
Abstract

The impact of pipeline length on both the power and  
performance of a microprocessor is explored both
theoretically and by simulation.  A theory is presented for
a wide range of power/performance metrics, BIPS /W.m

The theory shows that the more important power is to the
metric, the shorter the optimum pipeline length that
results.  For  typical  parameters  neither  BIPS/W  nor
BIPS /W yield an optimum, i.e., a non-pipelined design is2

optimal.  For BIPS /W the optimum, averaged over all 553

workloads studied, occurs at a 22.5 FO4 design point, a 7
stage pipeline, but this value is highly dependent on the
assumed growth in latch count with pipeline depth.  As
dynamic power grows, the optimal design point shifts to
shorter pipelines.  Clock gating pushes the optimum to
deeper pipelines.  Surprisingly, as leakage power grows,
the optimum is also found to shift to deeper pipelines.  The
optimum pipeline depth varies for different classes of
workloads: SPEC95 and SPEC2000 integer applications,
traditional (legacy) database and on-line transaction
processing applications, modern (e. g. web) applications,
and floating point applications.

1.  Introduction

In the very early design stages of a microprocessor, the
architects must decide on the pipeline structure.
Frequently, this has to be done without the benefit of any
accurate modeling since it occurs so early in the concept
phase of the design.  Researchers have tried to understand
the inherent tradeoffs to be made in the choice of pipeline
depth in order to change this major decision from an art
into a science.  Recently, power has become a major
design issue.  Now both performance and power must be
considered in making this key microarchitectural decision.

The optimum pipeline depth based on a performance
metric has been the subject of numerous studies over the
years.  The first such study, of which we are aware, is

Kunkel and Smith [1].  They considered the impact of
pipeline depth, in the context of gate delay/segment, on the
performance of a scalar processor, specifically addressing
the effect of latch delays.  Dubey and Flynn [2] treated this
problem, considering pipeline overhead parameters and
branch misprediction pipeline stalls.  Recently, Agarwal,
et.al. [3] in analyzing microarchitecture scaling strategies,
studied this problem, but only considered combinations of
pipeline and microarchitectural changes, which did not
allow them to elucidate the various dependencies involved.
The most coherent early treatment was given by Emma and
Davidson [4].  They provided a theoretical treatment for an
in-order scalar processor, but without detailed simulations
to test their theoretical predictions.  

Recently, several authors [5, 6, 7] revisited this
problem of the optimal pipeline depth using a performance
only metric.  Hartstein and Puzak [5] studied the optimum
pipeline depth both theoretically and with simulation.
Their treatment included both out-of-order and superscalar
processes, and provided detailed simulations of the
z-Series mainframe architecture to confirm their
predictions. Hrishikesh et. al. [6]  treated the question of
logic depth per pipeline stage empirically for an Alpha
21264-like machine.  The Pentium 4 machine was studied
by  Sprangle and Carmean [7] using IPC degradation
factors for adding cycles to critical processor loops.   All
of these studies report an optimum pipeline depth in the
range of 8 to 10 FO4 inverter delays, including both logic
delay and latch overhead.  The theory of Hartstein and
Puzak [5] is able to quantitatively account for the
simulated optimal pipeline depths obtained for four
different microarchitectures: z-Series mainframe, Alpha
21264, Intel’s Pentium 4, and PowerPC.

Consideration of power constraints [8, 9, 10] in
microprocessor design has been a much more recent
concern.  As power becomes an important consideration,
two possible design strategies present themselves.  One
strategy is to design for the best possible performance,
subject to the constraint that the power be just below some
maximum value, which can be effectively dissipated by the
packaging environment.  The other strategy, which we
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study here, is to define an appropriate power/performance
metric, and optimize the design to that metric.  This latter
approach has proven to be much harder than one might
think, in that the best metric to use still remains an open
question.  Various authors [8, 9, 10, 11] have argued for
metrics ranging through the choices: , BIPS3/W

 and , where BIPS (Billion InstructionsBIPS2/W BIPS/W
/ sec) is the performance measure and W (watts) is the
power dissipated.  As was done in Srinivasan et. al. [12],
we study all of these metrics together.

