
IA-32 Execution Layer: a two-phase dynamic translator designed
to support IA-32 applications on Itanium®-based systems
Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang and Yigal
Zemach.

Abstract
IA-32 Execution Layer (IA-32 EL) is a new
technology that executes IA-32 applications on
Intel® Itanium® processor family systems.
Currently, support for IA-32 applications on
Itanium-based platforms is achieved using
hardware circuitry on the Itanium processors.
This capability will be enhanced with IA-32
EL—software that will ship with Itanium-based
operating systems and will convert IA-32
instructions into Itanium instructions via
dynamic translation. In this paper, we describe
aspects of the IA-32 Execution Layer
technology, including the general two-phase
translation architecture and the usage of a
single translator for multiple operating
systems. The paper provides details of some
of the technical challenges such as precise
exception, emulation of FP, MMX™, and Intel®
Streaming SIMD Extension instructions, and
misalignment handling. Finally, the paper
presents some performance results.

1. Introduction
The Intel® Itanium® processor family (IPF) is
primarily designed to provide leading performance
and capabilities for 64-bit applications and
operating systems (OSes). The ability to execute
IA-32 applications is needed for flexibility and easy
migration from existing IA-32 systems to Intel®
Itanium® 2-based solutions. Primary, performance-
sensitive applications are encouraged to be ported
to Itanium architecture, while secondary, non-
performance critical applications and applications
or libraries where source code is not available, can
continue to execute as IA-32 code.
Currently, IA-32 support on IPF is available
through hardware circuitry. IA-32 Execution Layer
(IA-32 EL) is a new technology that provides the
same capability, executing IA-32 applications on
IPF through software. IA-32 EL is dynamic binary
translation software that translates IA-32
instructions into Itanium instructions. IA-32 EL
runs on both Windows* and Linux* operating
systems and can accelerate IA-32 application
performance compared to the existing hardware
solution. Field tests verified IA-32 EL robustness

and performance benefits when compared with the
hardware circuitry. IA-32 EL handles all IA-32 user
code binaries and does not rely on specific software
conventions. IA-32 EL is a software-only solution
requiring no special hardware assists. The main
challenges were to provide hardware-level quality
that correctly executes IA-32 applications, without
compromising performance.
IA-32 EL has the following characteristics:
1. Aggressive dynamic information collection

during the first translation phase and usage of
that information for a second translation phase

2. A single, OS-independent binary for translating
IA-32 applications on multiple OSs

3. A mechanism for precise exception handling
This paper is organized as follows: Section 2
describes the general architecture of IA-32 EL.
Section 3 describes the IA-32 EL solution for
providing one translator that runs on multiple,
native Itanium-based OSes. Section 4 explores
mechanisms for generating and maintaining a
consistent IA-32 state, as required for providing
precise exception handling and for enabling a
debugger to run on top of the translator. Section 5
focuses on several technological challenges faced in
developing IA-32 EL, i.e. floating point, Intel®
MMX™ technology, and Intel® Streaming SIMD
Extensions (SSE) modeling, and misalignment
handling. Section 6 discusses performance and
examines benchmark data.

2. Overview
This section describes the general architecture of
IA-32 EL. General background on binary
translation technology is given toward the end of
this paper in the “related work” section. [1, 2, 10,
16, 18]

General Architecture
IA-32 EL is targeted for application-level translation
only. Therefore, it runs on top of the native 64-bit
operating system, like the FX!32* [6,8] and Hewlett
Packard’s PA-RISC* translator [23], and unlike the
Transmeta* code morphing software [7]. IA-32 EL
is loaded to the same user space as the translated
application and it operates in the user level only. The
application image(s) and data remain unchanged,
similar to their layout on the original IA-32 platform.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

The translator is architected to work on multiple,
native Itanium-based OSes. This ability is achieved
by separating most of the translation engine and
algorithms into an OS-independent module
(BTGeneric), which interfaces with a small glue
layer that is OS dependent (BTLib). These two
components interact via a well-defined API. BTLib
is responsible for providing all system services,
such as memory allocations.
IA-32 EL is a two-phase dynamic binary translator.
It caches translations within the same process, but
does not maintain them beyond the translated
process. The first phase, cold code translation, is
designed to be fast, with minimal optimizations
and overhead and uses instrumentation to identify
hotspots. The second phase, hot code translation,
retranslates and further optimizes those hotspots.
Cold code translation is done on a basic-block
granularity, with 4-5 IA-32 instructions per block
on average. Hot code translation is applied to hot
traces on a hyper-block granularity, with about 20
IA-32 instructions per block on average. The entire
process is shown later on in Figure 2.

Cold Code Translation
Cold code is generated at basic-block granularity.
However, simple analysis is done on neighboring
blocks (1-20 basic blocks) for better code
generation, as shown in Figure 1. The analysis starts
from the current instruction pointer (IP). It includes
decoding, building a flow graph, computing the
liveness of IA-32 EFlags bits, and tracking floating
point (FP) stack changes between blocks.

