
Flexible Compiler-Managed L0 Buffers for
Clustered VLIW Processors

❶ Department of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona - SPAIN

❷ Intel Barcelona Research Center
Intel Labs - Universitat Politècnica de Catalunya

Barcelona - SPAIN

Enric Gibert❶ , Jesús Sánchez❷ , Antonio González❶❷

E-mail: egibertc@ac.upc.es, jesusx.sanchez@intel.com, antonio@ac.upc.es

Proceed
0-7695-2
Abstract
Wire delays are a major concern for current and forthcoming pro-
cessors. One approach to attack this problem is to divide the pro-
cessor into semi-independent units referred to as clusters. A
cluster usually consists of a local register file and a subset of the
functional units, while the data cache remains centralized. How-
ever, as technology evolves, the latency of such a centralized
cache will increase leading to an important performance impact.
In this paper we propose to include flexible low-latency buffers in
each cluster in order to reduce the performance impact of higher
cache latencies. The reduced number of entries in each buffer per-
mits the design of flexible ways to map data from L1 to these buff-
ers. The proposed L0 buffers are managed by the compiler, which
is responsible to decide which memory instructions make use of
them.

Effective instruction scheduling techniques are proposed to
generate code that exploits these buffers. Results for the Media-
bench benchmark suite show that the performance of a clustered
VLIW processor with a unified L1 data cache is improved by 16%
when such buffers are used. In addition, the proposed architecture
also shows significant advantages over both MultiVLIW proces-
sors and a clustered processors with a word-interleaved cache,
two state-of-the-art designs with a distributed L1 data cache.

1. Introduction

Wire delays will be one of the factors that dominate performance
in next generation processors, which are moving from capacity-
bound to communication-bound due to the evolution of technol-
ogy [20][1]. One approach to cope with this hurdle is to divide the
processor into semi-independent units called clusters. Normally,
each cluster consists of a local register file and a subset of the
functional units. Local communications (communications inside
a cluster) are fast, while global communications (inter-cluster
communications) are slow. Inter-cluster communications are used
to propagate register values when the producer and the consumer
of a value are assigned (scheduled) to different clusters. For exam-
ple, values can be propagated through inter-cluster register-to-
register communication buses. Hence, instructions should be
assigned to clusters so that global communications are minimized
while workload balance among the clusters is maximized. A typ-

ical cluster configuration can be seen in the left part of Figure 1.
Clustering has been used in superscalar architectures [12] but this
trend is even more noticeable in the embedded/DSP market, in
which clustered VLIW organizations are common [9][8]. In this
work, we focus on the latter kind of processors in which instruc-
tion scheduling is performed by the compiler.

Most current clustered processors use a centralized L1 data
cache. However, as wire delays increase, having a centralized L1
data cache that can be quickly accessed by all the clusters is
becoming unfeasible. The cache could be close to one or few clus-
ters but not to all of them. Because of that, some recent works
advocate for the distribution of the first level data cache among
clusters as well [24][23][10]. Several configurations have been
studied and instruction scheduling techniques have been proposed
to exploit the underlying cache architecture. However, the down-
side of a distributed cache is its higher complexity and lower
potential to exploit locality with respect to a unified cache of the
same total capacity.

In this paper, we propose not to distribute the data cache at all
but offer small buffers in each cluster to cache “critical” data,
while “non-critical” data is mapped in the slow centralized L1
data cache. The use of small buffers (a few entries) in each cluster
permits the design of flexible mechanisms to map data from L1 to
the buffers. In particular, we propose a dynamic binding between
addresses and clusters, and data can be mapped to the buffers in a
linear or in an interleaved manner. In addition, we propose to con-
trol the behavior of the buffers through the compiler, which is
responsible to attach hints to memory instructions and to guaran-
tee data coherence. We refer to these buffers as Flexible Com-
piler-Managed L0 Buffers.

Instruction scheduling techniques targeted to cyclic code
(modulo scheduling) are proposed for such cache configuration.
Such techniques rely on: (i) scheduling “critical” instructions to
access and cache data in the L0 buffers without overflowing them,
(ii) assigning memory instructions to clusters and mark them with
the appropriate hints in order to make an effective use of the buff-
ers, and (iii) software techniques to guarantee data coherence
among the buffers. Simulation results for the Mediabench bench-
mark suite [16] demonstrate the effectiveness of the proposed
scheduling techniques for such architecture.
ings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
Even though the use of buffers has been widely used in embed-
ded/DSP processors, this is the first time to our knowledge that they
have been proposed as a mechanism to reduce the impact of wire-
delays. In addition, the flexibility of the proposed L0 buffers allows
the memory system to better adapt to the characteristics of the
application.