The recent study by Srinivasan et. al. [12] provides the
first comprehensive look at the power/performance
optimization problem, and in many ways our treatment
follows from their work.  They formulate a pipelined
processor power model, which allows them to study the
relative importance of power and performance in the
optimization problem.  They go on to vary many of the
parameters to explore the design space.  What we have
done is to combine the performance model of Hartstein
and Puzak [5] with the power model of Srinivasan et. al.
[12], and solve the resulting power/performance model for
a range of metrics analytically.  Our simulations, being for
a different machine architecture, both extend their results
and highlight different features of the optimization
problem.  We solve the complete theoretical problem
analytically, and can therefore analyse a more robust set of
conditions than were treated in the previous work.  We
were also able to perform detailed comparisons of theory
and simulation for all of the metrics studied in a far more
comprehensive manner than was previously possible.

Specifically, in this paper we show that as dynamic
power increases in importance, the optimal pipeline depth
shifts to shorter pipelines.  In a similar vein clock gating
moves the optimum position to deeper pipelines.  Increases
in leakage power, which is becoming increasingly
important in processor design, also pushes the optimum
pipeline depth to larger values.  Finally, we show that the
optimum pipeline depth is highly dependent on the two
exponents governing this problem, the exponent in the
power/performance metric, and the exponent governing the
growth of the number of latches in a design with increasing
pipeline depth.

2.  Theory

We begin our theoretical treatment of the
power/performance optimization problem by starting with
expressions for performance and power derived in
previous papers [5, 12].  For the performance metric we
utilize Eq. 8 from Hartstein and Puzak[5].  This expression

. (1)T/NI = ( to
� + �NH

NI
tp) +

tp

�p + �NHto

NI
p

gives the time ( ) per instruction ( ) as a function ofT NI

numerous parameters:  the total logic delay of the
processor ( ), the latch overhead for the technology ( ),tp to

the number of pipeline stages in the design ( ), the numberp
of pipeline hazards ( ), the average degree ofNH

superscalar processing ( ) and the weighted average of the�
fraction of the pipeline stalled by hazards ( ).  Finding the�
optimum pipeline depth with performance as a metric,
involves taking the derivative of Eq. 1 with respect to ,p
and setting it equal to zero.  The optimum pipeline depth is
then given by:

. (2)popt
2 =

NItp

��NHto

We derive our expression for power from Srinivasan,
et. al. [12] as

 , (3)PT = (fcgfsPd + Pl)NLp�

where the total power ( ) is composed of dynamic ( )PT Pd

and leakage ( ) power.  In this expression we assume thatPl

the majority of the power consumed in the processor is
associated with latches, including clocking; and that the
dynamic and leakage power factors are per latch.  The
dynamic power is multiplied by two factors: the degree of
clock gating ( ), which can alter latches from switchingfcg

on a given cycle, and the processor frequency ( ).  Otherfs

factors are assumed to be subsumed  in our definition of 
.  Since  and  are per latch powers, we mustPd Pd Pl

multiply by the number of latches, , where  is theNLp� NL
number of latches per pipeline stage.  If the number of
latches grows  linearly with  the number  of pipeline
stages, .  However, Srinivasan, et.al.[12] have� = 1
argued that the number of latches in a pipeline stage grows
super linearly with the number of pipeline stages.
Following them, we take , but keep  as a� = 1.1 �
parameter throughout our calculations.  It should also be
noted that our definition of  is somewhat different fromPd

Srinivasan, et.al.[12] in that we have explicitly taken the
factors  and  out of their expression for .  Thefcg fs Pd

units for  and  are therefore different as well.Pd Pl

Rather than choose a particular power/performance
metric for study, we have chosen to develop an expression
that encompasses all  of  the metrics commonly
considered, , , and .  Now,BIPS3/W BIPS2/W BIPS/W
within a scale factor, , so the generalBIPS = (T/NI)−1

power/performance metric ( ) we have chosen isMetricP/P

, (4)MetricP/P = ((T/NI)m � PT)−1
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where the exponent, , covers all of the metrics needed.m
Following the methodology of Hartstein and Puzak [5], we
form the derivative of our general power/performance
metric, set it equal to zero, and solve for the optimum
pipeline depth, .popt