Figure 1-Cold Code Translation

This process enables the translator to eliminate
redundant IA-32 EFlags updates and speeds up FP
code, as described in chapter 5. The analysis is
followed by code generation of few basic blocks
only. (Unexecuted blocks are never generated.)
Code generation is accelerated by using prepared
translation templates for each IA-32 instruction
variant. These templates are patched according to the
instruction parameters and environmental factors.
The templates are carefully hand optimized to use
the best Itanium instruction sequences.
Cold blocks contain instrumentation to collect
information that is later used for hot translation. The
instrumentation includes a basic-block use counter,
an edge counter for blocks ending with conditional
or indirect branches, and misalignment detection.
This is different than most existing dynamic
systems, which perform such instrumentation during
interpretation [3, 6, 7, 9, 21, 23]. Examples of
instrumentation in translated code are given in [4,
22]. Others [5, 17] suggest using hardware for the
same purpose. The advantage of adding the
instrumentation in cold blocks is that it provides
more precise information for later use, since cold
blocks can run longer than interpreted code and still
maintain low overhead.
Translated blocks usually jump directly from one
block to another. Blocks ending with indirect
branches that are not predicted use a fast lookup
table to find the branch target. In cases where a
block jumps to an address that has not been
translated yet, the initial generated code contains a
branch to the translator code which is later patched
to generate a direct branch between the blocks.
Several variants of cold blocks can exist to handle
special cases, including FP exceptions, self-
modifying code (SMC), and others. Cold blocks may
be recycled due to garbage-collection, unloading of a
library, or SMC detection1.

Hot Code Translation
When the use-counter in a block reaches the heating
threshold, the instrumentation code of that block
triggers the registration of the block as an
optimization candidate by branching out to a special
entry in the translator. When enough blocks have
registered or one block has registered twice, an
optimization session (hot code translation) starts.
This algorithm enables evaluation of several hot
blocks at once, and thus uses more educated merging
and splitting decisions. On the other hand, blocks

1 Writable page translations include code for
detecting possible changes from the code used for
translation.

 Local Code Discovery

 Cold Code Generation

 Translated Code (64-bit) Blocks

IA-32 Image

 Track EFlags & FP Stack

IA-32 application binary

Loader

Translator

 Cache Translation and Connect
Predecessors

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

belonging to tight loops will not wait too long due to
the second-registration trigger. About 5-10% of the
cold blocks reach the heating threshold2.
The first step in hot block translation is to select a
trace of IA-32 basic blocks that compose a hyper
block – single entry, multiple exits. This selection is
based on the use and edge counter information
collected during the cold code run of those blocks.
Predication can be used to include both sides of
if...then… and if…then…else… structures
as part of the linear trace, according to profitability
estimations3. If a loop is identified, it may be
unrolled. Only about 6% of the hot blocks suffer
from a premature exit (with no special penalty).
Next, the original IA-32 code is decoded and
analyzed again. Decoded information is not
maintained from the cold translation. Here, unlike
the fast encoding using binary templates during cold-
code generation, each instruction generates
associated Intermediate Language data structures
(ILs). The ILs represent the target machine
instructions and are contained in a linked-list. The
precompiled binary templates and the IL-generation
are derived from the same template source code.
These templates are written in a special language for
easier maintenance and validation.
During the IL generation phase, the translator does
the following optimizations and preparations:
1. Adds misalignment avoidance code to memory
accesses that were detected by instrumentation as
being prone to misalignment (see section 5).
2. Tracks IA-32 addresses and their values.
Eliminates redundant compound address expressions
typical in IA-32 code, such as
[offset + base + index * scale].
3. Tracks information about values in registers and
uses it for simplifying the translation.
4. Eliminates EFlags generation using techniques
similar to those used in cold-code generation.
5. Analyzes FP stack flow and Intel® Streaming
SIMD Extensions (SSE) format conversions. See
more in section 5 below.
6. Performs other FP optimizations, such as register
allocation and FXCHG elimination (see chapter 5 for
more details).
The translator scans the resulting IL list to build a
data-dependency graph. It removes dead ILs and
marks those ILs needed for side-exits only as
“sideway ILs”. The translator computes weights and
attaches them to individual ILs to signify the relative
importance of scheduling them early. Peepholes,
using dependency information, eliminate additional

