MicroJava Pushes Bytecode Performance

Sun’s MicroJava 701 Based on New Generation of PicoJava Core

by Jim Turley

At last month’s Microprocessor
Forum, Sun revealed details of its
first microprocessor to execute
Java bytecodes directly in hardware. The MicroJava 701,
which isn’t due until 2H98, will run at 200 MHz and deliver
what Sun’s Harlan McGhan believes is the best Java perfor-
mance yet seen from any microprocessor. Some new design
tweaks should also help the chip’s performance on non-Java
applications, such as C code.

No cost or price information was available, and Sun’s
performance figures are just estimates based on simulations,
but initial results suggest that MicroJava 701 will be twice as
fast as a 266-MHz Pentium 1l system on Java code. If Sun’s
initial estimates pan out and production stays on schedule,
MicroJava 701 could be among the fastest, most cost-effec-
tive ways to execute Java code by late next year.

New PicoJava 2 Core Replaces Original Design
Interestingly, Sun’s chip is not based on the PicoJava core it
announced at last year’s Microprocessor Forum (see MPR
10/28/96, p. 28)—and which all of Sun’s licensees are cur-
rently using. Instead, Sun quietly developed a newer Java
core, which it now calls PicoJava 2. This design improves
both Java and non-Java performance with more instruction
folding and a longer pipeline that allows higher clock rates.

The new core has not been made available to Sun’s
Java-chip licensees (see MPR 6/17/96, p. 4). Instead, those six
companies are nearing completion of their first chips based
on the older PicoJava 1 design. None of the licensees has
announced a schedule for these chips, but we expect the first
samples to trickle out around 2Q98—the same time as Sun’s
701. Even with their head start, this leaves LG, NEC, and the
other PicoJava 1 licensees in an awkward position to com-
pete with Sun. They’re also about six months behind where
they wanted to be when PicoJava was announced.

Sun has not licensed PicoJava 2 because the core has
not been “productized.” That is, the core design is in a state
that only Sun’s own designers can use, according to the com-
pany. Sun expects a fully portable (or exportable) version of
the core to be ready in 2Q98, roughly the time the 701 and
most of the original licensees’ chips begin sampling.

New Core Faster Through Fab, Pipeline Changes

The new PicoJava 2 core borrows much from its predecessor.
Both cores execute about 85% of Java bytecodes directly in
hardware, with the remainder trapped and emulated. Like
PicoJava 1, the new core augments the bytecode instruction

set with a dozen or so “extended ” instructions that allow
software to manipulate caches, control registers, and absolute
memory addresses—all things normally prohibited for Java
programs. As before, Sun has not released the list of executed
or emulated bytecodes to anyone but its licensees.

The changes between PicoJava 1 and PicoJava 2, as
embodied in the MicroJava chip, are designed to improve
performance. As Figure 1 shows, the pipeline has been
extended to six stages from four. Instruction decoding,
which used to take one cycle, is now allotted two. Likewise,
the execution phase has been extended by a cycle.

In a planned 0.25-micron process, Sun expects the new
core to run at up to 200 MHz, twice the target frequency for
the original PicoJava 1 core in 0.35-micron technology. In
the same process, we would expect PicoJava 2 to run about
33% faster than PicoJava 1.

Improved Instruction Folding Aids C Code

The other major improvement in the core design involves
instruction folding. PicoJava 1 was designed to recognize
certain constructs or code pairings common in Java pro-
grams (and other stack-based languages). PicoJava 2 im-
proves on this technique by expanding the scope of the com-
parison. Where PicoJava 1’s instruction folding assisted Java
applications, PicoJava 2 should improve performance on
non-Java applications as well.