In order to carry out this calculation, we need to specify
how some of the factors in Eq. 3 change as pipeline stages
are added to a design.  We have already explicitly
considered how the number of latches grows with
pipelining.  However, both the frequency and clock gating
factors change with pipelining.  Frequency is expressed in
terms of cycle time, [5]. If wefs = 1/ts = (to + tp/p)−1

do no clock gating, then .  Partial clock gatingfcg = 1
leads to a fractional value for .  However, a particularlyfcg

interesting case arises if we have complete clock gating on
a fine grained scale.  The circuits and latches only switch
with work changes; to first order, pipelining itself does not
lead to additional switching.  However, it has previously
been shown that pipelining can lead to better performance.
This secondary effect can lead to changes in the switching
behavior.  The net result is that the combined effects, of
the increased frequency and reduced clock gating
switching with pipelining, become proportional to the
performance, .  The effective switching(T/NI)−1

frequency is proportional to the number of instructions
executed per unit time.  That is we can make the
substitution, .  We will apply thisfcgfs � (T/NI)−1

approximation in a later portion of this paper.
Taking the derivative of our power/performance metric

with respect to  and setting the result equal to zero yieldsp
a quartic equation in .p

. (5)A4p4 + A3p3 + A2p2 + A1p + A0 = 0

Although quite straightforward to derive, writing the
expressions for all of the  terms is not very instructiveAn

because  they  are  very  lengthy.   However,  the  term 
 is particularly important.  Most ofA0 = (� − m)�tp

3Pl

the   terms are positive, and in order for Eq. 5 to have aAn

solution with a positive value for p (a necessary
requirement for a real physically meaningful solution), A0

must be negative.  This requires that .  Therefore,m > �
for the case  , corresponding to the metric ,m = 1 BIPS/W
no solution is possible.  This means that the optimum
design point is guaranteed to be a single stage pipeline, or
rather no pipelining.  If  cannot be negative, forA0
instance if leakage is negligible, then there are even more
restrictive conditions on   that can be derived  from otherm

 terms.  The next more restrictive condition, derivedAn

from , is that , which leads to similarA3 m > 2�

considerations for a  metric as were justBIPS2/W
discussed   for  the     metric,  i.e.  neither   the BIPS/W

  metric nor the   metric yield pipelinedBIPS2/W BIPS/W
solutions.

2.1  Solutions for a Limiting Case ( )m � �

Before attempting to solve Eq. 5 for the general case, it
is instructive to recover the solution, Eq. 2, for the case of
optimizing only on performance.  This can be done by
noting that for the metrics we have been considering, as m
gets larger, performance becomes a more and more
important part of the metric at the expense of power.
Indeed in the limit , we should recover Eq. 2 as am � �
solution.

Taking the limit of Eq. 5 with  simplifies the m � �
 terms, but still leaves a quartic equation, and the termsAn

are still too large to conveniently include here.  However,
with the assumption that the two solutions, represented by
Eq. 2, are valid, it becomes relatively easy to factor Eq. 5
and obtain the four solutions.  Eq. 2 gives two of the
solutions, with only the positive one being physically
meaningful, and the other two are:

(6a)p = −tp/to

and

. (6b)p = − tpPl

Pd+toPl

Both of these are negative solutions and not physically
meaningful.  These extra solutions were introduced in the
process  of  forming  Eq. 5  and  then  taking  the  limit  as 

, rather than formulating the problem to only havem � �
a performance metric as was done previously [5].