2 It heavily depends on the application workload.
3 See [10] for similar considerations

Figure 2 - Overall Code Translation

IA-32 Image

 Code
Discovery

 Generate
Cold Code

 Track
EFlags &
FP Stack

IA-32 Application Binary

Loader

 Blocks Caches
and collected

static / dynamic
information

 Translated Code (64-bit) Blocks

 Optimization
Candidates

Select
Trace

decode

trace prediction
try predication

unroll loops

Generate IL
(Intermediate

Language)
Representation
and apply
IA-32 Specific
Optimizations

track EFlags & FP stack

Misalignment handling
addresses CSE &
memory disambiguation

FP & SSE optimizations

build dependencies graph Schedule;
Apply General
Optimizations
and Prepare for
State
Reconstruction

reorder and bundle

remove dead code

use speculation
rename registers

Encode
Record reconstruction maps

track (partial) reg values

identify sideways

C
ol

d

H
ot

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

instructions.
Next, the scheduler reorders the instructions in the
hot block. ILs are ordered and bundled according to
architectural and microarchitectural limitations. For
better reordering, the translator uses:
• Register renaming4 for anti-dependencies

elimination and for atomicity (state recovery)
support.

• Control and data speculation based on
hardware speculation mechanism and software
techniques, as detailed in Section 4.

The translator builds recovery information that is
used in case of exception or interruption. Sideways
ILs are scheduled outside the main block unless they
can be incorporated efficiently in one of the bundles
of the main trace.
Finally, the encoded block with its information is
placed in the translation cache and connected to its
predecessors.
Overall, hot code translation overhead per IA-32
instruction is about 20 times more than cold-code
translation overhead per instruction.

3. Interaction with the
Operating System (OS)

As an application-level binary translator, IA-32 EL
runs above the 64-bit OS in the application
program’s virtual space and privilege level.
Currently IA-32 EL supports Windows and Linux
OSes for Itanium-based platforms. The configuration
capabilities of these OSes allow assigning IA-32 EL
as the execution vehicle for 32-bit applications,
which makes it completely transparent for the end
user. Once loaded and initialized, IA-32 EL gets
control from the OS in order to run the 32-bit code
of the application within the same virtual address
space. IA-32 EL uses the native OS for multiple
functions, such as acquiring system resources
(memory, synchronization objects, etc.), executing
32-bit system calls issued by the IA-32 application,
signal handling, exceptions and other system
notifications.
To simplify re-hosting of IA-32 EL on multiple OS
platforms and to reduce its validation cost, IA-32 EL
was architected as two components: a major OS-
independent component called BTGeneric and a thin
(about 1% of the IA-32 EL image) OS abstraction
layer called BTLib.
The OS interface is made via the OS abstraction
layer only, which is the only OS-specific
component of IA-32 EL. In other words, any

4 IA-32 Execution Layer allocates the entire 96-
register stack. The translated code operates in the
same frame except for very rare function calls.

system request from a BTGeneric component goes
through an OS-generic interface to BTLib, which in
turn passes it to the underlying OS. Each OS
requires its own implementation of BTLib to be
supported by IA-32 EL.
BTGeneric is implemented in a separate binary
module. The same binary module format is used for
all platforms. BTLib loads the BTGeneric module
at application launch time.
The interface between BTLib and BTGeneric
(BTOS API) is defined on the binary level and
excludes any compiler and OS dependences. This is
a bi-directional protocol, implemented partly by
BTLib and partly by BTGeneric. For example, as
shown in Figure 3, when the translation engine
needs a memory block to store translated code, it
calls a BTOS API function for memory allocation.
This function, implemented by BTLib, redirects the
memory allocation request to the corresponding OS
function. On the other hand, when an exception
occurs in the translated code, the OS calls an
exception handler in BTLib, which in turn calls a
BTOS API function implemented by BTGeneric
and requests a consistent IA-32 state corresponding
to the faulty instruction.
Special attention was devoted to versioning control
between the two components: BTLib and
BTGeneric. Taking into account future
modifications and extensions to BTOS API, as well
as backward compatibility issues, IA-32 EL uses its
proprietary protocol to ensure that BTLib and
BTGeneric versions match each other.

4. Precise IA-32 State Support
without Performance Penalty

A single IA-32 instruction is usually represented in
the translated code by more than one Itanium
instruction. However, if an exception occurs, it
becomes necessary to regenerate a consistent and
precise IA-32 state for the point of exception, based
on the actual Itanium architecture state at that point.
This IA-32 state is required for at least two reasons:
• For proper exception/unwinding handling by

the OS.
• When execution resumes from the start of the

IA-32 instruction, some or all of IA-32 state
may have been changed by the exception
handler.

The problem is more complex for optimized (hot)
code. In hot code, instructions originating from the
translation of different IA-32 instructions are inter-
mixed. Other works [14,15] focus on lazy state
reconstruction using different techniques. This

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Figure 3: Interaction of IA-32 EL with the Operating System during A) process initialization, B)
translation, C) execution of an IA-32 system call, D) exception handling.

section describes how IA-32 EL maintains
atomicity and precise exceptions in cold and hot
code.