Instruction folding works by recognizing certain
instruction sequences that occur frequently and quietly
replacing them with equivalent, but quicker, operations. In
this way, the PicoJava cores address one of the bottlenecks
inherent in any stack-based architecture: frequent juggling of
operands on the top of the stack. Java code, for example, fre-
quently copies one operand from the interior of the stack to
the top, then uses a logical or arithmetic operation to replace
the top two operands with their result. PicoJava 1 skips the
preliminary copy operation and routes the first operand
directly to the ALU.

| Fetch |Decode | Read |Execute | Cache | Write |

Fetch 1-8 Decode top Fetch Execute; Access Retire
bytes from entries from operands detect data cache instructions;
cacheto instruction from stack branches; write results

16-byte buffer cache; bypass to stack
instruction access operands
buffer microcode

ROM

Figure 1. The PicoJava 2 core, which forms the basis of the Micro-
Java 701 chip, uses a new six-stage pipeline that breaks bytecode
decoding and execution into two stages apiece.

OMICRODESIGN RESOURCES \/ NOVEMBER 17, 1997 \/ MICROPROCESSOR REPORT

2 \/ MICROJAVA PUSHES BYTECODE PERFORMANCE

(A - B+C)
1
1
3
L 1
@ - :
1
@ [!
1
B 1 B
1
1
©) ©
push B :
push C .
add .
PicoJava 1 PicoJava 2

Figure 2. The PicoJava 2 core is more aggressive than the original
PicoJava 1 in bypassing stack manipulation. The core’s decode
logic recognizes common stack operations and converts them to
straightforward two-input ALU functions like a conventional CPU.

The PicoJava 2 design goes one step further, routing
any two operands from the interior of the stack directly to
the ALU. This enhancement helps C code and other conven-
tional languages more than it helps Java, because C compil-
ers (and programmers) frequently use two source operands
in their calculations. By fetching operands directly from the
stack, PicoJava 2 more closely emulates a conventional regis-
ter set, which maps much more easily onto the code engines
of most compilers.

A normal C-language statement that adds two variables
generally translates to a single instruction on most RISC
processors. As Figure 2 shows, executing this on a stack-
based architecture such as PicoJava takes from one to four
instructions, depending on where the source operands hap-
pen to be in the stack and where the result will be stored. One
or both source operands may have to be copied to the top of
the stack before the addition can be performed, costing one

pci| | pe
10 —
ol o | BE S
Instruction | S | & 5]
S8 PCL_ 32 bit
5 cache |[®|3||© :
<> ITAG o
16K
17 Data FPU
‘+‘> cache
=
<o, j 2
Memory B a
Control 64 bits <
— o
a
w

A

8 _ | Boot
»|PROM

Figure 3. Sun’s initial MicroJava 701 implementation will include
a pair of 16K caches, a 64-bit memory controller, and a PCI bus.

or two extra instructions. (All cases assume the operands are
already loaded from memory.)

The PicoJava 2 core recognizes the case where two
operands are copied to the top of the stack and replaced by
their result; it then bypasses both copies, shuttles the two
operands to the ALU, and stores the result in the destination
register. Thus, PicoJava 2 reduces this otherwise awkward
construct to a single operation, just like a RISC chip.

Note that the compiler or programmer doesn’t have to
be aware of the folding; PicoJava 2 does it automatically, like
register renaming or instruction reordering. The object code
still includes the intermediate push instructions.

C Code Uses Back Door Into MicroJava

From a Java programmer’s perspective, the PicoJava 2 core
creates an infinitely deep stack. In actuality, the first 64 ele-
ments are kept in a hardware stack on the chip, while stack
elements 65-n spill over into external memory (or on-chip
cache). From the point of view of a C compiler, PicoJava 2
has 64 general-purpose registers.

Although PicoJava 2’s enhancements are designed to
help non-Java code, all programs are still compiled to Java
bytecodes, regardless of their original source language. Sun is
developing a compiler for C and C++ that emits Java byte-
code. The compiler uses the “extended” bytecodes on the 701
so programs can reference memory and access 1/0O devices.
In perhaps the ultimate irony, such programs will not be
portable because they rely on MicroJava-specific instruc-
tions rather than the nominally neutral bytecodes. It’s also an
incongruous reversal of the current paradigm of writing
applications in Java to run on general-purpose processors.