More guidance in attacking the general problem can be
obtained by plotting Eq. 5 using typical values of the
parameters.  A typical case is shown in figure 1.  Solutions
are obtained at the points that the function crosses the x
axis on  the  graph.   One  can  see  that  there are four zero
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Fig. 1 is a plot of  Eq. 5 as a function of p.
The zero crossings are the solutions to Eq. 5.
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crossings, but only one of these is positive. This
demonstrates that all four of the solutions are real, and not
complex, a condition  by no means guaranteed for a
quartic equation. This also shows that there is only one
physically meaningful solution.  Additionally, it  should be
noted that the solution at  corresponds to thep = −55
solution   Eq.  6a  of  the  limiting  case;  and   that   the  
solution  near  corresponds to Eq. 6b.  Byp = −0.5
varying the parameters and replotting figure 1, it becomes
clear that these two solutions are largely stationary and not
dependent on the other parameters, not contained in Eqs.
6.  This leads one to surmise that Eqs. 6a and 6b might
also be solutions of the general Eq. 5, as well as solutions
of the limiting case.

2.2  General Solution

With this guidance, we were able to factor the solution
in Eq. 6a out of Eq. 5, leaving a cubic equation to be
solved.  Further analysis shows that Eq. 6b is only an
approximate solution to Eq. 5.  This term does not factor
exactly out of Eq. 5, but numerical analysis shows that the
deviation from the true solution is less than 5%.
Therefore, we take both Eqs. 6a and 6b to be solutions to
the general case within this accuracy.  Eq. 6a is an exact
solution, and Eq. 6b is an approximate solution.  This
leaves the following approximate quadratic equation,
which contains the solution of interest.

(7)B2p2 + B1p + B0 = 0

where

B2 = (� + m)� NH

NI
to

(8)B1 = �� NH

NI
tp + ��to +

Pd�
NH
NI

tp

Pd+toPl

B0 = (� − m)�tp + �Pdtp

Pd+toPl

Writing the solutions to this quadratic equation, one of
which is positive and the other negative, is little better than
substituting the  coefficients into the well knownBn
quadratic formula.  Since it is not possible to simplify the
expression very much, we have chosen not to do so here.
However, several important results can be obtained from
the solution to Eq. 7, that can still be seen from the
equation itself.  Note that the condition for positive
solutions, , is clearly preserved in this approximatem > �
solution.  We also note that while  is a necessarym > �
condition for a real solution, it is not sufficient because of
the additional term in .B0

Looking carefully at Eq. 7, we can recover all of the
sensitivities of the optimum solution, which have been
discussed for the performance only optimization [5].  If the
number of hazards, , is increased, the coefficients, NH B1

and , get larger.  This means that  must get smaller,B2 popt

in agreement with previous findings.  The optimum design
point moves to shorter pipelines. Similarly, if  increases,�
it leads to a decrease in .  The analysis for , , and popt � tp

, is more difficult because there are competingto

dependencies to be considered.  However, in the final
analysis, all of the dependencies discussed in previous
work [5] are still valid when power is also included.  As
the degree of superscalar processing, , increases, the�
optimum pipeline depth decreases; and as the ratio tp/to

increases, there is more opportunity for pipelining.

3.  Simulation Methodology

In order to compare our optimum power/performance
theory to an actual microprocessor design, we have used a
proprietary simulator.  The simulator uses design
parameters that describe the organization of the processor
and a trace tape, as inputs.  It produces a very flexible
cycle accurate model of the processor.  With this tool we
are able to model numerous pipeline designs, various issue
width superscalar designs, and either in-order or
out-of-order execution processing.  We also had the
availability of 55 traces, encompassing traditional (legacy)
workloads, “modern” workloads, SPEC95 and SPEC2000
workloads.  The traditional workloads include both
database and on-line transaction processing (OLTP)
applications.  The modern workloads were real, substantial
workloads, written in either C++ or Java.  These traces
were carefully selected to accurately reflect the instruction
mix, module mix and branch prediction characteristics of
the entire application, from which they were derived.   
This tool has mainly been used for work on IBM zSeries
processors.

In order to build a model to explore the above theory it
is useful to be able to expand the processor pipeline in a
uniform manner.  The theory assumes that the processor
logic can be uniformly divided into p stages.  In modeling,
it is not practical to repartition the pipeline for each new
design.  Instead we used the pipeline shown in figure 2.