Exception Handling
During execution of the translated code, all
exceptions are native (IPF) code exceptions. These
exceptions are different than in the IA-32 code: the
IP is different; the exception code can be different;
and the registers involved are 64-bit registers. Once
an exception is raised in the translated code, the OS
calls IA-32 EL before passing the exception
notification to the IA-32 application itself. IA-32
EL filters out exceptions that refer to the translated
code and converts the Itanium architecture state
information into the corresponding IA-32 state. The
resulting state is then used to simulate the
corresponding IA-32 application exception handler.
As part of this first-time handling, exception code
may be modified by the handler to match the
exception that should have occurred in the IA-32
code. In some cases, the exception must be
nullified, or prevented from further escalation to the
IA-32 application exception handler, because no
IA-32 exception should have occurred at this point
in the original code.
One such example is where the original code is
running with masked FP exceptions and the

translated code requires unmasking the exceptions
to support SSE unmasked exceptions5.

IA-32 State Reconstruction for Cold
Code
Cold code translation needs to guarantee that, on
any exception, the original IA-32 state can be
generated correctly. To achieve that, each IA-32
instruction is translated in such a way that its IA-32
state change happens only after executing the last
Itanium instruction that can fault e.g. memory and
floating-point instructions. Consider the pseudo-
code in Table-1.
In addition, at the beginning of every such
sequence, IA-32 EL saves the IA-32 IP and some
additional information into a dedicated 64-bit
register, called the “IA-32 state register”. Upon
receiving an exception and locating its source in the
cold code, the IA-32 state register is used to map to
the IA-32 IP. IA-32 state information is readily
available in their “canonic” locations, since no IA-
32 state update occurs until the last potentially
faulty instruction has been executed. Note that this
process is not needed for non-faulty IA-32
instructions. The overhead of IA-32 state register
updates is negligible both in terms of time and code

5 IA-32 supports separate masking for FP and SSE
code, unlike Itanium architecture.

Initialize Translator
Check versions

Reconstruct
IA-32 state

Load BTGeneric
Check versions

OS

Delegate to
BTGeneric

Translate Execute

OS OS

Delegate to
Operating System

OS

Allocate
Memory

Execute IA-32
System Service

Exception

Handle
Exception

BTGeneric

BTLib

A) B) C) D)Run IA-32
Application

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

Table 1. In the correct code, r.esp is updated after the memory store is updated. In the incorrect
code, r.esp is updated before the memory store.

size.

IA-32 State Reconstruction for Hot
Code
Reconstructing the IA-32 state in hot code is a
significantly bigger challenge for two reasons:
•

In hot code, Itanium instructions originating
from different IA-32 instructions are usually
inter-mixed, and the IA-32 state (registers) is
often represented by other registers (for
example, in case of register renaming). As a
result, exceptions in hot code may appear in an
incorrect order and redundant exceptions may
occur.

• Hot blocks are composed of several IA-32
basic blocks and may contain branches, loops,
and predicated if then else code
sequences.

In order to support precise IA-32 state restoration
and at the same time aggressively reorder
instructions to produce optimized hot code, IA-32
EL uses commit points. As opposed to a faulty
instruction, a commit point is not an Itanium
instruction, but a “barrier” enabling the translator to
generate a consistent IA-32 state. The translator
then does the following:
1. Associates several faulty points in the code with
a single commit point.
2. Limits reordering between instructions belonging
to different commit points.
3. Requires that, within a single IA-32 instruction
translation, the state update occurs after the last
faulty IPF instruction, similar to cold code case.
To minimize the impact of these limitations, IA-32
EL associates as many faulty instructions as
possible to a single commit point6. The first commit
point is usually set at the beginning of the block,
and is replaced only when the translator encounters
an irreversible faulty instruction (memory store or
branch), or can no longer preserve IA-32 state
elements. The translator copies the original IA-32
state changes into backup registers.
Using commit points makes it possible to
aggressively reorder the instructions, because

6 The translator sets one commit point per 10 native
instructions on average.

providing a consistent IA-32 state is required only
at the very last faulty instruction in a group that
refers to the same commit point. If an exception
happens on any instruction that is located earlier,
the translator ignores (nullifies) it and rolls forward
until the last instruction in the group is reached.

5. IA-32 Specific Optimizations
IA-32 architecture has some unique characteristics
that require special handling in order to achieve
high performance, especially in areas where the
target Itanium architecture differs significantly
from IA-32 architecture.