Tape Out Next Year; Production Not As Clear

As the block diagram in Figure 3 shows, the 701 will include
dual 16K caches, a memory controller, and a 32-bit PCI
interface, making the chip a nearly self-contained Java
engine. The 64-bit memory controller handles EDO
DRAM, SDRAM, SRAM, flash memory, and ROM. The 701
also has a separate 8-bit bus for a boot PROM. The PCI
interface runs at either 33 or 66 MHz and supports both
master- and target-mode operation. Overall, the capabili-
ties of the 701 are similar to those of Sun’s other embedded
processor, the MicroSparc-2ep (see MPR 5/6/96, p. 5),
which the company currently uses in its JavaStation 1 and
Javakngine 1 platforms.

The chip has not taped out yet, but Sun’s McGhan
expects the 701 to reach that milestone sometime in 1Q98,
with samples in 2Q98, and full production by 3Q98. These
projections may be overly optimistic; past experience has
taught us that the long march from tape out to production
lasts closer to 12 months, not 6. If the 701 tapes out as
planned early next year, it seems likely the chip won’t enter
production until 1999.

Technically, the company is not behind schedule for its
original claim of Java chip availability before the end of

OMICRODESIGN RESOURCES \/ NOVEMBER 17, 1997 \/ MICROPROCESSOR REPORT

3 \/ MICROJAVA PUSHES BYTECODE PERFORMANCE

1997—at least, not if one of the licensees can deliver silicon
early. Clearly, though, Sun has defaulted on any plans to
deliver a chip of its own this year—and possibly next.

Figure 4 shows a die plot of the anticipated design. The
device will measure a bit under 50 mm? and include about
2.8 million transistors, of which about 2 million go to the
caches. Like most 0.25-micron microprocessors, the 701 will
need dual power supplies: 2.5V for the core, 3.3 V for 1/0.

The 701 will be built in a 0.25-micron CMOS process,
though the company would not identify its foundry partner.
Historically, Sun has worked with Texas Instruments for
most of its SPARC processors, so Tl seems a likely partner.

Sun expects the chips will run at about 166 MHz, with
a useful percentage yielding at 200 MHz. At the faster speed,
the 701 should consume about 4 W, according to company
estimates, and the chip will come packaged in a 316-contact
plastic ball-grid array (PBGA). The MDR Cost Model yields
an estimated manufacturing cost of $25 for the part.

Java Performance Beats Pentium Il by 2x

Sun has been unusually tight-lipped about the performance of
its Java chips. More than a year after announcing PicoJava 1,
the company still has no verifiable performance metrics.

At the Forum, McGhan revealed that Sun has simu-
lated the 701 running the CaffeineMark and Dhrystone
benchmarks. The tests yielded a rating of 200 MIPS on
Dhrystone 2.1 and 13,332 on Embedded CaffeineMark 3.0.
The Dhrystone score is a little below average for a 200-MHz
chip; the Embedded CaffeineMark score, however, is far
higher than anything seen before.

Specifically, the highest rating recognized by Pendragon
Software (the creator of CaffeineMark; www.webfayre.com) is
7,379 for a 266-MHz Pentium Il system with 64M of RAM
running Windows NT and Internet Explorer. (Embedded
CaffeineMark eliminates three of the nine tests from the full
CaffeineMark 3.0 suite, for a higher overall rating.)

Thus, Sun’s simulations indicate the 701 executes Java
almost twice as fast as the high-end Intel system, even though
Pentium Il has superscalar execution, a one-third faster clock
rate, and larger caches. It’s also an order of magnitude faster
than StrongArm. At 233 MHz, the SA-110 scores just 1,105
on Embedded CaffeineMark 3.0, a disappointing 12x slower
than the 701, even at a slightly faster clock speed.

Rockwell Still a Wildcard

MicroJava will also be up against JEM1, Rockwell’s surprise
entry to the Java field (see MPR 10/27/97, p. 10). The core of
this come-from-behind player, which is based on an old
avionics processor from the company’s archives, is smaller
than PicoJava and executes more bytecodes in hardware.

