, result buffering,
and instruction retirement require complex hardware that
can limit clock speed with long critical paths, lengthen the
design time, and lead to bugs. Efforts to improve the effec-
tiveness of dynamic scheduling, such as increasing the win-
dow size, further increase the complexity of the hardware.

A processor designed for static scheduling can be sim-
pler, since the hardware can blindly assume the instructions
are already arranged in the proper order for achieving maxi-
mum performance.Thus, there is no need to perform out-of-
order analysis or result buffering, because the supplied pro-
gram order is assumed to be the best order. Register renaming
is not needed because the compiler uses the large register file
to make sure unnecessary register collisions do not occur. A
static processor can take advantage of the saved die area to
reduce cost or add more execution units.

Another advantage of static scheduling is that the sched-
ule is produced with full knowledge of the source code of the
program. When source code is compiled into processor
instructions, information is lost. For example, the compiler
might know that the value loaded by a particular instruction
cannot be affected by a preceding store because they use two
different variables. Once traditional load and store instruc-
tions are generated, this information is lost.
 2 9 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

2 I A - 6 4 ’ S S T A T I C A P P R O A C H I S C O N T R O V E R S I A L
Dynamic Scheduling Can Have Better Performance
Compared with static scheduling, the main advantage of
dynamic scheduling is the ability to improve performance
by reordering instructions using information known only at
execution time. During execution, the hardware knows the
most information possible about the capabilities and dy-
namic state of the processor and its memory hierarchy.

Static scheduling is driven by processor specifications,
such as the number, types, and standard latencies of execu-
tion units, and possibly the design characteristics of the
caches and memory. Some of these specifications, however,
can change at execution time. For example, cache contents,
and therefore load latencies, cannot always be predicted at
compile time.

When load latencies change, a dynamic processor sim-
ply adapts, always doing its best to find instructions ready
for execution regardless of the tardiness of any particular
load instruction. If a load has a long latency, a dynamic
processor looks ahead for work to do until it runs out
of instructions that can be issued. If the load completes
quickly, a dynamic processor adapts by immediately mak-
ing dependent instructions ready for issue. This can have a
cascading effect, readying more instructions downstream
of the load that can be used to cover the latency of a sub-
sequent load.

In contrast, a statically scheduled processor without
out-of-order execution must assume a fixed latency for each
load and then choose a fixed schedule for dependent and
other downstream instructions. For example, consider the
code in Figure 1. There are three groups of instructions that
have been statically scheduled into issue blocks. Without
dynamic scheduling, all instructions in a group must com-
plete before any in the following can begin executing.

Assume the dependencies shown (e.g., i7 depends on
i1 and i2) and that i5 uses a value loaded earlier. If the load
for i5 takes longer than the static scheduler assumed, the
instructions in Group B will be stalled waiting for Group A
to finish. A dynamic processor would allow some of the
instructions in Group B and subsequent groups to proceed,
resulting in higher performance.

For the static machine, performance could be locally
improved by changing the group boundaries—e.g., moving
up i9, i11, and i13—but the compiler simply cannot know
which boundary is best: it must make assumptions. The
schedule shown in Figure 1 may have been chosen by the
static scheduler due to execution-unit conflicts. In future
processors, these conflicts might not occur, rendering this
schedule inefficient for the future chips.

A compiler cannot always predict how an execution
stream will reach a particular spot in a program. For exam-
ple, it is possible to reach a block of code either by falling
through from above or as the result of a taken branch. This
makes static scheduling less effective for one of paths. Code
can be duplicated to improve scheduling, but too much use
of this technique adversely affects code size.
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
Another case is a procedure call into a dynamically
linked library. In this case, the compilation of the library and
the programs that call it are not allowed to make assump-
tions about each other; this policy allows the library to be
updated independently of the programs that use it. The
dynamic processor simply prefetches instructions from the
procedure into its window and dynamically schedules them
as usual. A static processor cannot schedule instructions
across the procedure-call boundary.

Implementations Evolve, Static Scheduling Doesn't
Processor implementation technology and organizational
techniques change over time. With advancing technology,
the number of transistors on a chip goes up and the cost and
speed of on-chip wiring changes. A consequence is that the
basic characteristics of a processor—e.g., the number, type,
and latency of the execution units as well as the size and
organization of the caches—will change.

Illustrations abound. For example, execution latencies
in floating-point units seem to go up and down as technol-
ogy changes. The number of execution units increases over
time. Intel decided to cut costs on Pentium II vs. Pentium Pro
by doubling the size of on-chip caches and doubling the
latency of the off-chip cache. These basic processor charac-
teristics influence instruction-scheduling decisions.

Given that processor implementations change, either
statically scheduled programs must be recompiled to reap
the benefits of new chips, or future generations of statically
scheduled chips must implement some dynamic scheduling
to do run-time reorganization of existing statically sched-
uled code. Thus, static scheduling seems to gain Intel one,
maybe two, processor generations that save the cost of
dynamic-scheduling hardware, or Intel’s customers will be
forced to obtain new program binaries to optimize perfor-
mance with each processor generation. Many, maybe most,
customers will choose to run trusted, proven binaries instead
of opening the door to support headaches.

In products such as PCs and servers, software is pur-
chased separately, stable versions of operating systems and
database servers are reluctantly changed, and a single version
of an application may be used on several binary-compatible
platforms. From the point of view of software developers,
.

.

.
Group A:

Group B:

Group C:
.
.
.

.

.

.
i1, i2, i3, i4, i5, i6

i7, i8, i9

i10, i11, i12, i13
.
.
.