IA-32 FP, Intel® Streaming SIMD
Extensions, and MMX™ Technology
Emulation
The IA-32 architecture and the Itanium architecture
have a different floating point and MMX
technology model. IA-32 FP instructions refer to
eight 80-bit registers organized in an FP stack (see
Figure 4), and the SSE instructions refer to eight
128-bit XMM registers. The Itanium architecture
supports both FP and SSE instructions using a flat
register file of 128 82-bit registers. The IA-32 FP
stack may contain empty or valid entries
represented in a TAG register. All addressing of the
FPU data registers is relative to the register on the
top of the stack. The register number of the current
top-of-stack register is stored in the TOP of Stack
(TOS) field in the FPU status word. Load
operations decrement TOS by one and load a value
into the new top-of-stack register [ST(0)]. Store
operations store the value from the current ST(0)
register into memory and optionally increment TOS
by one. Most operations access ST(0) as a source

Figure 4. IA-32 FPU Stack

Correct Incorrect

Push eax add r.addr = -4, r.esp;;
st4 [r.addr] = r.eax
mov r.esp = r.addr

add r.esp = -4, r.esp;;
st4 [r.esp]= r.eax

7: 23.0 ←←←←ST(2)

6: 13.0 ←←←←ST(1)
5: 14.0 ←←←←ST(0)
4: -
3: -
2: -
1: -
0: -

TOS=5

Growth
Stack

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

and destination operand. As a result, ST(X) is
arotating register that is determined by TOS
value.In addition, the eight IA-32 64-bit MMX
registers are aliased to the significands of the eight
FP stack registers in their initial positions. On
Itanium processors, MMX instructions operate on
integer registers. The differences between the
architectures pose specific optimization challenges
to the translator. This section focuses on three
specific challenges: emulating the FP-stack,
aliasing FP to MMX registers, and handling
different XMM data formats. For more details, see
[12, 13].
FP stack emulation is challenging for two reasons.
First, mapping a rotating stack into static registers
can result in many move operations whenever the
TOS changes. An alternative approach [6] of
modeling the FP-stack in memory has a high
overhead because of the memory accesses. The
second difficulty is the need to check the TAG
word for each FP register access, in order to raise
the appropriate FP-stack fault in case of a read or
write from an invalid entry.
The FP aliasing to MMX registers is difficult
because the implementation of native register
aliasing requires moving a value from an FP to an
integer register (which models the corresponding
MMX register) following every FP operation, and
from an integer to FP register following every
MMX instruction. Theses moves are extremely
expensive, so another solution is required.
The IA-32 instructions dealing with XMM registers
may use four different data formats: packed-integer,
packed-single, packed-double, and scalar. The
corresponding representations in pairs of Itanium
processor FP registers require conversions when
moving between formats. Forcing each block to
convert its eight XMM simulated registers into
some arbitrary “canonical” format at the entry and
exit of the block is very expensive. So a low
overhead method is also needed in this case.
IA-32 EL uses the following scheme to speed up
such cases: Some speculative assumptions (listed
below) are made in the body of each block, which
enable aggressive optimizations. At the block’s
head, a check is done to validate the assumptions
made when the block was translated. If the check
fails, the translator jumps to a correction code.
Status updates at the end of the block enable the
next blocks to carry their checks.
For the stack emulation problem, IA-32 EL uses
speculative assumptions that the TOS remains
constant for all entrances to the same block, and
that no stack exceptions occur. The block body
translation benefits, since the mapping to Itanium
processor FP registers is fixed, with no rotations or

memory overhead. The block head compares the
actual TOS to the speculated one, and compares the
TAG values to those required to keep stack
operations correct. Static analysis at translation
time marks stack entries that can be either empty or
valid.
When mismatches are detected, these recovery
actions are taken:
•

On TOS mismatch, rotate register values.
• On TAG mismatch, rebuild a special block to

catch the right stack fault.
The speculation success rate observed in this case is
excellent (99-100%). Compiled code in most cases
maintains the same TOS and TAG at the entrance
of a block.
For the FP to MMX register aliasing problem, the
speculative assumptions are as follows:
1. If the block contains MMX instructions, the last
executed FP or MMX instruction prior to entering
the block was an MMX instruction.
2. If the block contains FP instructions, the last
executed FP or MMX instruction prior to entering
the block was an FP instruction.
Hence no integer-to-FP or FP-to-integer moves
occur in the block itself. A single Boolean value
check at the block head is enough to detect
mismatches.
When the check fails, the recovery code copies FP
values to MMX registers or vice versa, and toggles
the Boolean value.
The speculation success rate observed in this case
was also very close to 100%: MMX instructions
and FP instructions are usually not mixed within
the same computation area.
For the multiple SSE formats problem, hot blocks
try to adjust their input/output formats to each
other, according to the order in which they were
generated. The speculative assumption is that the
format set by the previous block is the same as the
one used by the current block, hence no further
conversions are required in the beginning of the
block. The block head compares the required
formats for all XMM registers with the current run-
time status. If the check fails, the code exits the
block to perform the relevant conversions. Again,
the speculation success rate for this case is fairly
good - only less than 0.2% operations required
conversion as observed in the worst case among
SPEC2000 benchmarks.
FXCHG elimination is an optimization specific to
the FP stack. The common IA-32 operations on FP
stack are limited to the stack top. That forces the
IA-32 compilers to do a lot of fxchg operations -
swap two stack values. The limitation does not exist
in the IPF register file; so IA-32 EL can handle the

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

fxchg as implicit renaming instead of generating
copying instructions.