This is the pipeline model of a 4 issue superscalar,
out-of-order or in-order execution machine.  The model
can handle zSeries code, so that register only instructions
(RR), as well as register / memory access instructions
(RX), must be executed efficiently.  The pipeline has 2
major instruction flow paths.  The RR instructions go
sequentially    through    Decode    -    Register  Rename   -
Execution Queue - Pipelined E-Unit - Completion - Retire.
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The RX instructions, including loads and stores, add to
this pipeline the sequence: Address Queue - Pipelined
Address Generation - Cache Access, between the register
rename and execution queue stages.  For an in-order model
the register rename stage is skipped.

This is the base pipeline we have modeled.  In testing
the theory we utilize the flexibility of our simulator model.
In particular we expand the pipeline depth by adding
stages “uniformly”.  We insert extra stages in Decode,
Cache Access and E-Unit Pipe, simultaneously.  This
allows all hazards to see pipeline increases.  Hazards,
whose stalls cover a larger fraction of the pipeline, see
larger increases due to the increased pipeline depth.  In
addition to expanding the pipeline for this study we needed
to contract the pipeline in as uniform a manner as possible.
We did this by first combining multiple stages of the same
unit, execution, address generation, cache access, etc.  We
then started combining units, such as decode and address
generation on the same cycle.  Using this procedure, we
constructed models ranging from 2 pipeline stages up to 25
pipeline stages, measured between the beginning of decode
and the end of execution (for the shortest pipelines the
depth from fetch to retirement was the same as the depth
from decode through execution).

Since a 2 or 3 stage pipeline model really won’t process
instructions out of order to any great extent, we have used
an in-order execution model in this study.  Hartstein and
Puzak [5] explored both in-order and out-of-order models
and found only minor differences in the pipeline depth
optimization.  These differences could be accounted for by
changes in the superscaling parameter, , and the pipeline�
hazard parameter, .  By using an in-order model, we�
avoid additional effects of changing the degree of out of
order processing with changing pipeline depth, particularly
at very short pipeline lengths.

As well as monitoring performance on a cycle by cycle
basis, we have constructed a power model, to model the
power usage on a cycle by cycle basis.  We monitor the
usage of each microarchitectural unit of the processor
every cycle, and use this information to calculate the
related power.  Each unit is assigned a power factor, and

we calculate power for both a complete clock gating model
and a non-clock gating model.  In the clock gating model
we utilize the usage information for each unit, whereas in
the non-clock gated model, we assume that all units are
active each cycle.

Since in the model we pipeline individual units, we
assume that the power of each individual unit scales
according to the latch scale factor , with  being thep� p
pipeline depth of the actual unit, not the overall pipeline
depth.  When we combine two separate units into the same
cycle, we assume that the intervening latches can be
eliminated.  Therefore, the power assigned is the greater of
the power requirement for each unit.  We have assumed
that whichever unit uses more power, also needs to
preserve more state for later pipeline stages. 

When we run a simulation, we monitor the power, and
can therefore determine how the power usage and latch
count actually scale with overall pipeline depth.  Figure 3
shows the latch count scaling.  In order to get the overall
latch count to scale with an exponent, , the� = 1.1
individual unit latch counts needed to grow faster, over the
range of our simulations, with an exponent,  .  In� = 1.3
comparing simulation with the theory we utilize this
observed value of the exponent, .� = 1.3

4. Simulation Results

Each of the 55 workloads was simulated with pipeline
depths ranging from 2 stages to 25 stages.  Even though
we model the complete processor pipeline, we only refer to
the stages between decode and execution as the pipeline
length.  We determine the entire logic delay time in the
same way.  To compare with theory, we use the detailed
statistics obtained from a simulator run at one particular
pipeline depth for each workload to determine the
parameters in Eq. 4. Two of the parameters,  and ,NI NH

are simply enumerated, but  and  require more extensive� �
analysis of the details of the pipeline and the particular
distribution of instructions and hazards in each simulation

  ����� ��� �� ��

�� �� ��

���� �� ����� 	
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Fig. 2 shows the pipeline modeled in this study.  The stages
include: Decode, Rename, Agen Q, Agen, Cache Access, 
Execute Q, Execute, Completion and Retire.
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Fig. 3 shows the growth in the number of latches as the
pipeline depth increases.  The best fit power law is shown.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003) 
0-7695-2043-X/03 $17.00 © 2003 IEEE 



run.  The parameters,  FO4 and  FO4,tp = 140 to = 2.5
were chosen to represent a particular technology.