At just 50-60 MHz in 0.5-micron technology, JEM1 is
not as fast as the 701. It would speed up considerably,
though, if it were built in the same 0.25-micron process.
Rockwell and Sun are said to be negotiating a distribution
agreement for JEMZ1; it would be interesting if some of

JEM1’s design features appear in a future MicroJava proces-
sor. Rockwell has no benchmark information whatsoever
for JEM1, and no price has been set, so the benefits of this
chip are impossible to judge.

Dhrystone Performance Not As Good

To the extent that one trusts Dhrystone, the SA-110 and Pen-
tium Il both do much better than the MicroJava chip. The
StrongArm chip rates at 268 Dhrystone MIPS, versus 200
MIPS for MicroJava. Pentium 11 scores range from 300 to 400
on Dhrystone at 233 MHz, putting it 1.5x to 2x ahead of the
701. Both results are measured on real systems.

On the other hand, Sun’s results are simulated, and
these benchmarks are too small to accurately reflect cache
misses or memory latency. When the 701 begins shipping, its
actual score may be different. At the same time, we can
assume JIT compilers and other microprocessors will only
get faster. By 3Q98, Pentium Il should be shipping at 400
MHz (at least) in the same 0.25-micron process as the 701.

Still, Sun’s results are impressive, even as a first-order
approximation. To deliver performance in the same range as
a Pentium ll—much less beat it by 2x—with a chip that’s
half the size and (presumably) less expensive is no small feat.
Factoring in the memory savings (because the 701 replaces a
full Java interpreter or JIT compiler with a small emulation
library), MicroJava 701 looks to be a dynamite bargain for
customers determined to build Java-execution machines.

Waiting for the Demand

The question, of course, is exactly what kind of machines
those might be. The hypothetical Java-based network com-
puter has been slow to appear, perhaps because useful Java
applications are not thick on the ground. Corel, for example,

]

-
"
=
=

4
.l:l‘a.l .r_l: Q‘

Figure 4. Die plot of proposed MicroJava 701 layout indicates the
chip will measure about 50 mm? in a 0.25-micron CMOS process.

OMICRODESIGN RESOURCES \/ NOVEMBER 17, 1997 \/ MICROPROCESSOR REPORT

http://www.webfayre.com

Price & Availability

Samples of Sun’s MicroJava 701 are expected to be
available in 2Q98, with production in 2H98. Pricing has
not been announced. For more information, contact Sun
Microelectronics (Mountain View, Calif.) at 650.960.1300
or visit www.sun.com/microelectronics/java.

canceled its high-profile attempt to port its WordPerfect Suite
to Java. Without plentiful Java apps, Java systems are superflu-
ous; without the Java systems, the apps may not come, so per-
haps Java NCs are just an egg waiting for a chicken.

Even assuming demand for such a system, a Java chip is
just one of many options. A general-purpose microprocessor
leaves the door open to other languages, APIs, and operating
systems besides Java, Java, and Java. By the time the 701
appears, it may be no faster than Pentium Il on Java code, but
with an infinitely smaller software base. Whereas general-
purpose processors can execute anything
the 701 can, the reverse condition does not
hold true.

Although McGhan would quantify
the expected selling price of the initial
MicroJava chip only as “two digits,” it’s safe
to assume that the 701 will be much less
expensive than Pentium I, thus providing
a price/performance advantage to devel-
opers for whom software availability is
not important. But the same price/perfor-
mance claim could be made of most other
microprocessors as well.

MICROJAVA PUSHES BYTECODE PERFORMANCE

quickly and with minimal memory overhead. But in return,
the chip exacts a toll in the use of non-Java software, operat-
ing systems, tools, and APIs.

Nearly any system can download and run the occa-
sional Java applet. The advantage of the 701 is running those
downloaded applets quickly. For “casual” use of bytecode,
where performance is not all-important, a general-purpose
processor can handle the task, and give better overall perfor-
mance when it’s not running bytecode.