Handling Misaligned Data Accesses
The penalty for misaligned data accesses on the IA-
32 architecture is very low. Consequently, many
IA-32 applications contain a significant number of
misaligned data accesses. On the other hand, the
penalty for misaligned data accesses on the Itanium
architecture is very high, especially in cases where
misalignment is handled by the OS rather than the
hardware – such handling takes on the order of
several thousand cycles. Taken together, these two
facts lead to the conclusion that execution of an IA-
32 application on IA-32 EL, without avoiding data
misalignments, can cause a significant performance
cost. The same conclusion was drawn for FX!32
[8]. On some applications, data misalignment
detection and avoidance performed by IA-32 EL
contributed to a significant speedup. For example
one workload that initially took 1236 seconds to
complete, completed after 133 seconds when
adding misalignment detection and avoidance. This
section describes the data misalignment detection
and avoidance mechanism used by IA-32 EL.
A simple method for detecting and avoiding data
misalignments is to generate each data access with
a test of the data address. In the case that the
address is misaligned with respect to the access
size, the access is done in parts. The following code
shows an example of a two-byte load using this
method:
// test bit0 to see if address is
// 2byte aligned. Predicates p.mis
// and p.al set appropriately.
// Will use p.mis and p.al to predicate
// the following instructions
tbit p.mis,p.al = r.addr, 0
// 2 byte load if aligned
(p.al) ld2 r.val = [r.addr]
// if misaligned load each byte separately
(p.mis) ld1 r.val = [r.addr]
(p.mis) add r.addrH = 1, r.addr
(p.mis) ld1 r.valH = [r.addrH]
// combine the separately loaded bytes
(p.mis) dep r.val = r.valH, r.val, 8, 8

While this method avoids the misalignment penalty,
it incurs significant overhead. Note that the FALSE
predicated instructions do consume cycles. A
method that is low in overhead and high in
coverage was needed.
The method used in IA-32 EL consists of three
stages:
1. Initially in cold blocks, all instructions that may
have a misaligned access are lightly instrumented
so that, if there is a misaligned access in the block,
it branches out to the translator and the block is
regenerated. Note that the instrumentation in this

stage does not provide information on which
specific access was misaligned.
2. Regenerated cold blocks detect and avoid
misalignments. They are more heavily instrumented
to provide detailed misalignment information:
which instructions had misaligned accesses and the
type of misalignment. (For example, for 8-byte
accesses, the translator indicates if the
misalignment was of 1-byte or 4-byte granularity.)
This enables a shorter misalignment avoidance
sequence in hot blocks. The avoidance is achieved
by generating possibly misaligned data accesses in
the manner described in the 2-byte load example
above.
3. During hot code generation, the information from
cold code is examined for each of the cold blocks
that make up the hot block. Each instruction that is
marked as misaligned is generated to detect and
avoid misalignment, much in the manner described
in the 2-byte load example above, but with some
enhancements as follows:
a. The addresses for which misalignment

detections were generated in the hot block are
tracked. If the current address of an access
needs misalignment detection, and the address
is equivalent to, with regard to misalignment,
an address for which detection has already
been done, the result of the earlier detection is
used. (In the 2-byte load example, IA-32 EL
uses the predicates that were set in the
previous t-bit instruction.)

b. The sequence of code that implements the
access when the address is misaligned may be
quite long. In this case, the scheduler moves
all or part of these instructions outside the
translated block code. (They will be branched
to if needed and, after their execution, a
branch will be done back into the block.) This
is similar to how the scheduler handles
sideway instructions.

The mechanism described so far does not handle
behavior changes that occur after the hot block is
generated. Such changes are observed on some
applications. To cope with misalignments that
appear only after the optimized code is generated,
the following actions occur in stage 3: Each
instruction for which no misalignment has been
observed, but is empirically considered to have
significant danger of incurring misaligned access
later on, is instrumented. The instrumentation is
very light in this case. If a misalignment is detected,
the block branches into the translator. IA-32 EL
identifies the hot block in which the misalignment
occurred. The identified block is discarded and
information is recorded to specify that, when the
hot block is regenerated, all such instructions

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

should be generated with misalignment detection
and avoidance.

6. Performance Results
This section presents the performance results of IA-
32 EL translator. The measurements were
performed on a 1GHz Itanium® 2 processor with
3MB L3 cache and 2GB RAM. The results in this
section refer to SPEC CPU2000* benchmarks [20]
and Sysmark* 2002. The IA-32 binaries were
compiled using the Intel® C++ Compiler 6.0 [19].

0%

20%

40%

60%

80%

100%

120%

Figure 5 - SPEC CPU2000* int scores for IA-32
EL compared to native Itanium® processor
performance. Native performance is equal to
100%.