Figures 4a, 4b and 4c show simulated results for three
typical workloads, one a “modern” workload, another a
SPEC95 integer workload and the last a SPEC2000
floating   point   workload.     In   these   figures   we   plot

  for various pipeline depths.  Data are plottedBIPS3/W
for both the case of fine grained clock gating and no clock
gating.  The non-clock gated data fall below the clock
gated data because of the larger power usage in the latter
case.  The  scatter in  the data is  indicative of  the fact that

the real pipeline boundaries chosen give discontinuous
results, particularly for short pipelines.  The solid curves
are plots of Eq. 4 with the only adjustable parameter being
the overall scale factor.  

The theory  with clock gating utilizes the
approximation, , discussed in a previousfcgfs � (T/NI)−1

section.  The non-clock gated theory assumes .  Asfcg = 1
can be seen from the agreement between the theories and
the simulated results over a wide range of parameters, the
theory gives a reasonable account of the simulations.  As
such we have obtained an important understanding of the
power/performance optimization problem and the relevant
approximations.  Deviations between the theory and
simulations highlight the fact that the theory is only an
approximation.  We observe that clock gating pushes the
optimum pipeline depth to larger values, tending toward
the rather large values obtained from performance only
optimization.  This is a natural trend, in that the larger the
role of power in the optimization problem, the shorter the
pipeline depths predicted and observed.  In fact as we have
already seen, for a  metric, a single stage designBIPS/W
is optimal.

These considerations are further born out by the data in
figure 5.  Here we plot the various metrics as a function of
pipeline  depth  for  the  clock  gating  example  of  the
same workload as shown in figure 4a.  In the figure we see 
optimum pipeline depths (peaks) for  and BIPS BIPS3/W
, but no optima for  or .  The latterBIPS2/W BIPS/W
cases show the optimum metric for a 1 stage design.  Even
though it was theoretically  possible to get an optimum  for

, the particular parameters have moved thisBIPS2/W
optimum point below 1.

It is important to note that without considering power
for the optimal design point, the optimum for this
workload gives a pipeline depth of about 20 stages,
corresponding to a design of 9.5 FO4, including latch
overhead.  When power is taken into account  the optimum
has moved to 7 stages, or a 22.5 FO4 per stage design.
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Fig. 4a shows a comparison of theory and simulation for
a "modern" workload, both with and without clock-gating.  
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Fig. 4b shows a comparison of theory and simulation for
a SPECint workload, both with and without clock-gating.  
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Fig. 4c shows a comparison of theory and simulation for a
floating point workload, both with and without clock-gating.  
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Fig. 5 shows four different metrics as a function of pipeline
depth.  Both theory and simulation are shown.
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This latter result is from the best theoretical fit to the
simulation results.  If instead we take the simulation results
on their own, do a blind least squares fit to a cubic
function and find the peak, the optimum occurs at 9 stages,
corresponding to an 18 FO4 design point.  For these
numerical results we have assumed that leakage power
accounts for 15% of the power usage.  We note that
Srinivasan et. al. [12] find an optimum design point of   18
FO4 from simulations, based on a PowerPC processor.

This analysis can be carried one step further by
performing our least squares fit on the data from all of the
workloads simulated.  We do a least squares fit to a cubic
equation, verify that the fit is a smooth curve through the
data points, and then obtain the maximum of this equation.
We take this to be the optimum design point for a
microprocessor running the particular workload.  The
distribution of optimum design points, obtained in this
way, for all of the workloads is shown in figure 6.