In short, the 701 looks better the more bytecode the
system has to run. For an all-bytecode system, the 701 is
probably faster and cheaper than anything else. As the pro-
portion of bytecode decreases, so does the advantage of a
dedicated Java chip. MicroJava 701 and its kind make sense
for some small fraction of the market (that does not now
exist) that mainly relies on Java code and doesn’t already
have a microprocessor in it.

Java: Doing Whatever It Takes

It’s no secret that Sun has focused its corporate efforts on the
success of Java. Java hardware, software,
education, and advertising are the com-
pany’s featured products.

Strategically, Sun is more interested in
Java itself than in Java chips specifically.
McGhan was careful to point out that Java
chips wouldn’t and shouldn’t replace Java
interpreters or JIT compilers, but that they
merely bring another option to the table.
Java chips are “a complement, not a re-
placement” for software-only Java environ-
ments, he avowed.

At the level of the executive suite, Sun
doesn’t really care whether Java chips suc-

I
o
2
<
)
=]
=
5
o
<
I
o
=

Java Bytecode Sets Strategy
With the impending arrival of Java chips,
embedded-software developers will soon be

Harlan McGhan of Sun Microelec-
tronics extols the virtues of the
MicroJava 701 at the Forum.

ceed or fail. Sun’s ultimate goal is that Java
prevail, through whatever means. The com-
pany is offering as many different methods

faced with three basic alternatives: write in
C; write in Java; or write in Java and compile to bytecodes. In
at least two of the three cases, Java chips do not make a com-
pelling argument.

For the C-to-native scenario, the 701 makes very little
sense. C programs written for the 701 are no more portable
than other compiled programs, and the 701’s performance
(if Dhrystone is any indication) isn’t particularly good.

The Java-to-native scenario also favors general-purpose
microprocessors. Compiling Java source directly to the
native instruction set of the target microprocessor bypasses
the bytecode interface, skipping a costly intermediate step.
Bytecode was intended for portability; if the software isn’t
being ported, it serves no purpose. This approach may sacri-
fice the putative portability of bytecode, but for embedded
systems, real-time binary portability is rarely an issue.

Finally, there is the Java-to-bytecode scenario. If byte-
code is the preferred delivery mechanism, the 701 will run it

of writing, disseminating, and executing
Java code as it knows how. Whether customers execute Java
applications using interpreters, JIT compilers, or specialized
Java chips is irrelevant, as long as they use Java instead of
Microsoft APIs.

Like a heavy shovel, Java has left a lasting impression on
the minds of designers of both desktop and embedded sys-
tems. As companies wrestle with questions about whether
they want Java, where to use Java, and how to execute Java,
Sun has fanned the flames and encouraged experimentation.
For the time being, the experimenters and the tire kickers
have been using general-purpose microprocessors with Java
interpreters, Java compilers, and Java-aware operating sys-
tems. For another 6-9 months, this will probably still be
the case. Not until MicroJava 701, JEM1, or one of Sun’s
licensees’ parts starts shipping will Java’s early adopters be
able to see for themselves whether a dedicated Java processor
is valuable for their application.

OMICRODESIGN RESOURCES \/ NOVEMBER 17, 1997 \/ MICROPROCESSOR REPORT

http://www.sun.com/microelectronics/java

	MicroJava Pushes Bytecode Performance
	New PicoJava 2 Core Replaces Original Design
	New Core Faster Through Fab, Pipeline Changes
	Improved Instruction Folding Aids C Code
	Figure 1. The PicoJava 2 core, which forms the basis of...
	Figure 2. The PicoJava 2 core is more aggressive than...
	Figure 3. Sun’s initial MicroJava 701 implementation will...
	C Code Uses Back Door Into MicroJava
	Tape Out Next Year; Production Not As Clear
	Java Performance Beats Pentium II by 2¥
	Rockwell Still a Wildcard
	Dhrystone Performance Not As Good
	Waiting for the Demand
	Figure 4. Die plot of proposed MicroJava 701 layout...
	Java Bytecode Sets Strategy
	Java: Doing Whatever It Takes

	Price & Availability