The rest of the paper is organized as follows. In Section 2,
related work is discussed. Next, the proposed architecture is pre-
sented in Section 3, while instruction scheduling techniques tar-
geted to it are introduced in Section 4. After that, the simulation
framework and performance results are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. Related Work

While several works exist in the literature on clustered VLIW pro-
cessors with a unified L1 data cache ([18][19][22][14] among oth-
ers), few works exist that deal with the wire delay problem at the
memory hierarchy. Among them, the Raw machine [24] has an
architectural configuration different to the traditional VLIW clus-
tered core presented in this paper. In particular, a Raw machine con-
sists of a mesh of clusters (also referred to as tiles) connected
through a static and a dynamic network.

On the other hand, two other works use an architectural config-
uration similar to the one used in this paper. In [23], the authors pro-
posed to distribute the L1 cache among clusters in a cache-coherent
manner. In [10], a much simpler design was proposed, in which the
L1 data cache is distributed among clusters in a word-interleaved
manner. We compare our work to these two distributed cache con-
figurations in Section 5.3.

Kin et al. [15] also proposed to use a small buffer acting as an
L0 cache in order to reduce power consumption with a reduced
impact on performance. They refer to this buffer as the filter cache.
The main difference between our approach and the filter cache is
that the filter cache acts as a regular cache with the particularity of
being small and close to the processor. Such memory is not flexible
and it is not controlled by the software. In addition, the filter cache
was proposed for a non-clustered processor while the L0 buffers we
propose are used as a solution to the wire delay problem.

Other proposals exist in the literature that use small buffers to
increase performance or decrease power consumption ([21][3][2]
[25] among others). However, none of them are targeted to deal
with the wire delay problem in a clustered environment and do not
provide the flexibility offered by the buffers proposed in this paper.

3. A Clustered VLIW Processor with Flexible
L0 Buffers

In this paper we propose not to distribute the L1 data cache among
clusters. However, since a centralized cache is slower compared to
a distributed cache due to wire delays (it is far apart) and its bigger
size, small buffers are provided in each cluster to hold some data
(like shown on the right hand of Figure 1). Hence, memory instruc-
tions that access data cached in these buffers will execute faster.
These buffers are small L0 cache memories that can be adapted to
some extent to the application and can be controlled by software
through hints associated with memory instructions. Thus we refer
to these buffers as Flexible Compiler-Managed L0 Buffers (or L0
buffers for short in the rest of the paper).

We consider L0 lines smaller than L1 blocks. In particular, we
assume that the size of an L0 line is the size of an L1 line divided
by the number of clusters. We use the term subblock to identify a
line in L0 because in essence they are part of an L1 block. Hence,
an L1 block is dynamically split into subblocks and subblocks are
dynamically cached in the corresponding L0 buffer. This dynamic
behavior is better explained in the following subsections. In this
paper we assume an architecture that consists of four clusters. How-
ever, all the proposed techniques and mechanisms can be extended
to an architecture with any number of clusters.

3.1. Mapping Flexibility

The proposed L0 buffers are flexible since data from L1 can be
mapped to the buffers in different ways. First, there is no static bind-
ing between addresses and clusters so any piece of data can be
present in any buffer and subblocks are cached in the buffers of the
clusters that will make use of them (data coherence is discussed in
Section 4.1). A dynamic binding between addresses and clusters

L2 DATA CACHE or MAIN MEMORY

L0 BUFFER L0 BUFFER

shift/interleave logic

INT FP MEM

FUNCTIONAL UNITS

CLUSTER 2

INT FP MEM

FUNCTIONAL UNITS

CLUSTER 1

L1 DATA CACHE

Register-to-register communication buses

Register fileRegister file

INT FP MEM

FUNCTIONAL UNITS

CLUSTER 2

INT FP MEM

FUNCTIONAL UNITS

CLUSTER 1

Register-to-register communication buses

Register fileRegister file

L2 DATA CACHE or MAIN MEMORY

L1 DATA CACHE

Figure 1. On the left, a typical architecture consisting of 2 clusters and a unified L1 data cache. On the right, the same architecture with
flexible compiler-managed L0 buffers.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
gives more freedom to the instruction scheduler when assigning
memory instructions to clusters.