We get a distribution of optimum pipeline depths
centered around a pipeline depth of 8 stages.  This
corresponds to a per stage cycle time of 20 FO4.  The
optimum pipeline depth for a performance only
optimization [5] was found to be 22 stages, for a cycle
time of 8.9 FO4.  Clearly, accounting for power in the
optimization has a profound effect on the optimum design
point.

One can gain further insight into the nature of this
distribution by sorting the various types of workloads and
replotting this distribution.  The results are shown in figure
7. Different types of workloads clearly have different
characteristics. Traditional workloads (programmed in
Assembler), show a peak at 9 stages (18 FO4).
SPECINT95   and   SPECINT2000  workloads  show  the
peak at 7 stages ( 22.5 FO4 ).  Modern workloads
(programmed in C++ or Java) show the peak between 7
and 8 stages (about 21 FO4).  Floating point workloads
cover the whole range between 6 and 16 stages for the
optimum.  These very large pipeline depths come from 

workloads with a large number of floating point operations
and fewer pipeline hazards.  In our model floating point
instructions are assumed to execute individually and take
multiple cycles to complete.  This greatly reduces the
degree of superscalar processing, leading to large optimum
pipeline depths.

5. Discussion

Including power along with performance in the pipeline
optimization problem has a profound impact on the depth
of the pipeline that is optimum.  In the method of obtaining
that optimum discussed above, that design point, averaged
over all of the workloads, was found to be at 8 stages (20
FO4) as opposed to an optimum design point of 22 stages
(8.9 FO4) for a performance only optimization.  This
result depends  on  the  selection  of  the  relevant  metric  
as .  It also depends on the method of extractingBIPS3/W
the optimum depth.  If instead of fitting the data to a
smooth curve drawn through the data points, the least
squares fit, one were to pick the best fit of our theoretical
curves, the optimum depth would be about 20% shorter.
The predicted optimum would be 6.25 stages, for a cycle
time of 25 FO4.  Of course one could not design a pipeline
with 6.25 stages, one would have to choose either 6 or 7
stages.

It is unclear which analysis is better in this case.  The
one we presented first is solely based on the simulation
data and drawing the best smooth curve through that data.
On the other hand, the second analysis utilizes a first
principles theory, which predicts the major features of the
results quite well, but contains necessary approximations.
For these reasons, it is not completely clear which method
is the most trustworthy, and we have presented both results
here.  It is reassuring that the differences between the two
approaches are fairly small, leading to increased
confidence in the whole analysis.

The details of how the analysis is done does not change
the fact that the optimum pipeline depth is found to be
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Fig. 6 shows the distribution of observed optimum pipeline
depths for all workloads.
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Fig. 7 shows the distribution of optimum pipeline depths
for different classes of workloads.
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much shorter when power is taken into account.  This
seems intuitive, in that shorter pipelines use less power.
The more important power is to the design, the shorter the
pipeline that should be used.  This also helps to explain
why  metrics  that  are  more  dependent  on  the  power, 

 and , tend to optimize at only a singleBIPS/W BIPS2/W
stage.   The metrics,  which are  less  dependent  on  
power,  and , optimize at larger depths.BIPS3/W BIPS
The latter metric has no dependence on power at all and
optimizes at the largest depth.

This also explains why clock gating pushes the
optimum to greater pipeline depths.  Clock gating reduces
the power for a given performance.  Therefore, one can
push the pipeline to larger depths before the power
requirement becomes too onerous.  The theory quantifies
all of these dependencies.

The theory does much more than just explain the
simulation results.  It can be used to predict the correct
design point when new technologies, new workloads, or
just changed microarchitectures are involved.  All of the
input parameters to the theory can be obtained with either
no simulations or at most the simulation of a single
pipeline depth.  In calculating our theoretical curves we
obtained , , and  from a single simulation of aNH/NI � �
workload.  This allowed for the calculation of the entire
curve.  As was seen, this gave a good account of the
simulations for all of the other pipeline depths.  If one also
needs to understand the detailed deviations from this
general theory more detailed simulation would be required.