Figure 5 shows the relative SPEC CPU2000 score
compared to native execution (higher is better) of
highly optimized binaries generated by the Intel
compiler for the Itanium 2 processor [19]. IA-32
EL reaches performance level of 65% of the native
performance on integer benchmarks. On mcf,
performance is slightly higher than native
performance due to the much smaller data footprint
of the IA-32 version that use 32 bit data items as
opposed to 64 bit data items used by the native
version.

Time distributution

95%

1%

1%

3%

Hot code
Cold Code
Overhead
Other

Figure 6 - Execution time distribution for
translated SPEC CPU2000* applications.

Time Distribution (Sysmark*)

46%

5%12%

22%

15%
Hot Code
Cold Code
Overhead
Other
Idle

Figure 7 – Same for Sysmark 2000*.

Figure 6 shows the average (and typical)
distribution of execution time for SPEC CPU2000
applications. Note that hot trace selection was
accurate, accounting for 95% of the execution time.
The speedup is the result of running relatively
efficient cold code, generated with minimal
overhead, for long period of time with
instrumentation. Translators using interpretation in
the first phase need to move to hot code generation
much earlier, and thus potentially collect less
representative data. The accuracy of the
instrumentation is especially critical for
misalignment elimination. On such benchmarks, the
hot code performance is 3X better than cold code,
providing another indication of the accuracy of the
hot traces selection and of the high potential of hot
code optimizations.

Figure 7 shows the average execution time
distribution of Sysmark 2000 applications. The
profile of the applications in this benchmark is
different than SPEC CPU200 applications. The
Sysmark 2000 applications are much bigger and
their execution is spread more evenly. As a result

G
eoM

ean 65%
tw

olf 76%

bzip2 74%

vortex 60%

gap 62%

perlbm
k 64%

eon 41%

parser 81%

crafty 39%

m

cf 104%

gcc 51%

vpr 69%

gzip 86%

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

only 45% of the executed code is hot vs. 5% cold.
The amount of translated code has an impact on the
overhead. Notice that in this benchmark the
applications spend a significant amount of time in
the OS kernel and drivers. This code is not
translated, executes natively on the machine, and is
shared between translated and native code.
Spending a significant amount of time in the kernel
and drivers is a typical behavior of many Windows
applications. Running that code natively on the
Itanium architecture contributes to the performance.
The idle time is large – 15% on average. This
provides an opportunity for future work on utilizing
this time and reducing the translation overhead.
Figure 8 compares IA-32 EL performance with the
performance on an IA-32 platform. The result of
the floating-point benchmarks should be especially
noted, taking into account the floating point
modeling challenges described. The excellent,
native floating-point performance of the Itanium
processor family is a key contributor, together with
the floating-point model and optimizations done in
IA-32 EL.

105.02%
98.88%

132.59%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

CPU2000
INT

CPU2000
FP

Sysmark
2002

Figure 8 - Relative performance of IA-32 EL
running on a 1.5GHZ Itanium® 2 processor
compared to a 1.6GHZ Xeon™ processor
(higher is better). Sysmark* 2002 numbers refer
to the Internet Content Creation part of the
benchmark.

Related Work
Several recent publications, e.g. [4, 7], included a
thorough review of other works related to dynamic
binary translations: dynamic translators, dynamic
optimizers, and related developments in hardware.
A general classification of binary translators can be
found at [2].
Other products in the field are Transmeta CMS [7],
FX!32 [6], HP Aries [23], and the various Java and
MRTE JIT translators; additional research
frameworks are Dynamo [3,4] and DAISY [9].
Transmeta CMS is a dynamic translator that
emulates IA-32 on a VLIW HW that is not
exposed. It runs beyond the IA-32 OS and hence
emulates the entire architecture with full
computability. FX!32 is a dynamic-static hybrid
translator from IA-32 to Alpha architecture, with a
lower level of compatibility (e.g., FP double
precision emulation). HP Aries translates PA-RISC
binaries to IPF, above HPUX* OS. Its hot-spots are
optimized at the basic-block level.
Optimizers like Dynamo, which translate to the
same ISA, try to generate code that outperforms the
originally compiled code. Translating to the same
ISA, Dynamo can “bail-out” to native execution
whenever the optimization turns out as ineffective.
“Bailing out” is inapplicable for binary translators.

Conclusions
This paper presents the underlying technology of
the IA-32 Execution Layer, a dynamic binary
translation from IA-32 to IPF. Emphasis was given
to some of the key features of the technology that
contribute to its robustness and high performance.
These features include precise exception
implementation in the software, OS-independent
architecture, floating point, MMX technology, and
SSE modeling, and misalignment handling.