In addition, data can be split into subblocks in a dynamic man-
ner too. An L1 block can be split into subblocks in a linear manner
or in an interleaved manner. Within linear mapping, a subblock con-
sists of consecutive bytes of an L1 block. An example is shown at
the top of Figure 2, where a subblock consisting of bytes 1 through
4 has been mapped in cluster 2. When linear mapping is used, one
subblock (the corresponding subblock) is moved from L1 to L0. On
the other hand, when interleaved mapping is used, an L1 block is
split into N subblocks (being N the number of clusters) and each
subblock contains some bytes of the block depending on the inter-
leaving factor. The interleaving factor is derived from the instruc-
tion type. For example, if the memory instruction is a load_byte
instruction, the interleaving factor will be one byte. Within inter-
leaved mapping, a whole L1 block is read and distributed among the
buffers at once. The first subblock is mapped in the L0 buffer of the
cluster where the memory access has been performed, while the rest
of the subblocks are mapped in continuous clusters according to the
first subblock. At the bottom of Figure 2, an example of an inter-
leaved mapping with a 2-byte granularity is shown. Note that the
interleaving factor is dynamic since it depends on how data is used.

These dynamic mapping schemes can be used in the following
way. Assume the next piece of code, where a and b are 2-byte ele-
ment arrays:

 for (i=0; i<MAX; i++)
 a[i] = b[i] + C; /* C is a constant */

If the instruction that loads b[i] into a register is scheduled in
cluster 3, linear subblocks of b consisting of elements b[0], b[1],
b[2] ... will continuously be mapped to cluster 3’s L0 buffer. How-
ever, it has been observed that unrolling a loop N times (being N the
number of clusters) helps to balance the workload of instructions
among clusters and performance is often improved [22]. Thus, if the
previous example loop is unrolled four times:

for (i=0; i<MAX; i+=4) { /* assume MAX mod 4 == 0 */
 a[i] = b[i] + C; /* load_1 reads b[0],b[4],... */
 a[i+1] = b[i+1] + C; /* load_2 reads b[1],b[5],... */
 a[i+2] = b[i+2] + C; /* load_3 reads b[2],b[6],... */
 a[i+3] = b[i+3] + C; /* load_4 reads b[3],b[7],... */
}

it seems reasonable to schedule each load instruction in a con-
secutive cluster and map data accordingly. For instance, if load_1 is
scheduled in cluster 3, load_2 should be scheduled in cluster 4,
load_3 in cluster 1 and load_4 in cluster 2. In addition, data from
L1 could be mapped to the buffers in an interleaved manner using
an interleaving factor of 2 bytes (the granularity of the accesses) so
that elements b[0], b[4], b[8]... are all mapped in cluster 3 (where
load_1 is scheduled), while elements b[1], b[5], b[9]... are mapped
in cluster 4 and so on.

The flexibility offered by a variable interleaving factor has
some drawbacks. First, it changes the indexing function used in the
buffers, although these changes require little hardware complexity.
In addition, once an L1 block is accessed it may have to be packed/
shuffled in a specific manner before sending it to the L0 buffers.
Thus, some logic is needed to do this operation and the latency of
such kind of accesses is increased. This logic has been labeled as
“shift/interleave logic” in Figure 1.

3.2. L0 Buffer Management through the Compiler

Hints provided by the compiler can be helpful in order to use L0
buffers effectively. Such hints are associated with memory instruc-
tions and specify not only how data should be mapped to L0 buffers
but also whether memory instructions should access the buffers or
not. Such hints can be divided in different classes depending on
their functionality. The first set of hints are used to indicate whether
memory instructions must access L0 buffers or not. Three different
values can be specified, as shown in the next table:

The next set of hints specify how data is mapped to the buffers.
These hints are associated only with load instructions that have
been assigned the SEQ_ACCESS or the PAR_ACCESS hints. This
is so because stores are not write-allocate and because load instruc-
tions that do not access L0 buffers (NO_ACCESS), do not cache
data in the buffers either. We use two different mappings hints:

a[7]a[3] a[0] a[4] a[1] a[5] a[2] a[6]

L
IN

E
A

R
 M

A
PP

IN
G by

te
 1

by
te

 2
by

te
 3

by
te

 4
by

te
 5

by
te

 6
by

te
 7

by
te

 8
by

te
 9

by
te

 1
0

by
te

 1
1

by
te

 1
2

by
te

 1
3

by
te

 1
4

by
te

 1
5

by
te

 1
6

L1 BLOCK (16 bytes)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

a[0] a[1]

L0 buffer L0 buffer L0 buffer L0 buffer

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

load a[0] (2-byte load)

by
te

 1
by

te
 2

by
te

 3
by

te
 4

by
te

 5
by

te
 6

by
te

 7
by

te
 8

by
te

 9
by

te
 1

0
by

te
 1

1
by

te
 1

2
by

te
 1

3
by

te
 1

4
by

te
 1

5
by

te
 1

6
L1 BLOCK (16 bytes)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

L0 buffer L0 buffer L0 buffer L0 buffer

CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4

load a[0] (2-byte load)

IN
T

E
R

L
E

A
V

E
D

 M
A

PP
IN

G
(2

-B
Y

T
E

 G
R

A
N

U
L

A
R

IT
Y

)

Figure 2. Example of a linear mapping in cluster 2 and an inter-
leaved mapping using a 2-byte granularity. Both examples
assume a 4-cluster architecture and 16-byte L1 blocks.