The theory allows us to explore the consequences of
greater and greater leakage power on the optimum design
point.  Figure 8 shows normalized theoretical curves for a
particular SPEC95 integer workload with varying amounts
of assumed leakage power in the processor.  To obtain  
this figure, the leakage power was increased, while the
dynamic power was held constant.  The leakage power was
varied between 0% and 90% of the total power dissipation.
It can clearly be seen that as leakage power grows, the
optimum  pipeline  depth  increases.  In this particular case

the optimum design point changes from 7 stages all the
way up to 14 stages as the leakage power increases from a
negligible amount to 90% of the total.  For this workload
the optimum design point had been at 8 stages for a
leakage power of 15%.  This argues that it is dynamic
power that pushes the optimum pipeline depth to shorter
pipelines, whereas leakage power has the opposite effect.  

We can understand this result as a complex trade-off
between power and performance. Leakage power scales
linearly with the number of latches, whereas dynamic
power scales much faster because, as the pipeline depth
increases, both the frequency and the latch count increase.
If dynamic power is dominant, the power/performance
trade-off has a higher power component, leading to shorter
optimal pipeline depths; whereas if leakage power is
dominant, the power component is lessened somewhat,
favoring deeper pipelines. This complex interplay leads to
the observed behavior. 

The theory also allows us to explore the critical
dependence of the optimum design point on the latch
growth factor, .  Figure 9 shows the metric, ,� BIPS3/W
for various values of , for the same workload as shown in�
figure 8.  It is abundantly clear that the optimum design
point is a strong function of .  In fact if  becomes larger� �
than 2, the theory points to the optimum as a single stage
design.  In this paper we have chosen a value of ,� = 1.3
since that translated into an overall latch count scaling of 

, which was the factor used by Srinivasan, et. al. [12].  p1.1

An equally compelling choice could have been ,� = 1.1
the growth factor they obtained by studying individual
units.  This gives a nearly linear scaling with p.  As is
evident in figure 9, that has a large effect on the optimum
design point.  This seemingly small change in  is enough�
to shift the overall average optimum from 22.5 FO4 to 17
FO4.  Much more work needs to be done to accurately pin
down the value of this extremely important parameter. 
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Fig. 8 shows how the optimum pipeline depth varies
with increasing leakage power.
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Fig. 9 shows how the optimum pipeline depth varies
with changes in the latch growth exponent.
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6. Summary

A theory has been presented of the optimum pipeline
depth for a microprocessor taking into account both power
and performance.  It was found that only one optimal
solution exists for this problem and the nature of that
solution has been characterized.  For some
power/performance metrics one finds that the optimum
design contains only a single stage in the processor,
whereas for other metrics, including the performance only
metric, a pipelined design results.  Consideration of power
in the optimization problem always leads to shorter
pipelines than if power were no consideration.

Simulations were performed for 55 workloads, covering
traditional, SPEC, and modern workloads on a 4 issue,
in-order superscalar microprocessor model.  The theory
and simulations were found to be in good agreement.  If
one takes an average over the different analysis methods
and workloads, the optimum pipeline depth was found to
be 7 stages, corresponding to a 22.5 FO4 design point.
Significant differences are seen between different types of
workloads, which can be attributed to the different
processing requirements of the different workloads.  The
SPEC integer workloads are seen to be less stressful of the
processor than real workloads of various types.

The parameters, which have the greatest impact on the
optimum design point, are the two exponents, m and .�
The theory is so sensitive to these parameters because they
occur in the exponent.  Unfortunately, these parameters are
perhaps the least well characterized.  The value of the latch
growth factor depends on details of the logic and circuit
design of the particular pipeline and microarchitecture
being considered.  Which particular exponent, m, to use in
the power/performance metric is still an open question.
Indeed these considerations led us to formulate a theory,
which kept these values as parameters.  The theory is
applicable for all values, but the numerical results depend
sensitively on the chosen values for these parameters. 

Finally, it has been shown that as leakage power grows
in a processor, the optimum design favors deeper
pipelines.  Clock gating has also been seen to have a
similar effect.  

This theory can be used to investigate numerous
dependencies as new microarchitectures, workloads, or
new technologies arise.  This can be done without the need
for the detailed simulations, which were used to verify the
theory.
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