Acknowledgment
Thanks to all IA-32 EL team members, current and
past ones, who took IA-32 EL from vision to
reality. Special thanks to Ronny Ronen for his
numerous comments and review of the paper.
Thanks to Evelyn Duesterwald for her initial
feedback on the draft. Special thanks to Laura Cane
and Maggie Auerbach for reviewing and bringing
the paper to its current shape.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

References
[1] Eric R. Altman, Kemal Ebcioglu, Michael
Gschwind and Sumedh Sathaye, “Advances and
Future Challenges in Binary Translation and
Optimization”, Proceedings of the IEEE Special
Issue on Microprocessor Architecture and Compiler
Technology, November 2001.
[2] Eric R. Altman, David Kaeli, and Yaron
Sheffer, “Welcome to the opportunities of Binary
Translation”, IEEE Computer 33(3), March 2000.
[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banjeria, “DYNAMO: A Transparent Dynamic
Optimization System”, Programming Language
Design and Implementation, June 2000.
[4] Derek Bruening, Timothy Garnett, and Saman
Amarasinghe, “An Infarstructure for Adaptive
Dynamic Optimization” in the Proceedings of the
International Symposium on Code Generation and
Optimization, 2003.
[5] Howard Chen, Wei Chung Hsu, Jiwei Lu, Pen
Chung Yew and Dong Yuan Chen, “Dynamic
Trace Selection Using Performance Monitoring
Hardware Sampling” in the Proceedings of the
International Symposium on Code Generation and
Optimization, 2003.
[6] Anton Chernoff, Mark Herdeg, Ray Hookway,
Chris Reeve, Norman Rubin, Tony Tye, S.
Bharadwaj Yadavall and John Yates “FX!32: A
Profile-Directed Binary Translator”. IEEE
Micro(18), March/April 1998.
[7] Dehnert, J.C.; Grant, B.K.; Banning, J.P.;
Johnson, R.; Kistler, T.; Klaiber, A. and Mattson,
J., “The transmeta code morphing software: using
speculation, recovery, and adaptive retranslation to
address real-life challenges” in the Proceedings of
the International Symposium on Code Generation
and Optimization, 2003.
[8] Paul J. Drongowski, David Hunter, Morteza
Fayyazi, David Kaeli, “Studying the Performance
of the FX!32 Binary Translation System”, in the
Proceedings of the 1st Workshop on Binary
Translation , Newport Beach, CA, Oct. 1999.
[9] Kemal Ebcioglu and Erik R. Altman “DAISY:
Dynamic Compilation for 100% Architectural
Compatibility”, Proceedings of the 24th Annual
Symposium on Computer Architecture, June 1997.
[10] Kemal Ebcioglu, Erik R. Altman, Michael
Gschwind and Sumedh Sathaye, “Dynamic Binary
Translation and Optimization”, IEEE Transactions
on Computers 50(6), June 2001.
[11] Kim M. Hazelwood and Thomas M. Conte, “A
Lightweight Algorithm for Dynamic If-Conversion
During Dynamic Optimization”, International
Conference on Parallel Architectures and
Compilation Techniques, October 2000.

[12] Intel Corporation,”Intel IA-32 Architecture
Software Developer’s Manual”, Vol. 1-3 2003.
[13] Intel Corporation,”Intel IA-64 Architecture
Software Developer’s Manual”, Vol. 1-4, January
2000.
[14] Michael Gschwind and Eric R.
Altman,”Optimizing and Precise Exceptions in
Dynamic Compilation”, Second Workshop on
Binary Translation Held in PACT 2000.
[15] Michael Gschwind and Eric R. Altman,
”Precise Exception Semantics in Dynamic
Compilation”, in the Proceedings of the
Symposium on Compiler Constructions, April
2002.
[16] Michael Gschwind Eric R. Altman, Sumedh
Sathaye, Paul Ledak and David Appenzeller,”
Dynamic and Transparent Binary Translation”,
IEEE Computer 33(3), March 2000.
[17] S.J. Patel and S.S. Lurnetta. “RePlay: A
Hardware Framework for Dynamic Program
Optimization”, Technical Report CRHC-99-16,
University of Illinois, December 1999.
[18] R.L. Sites, A. Chernoff, Kirk, M. Marks, and
S. Robinson, "Binary Translation," Comm. ACM
36 (2), Feb. 1993.
[19] Intel compilers
http://www.intel.com/software/products/compilers/
[20] SPEC CPU2000
http://www.specbench.org/osg/cpu2000
[21] Sum Microsystems, “The Java Hotspot
Performance Engine Architecture”,
http://java.sun.com/products/hotspot/whitepaper.ht
ml, April 1999.
[22] David Ung and Cristina Cifuentes,
“Optimizing Hot Paths in a Dynamic Binary
Translator”, Second Workshop on Binary
Translation Held in PACT 2000, October 2000.
[23] Cindy Zheng and Carol Thompson, “PA-RISC
to IA-64: Transparent Execution, No
Recompilation”, IEEE Computer 33(3), March
2000.
--
Intel, the Intel logo, Pentium, Intel Xeon and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Proceedings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
0-7695-2043-X/03 $17.00 © 2003 IEEE