Figure 1. In a static processor, an unexpectedly long load can stall
execution of all subsequent instruction groups.
 2 9 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 I A - 6 4 ’ S S T A T I C A P P R O A C H I S C O N T R O V E R S I A L
support problems are minimized by using known, stable ver-
sions of compilers, utility libraries, and other development
tools. Using new compilers, or even just new compiler op-
tions, and new utility libraries simply to support a new pro-
cessor generation is likely to increase support headaches.

Dynamic scheduling can do a good job of matching
the capabilities of new execution hardware with existing
software binaries without recompiling. To be fair, experi-
ence shows that newly released dynamically scheduled
processors get a performance benefit from recompilation,
but I expect future generations of dynamic processors to get
better and better at finding maximum parallelism from
legacy binaries.

Within a few years after Intel starts delivering IA-64
processors, several generations of chips will be viable in
the market simultaneously, just as Pentium, Pentium Pro,
Pentium II, the K6, and the 6x86MX currently coexist in the
x86 market. These IA-64 processors are likely, however, to
have different instruction execution characteristics, which
means that the performance of a given program binary will
likely be compromised on all but one of the current imple-
mentations. Again, the adaptability of dynamic scheduling
gives users freedom to use trusted software binaries while
still reaping maximum benefit from a processor upgrade.

Fundamental Advantage of IA-64 Small
The PC market has shown with painful clarity that the most
important feature of a processor family is binary compatibil-
ity among generations. In the workstation and server mar-
kets, where RISC processors still dominate some segments,
the same compatibility issues hold. Many applications are
virtually wedded to certain versions of Unix and need to
maintain compatibility with existing platforms. If IA-64 pro-
cessors require new binaries with each generation, their pop-
ularity in these markets will be reduced.

If, on the other hand, Intel were to continue using
dynamic scheduling, the possible downsides are higher chip
cost, reduced clock rates, and fewer new features. The mar-
ket has shown that as long as these shortcomings are not
severe, they are simply not important. This is obvious for the
PC market and also true in the workstation market, where
SPARC continues to be the platform of choice for many key
CAD applications despite high prices and disappointing
performance.

The only significant downside to staying with dynamic
scheduling is complexity, which can increase cost but delivers
a more valuable product to end users and gives chip design-
ers the maximum freedom to innovate.

Once Again, I Am Puzzled
Three years ago, I wrote (see MPR 8/22/94, p. 9) that I was
puzzled by the announcement of the IA-64 effort at a time
when technology was finally leveling the playing field for
RISC vs. CISC. Though I applaud the efforts of Intel and
HP to move the market in an orderly way to an improved
© M I C R O D E S I G N R E S O U R C E S D E C E M B E R
architecture, I am confused by their desire to move away
from dynamic scheduling at a time when process technology
should give implementors the ability to fully exploit out-of-
order techniques. Bigger instruction reordering windows,
code transformations such as issuing loads speculatively, and
following both paths of a branch are just a few ideas.

At the Forum, Intel’s John Crawford said that the
sequential execution model used in existing architectures
gives compilers a limited, indirect view of hardware. He
claimed artificial sequential constraints necessarily creep
into the code that a processor executes. I see it the other way
around: the sequential model insulates the compiler from
the hardware, allowing it to focus on its true job: generating
code that is minimal, correct, and fast. The job of final, low-
level scheduling is better left to the processor itself, which
knows about the hardware and the dynamic state of the
processor.

Even with the most aggressive dynamic scheduling, the
implementation of current and future out-of-order execu-
tion techniques would benefit from instruction-set support
that is missing in the x86 and would be hard to add. Thus, it
is reasonable to define a new architecture, but IA-64 de-
emphasizes dynamic scheduling, which may be detrimental
to customers.

IA-64 Shortcomings Not Fatal
IA-64 is not a disaster. If the new chips are delivered to the
market by Intel and forcefully supported by software devel-
opers and computer system manufacturers, IA-64 will be a
market success. Period. Computers based on Merced and its
progeny will compute correct answers, and they will do so
with celerity. Still, I think a more traditional instruction set
augmented with a large register file, compact instructions,
and some new instructions to attack known performance
limiters would allow Intel to provide better scalability of soft-
ware and hardware to its customers over the life of IA-64.

Earlier, I said that Intel could address the deficient per-
formance of old code on new chips in two ways: by requiring
customers to upgrade to new binaries or by adding dynamic
hardware to IA-64 chips. Another way Intel could address the
deficient performance of old code on new chips is by provid-
ing a rescheduling tool that would take an existing binary as
input and emit a new, better-scheduled binary for a specific
IA-64 chip. This is probably technically feasible, but software
developers might balk at supporting customer use of such
binaries, because of the possibility of bugs being introduced
in the process. Despite this drawback, low-level rescheduling
is a fertile research area that could bear fruit.

Though it’s safe to assume that Intel and HP intend to
provide adequate support for moving code between genera-
tions of IA-64 processors, Intel’s competitors might want to
take this opportunity to think about aggressively pursuing an
alternative to IA-64. It might have little chance to succeed, but
the odds are going to be better during the transition to IA-64
than at any other time over the next decade or two. M
 2 9 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

	IA-64’s Static Approach Is Controversial
	Dynamic Scheduling Is Complex
	Static Scheduling Makes Parallelism Explicit
	Static Scheduling Saves Hardware
	Dynamic Scheduling Can Have Better Performance
	Implementations Evolve, Static Scheduling Doesn't
	Figure 1. In a static processor, an unexpectedly long load...
	Fundamental Advantage of IA-64 Small
	Once Again, I Am Puzzled
	IA-64 Shortcomings Not Fatal