NO_ACCESS: the memory instruction will not access the L0 buffer of the cluster
it has been scheduled in. The memory instruction will directly access L1. Thus
the referenced data will not be mapped in the corresponding L0 buffer either.

SEQUENTIAL_ACCESS (SEQ_ACCESS): the memory instruction will
access the corresponding L0 buffer first and if it is misses, the request will be for-
warded to L1 (L0 and L1 are accessed sequentially). Only load instructions can
be marked with such hint because stores always access L0 and L1 in parallel
(stores are write-through as explained in the next section). In addition, a load can
be marked with such hint if there is not another memory instruction scheduled in
the same cluster in the next cycle assuming a 1-cycle L0 buffer latency. This is so
because this guarantees that the bus that connects the cluster with the L1 cache
will not be used in the next cycle by an instruction coming from the memory func-
tional unit, and the miss request from the buffer can proceed to L1 without any
buffering mechanism (otherwise, some kind of arbitration and buffering would be
necessary between the L0 buffer and the memory functional unit in each cluster).

PARALLEL_ACCESS (PAR_ACCESS): the memory instruction will access
the corresponding L0 buffer and L1 in parallel. If data is found in L0, the reply
coming from L1 is discarded.

LINEAR_MAP: consecutive bytes of an L1 block form one subblock that is
mapped in the L0 buffer of the cluster where the instruction has been scheduled.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
Finally, hints can also be provided to prefetch data from L1 to
L0 buffers so that data is present in the buffers in advance, before it
is needed. Three different prefetch hints can be specified:

These prefetch hints generate automatic prefetch actions when
the last/first element of a subblock is accessed. Data is mapped in
the same way as the original subblock that triggers the prefetch
action.

The only set of hints that any processor using L0 buffers must
implement are the ones that specify how the buffers are accessed.
This is so because they are used to control the arbitration of the bus
and to guarantee data coherence among the buffers (as explained in
Section 4.1). In this sense, the NO_ACCESS, SEQ_ACCESS and
PAR_ACCESS hints act more like directives that must be enforced
by a processor using L0 buffers, while the rest of hints can be
ignored (although performance may be affected).

3.3. Interaction between L0 Buffers and the L1
Cache

The proposed L0 buffers are write-through (data is updated at L0
and L1 in parallel in case a store is marked to access L0, and only
in L1 otherwise) so L0 buffers satisfy the inclusion property with
respect to L1. This is so for four reasons:

• It simplifies the management of replacements. When a sub-
block of L0 is replaced it can just be discarded avoiding spu-
rious writes to L1. Such spurious writes would require some
arbitration of the bus that connects the cluster (the local L0
buffer and the local memory functional unit) to L1.

• The architecture provides an instruction to invalidate the
entries in a given L0 buffer. This kind of instruction is useful
to guarantee data coherence, as it will be seen in Section 4.1.
When an invalidate instruction is executed, the contents of all
L0 buffers can just be discarded avoiding again spurious
updates to L1. Thus, an invalidate instruction will execute
with a known constant latency, while a flush instruction (in
case L0 were not write-through) would not (the latency of
such instruction would depend on the number of entries to
write-back to L1). Statically known latencies ease the sched-
uling process in statically scheduled processors.

• No shift/shuffling logic is required to update L1. If L0 were
write-back, it would need to keep track of the bytes of the sub-
block that should be updated in L1 and some logic should be
provided so that the elements of the subblock were shifted/
shuffled back correctly to L1.

• If data is mapped in L0 in an interleaved manner at a 1-byte
granularity and a memory instruction references these data

with a 4-byte granularity, part of the requested data may be
mapped in other clusters. In this case, we consider that the
access misses in L0 and is forwarded to L1 since L1 is always
up to date. This situation should happen rarely since data
mapped with a certain granularity will always (or almost
always) be accessed in the same way. However, this could
occur for example if an array of bytes (or the last elements of
the array) and a 32-bit integer scalar variable are mapped to
the same cache block. Padding and some smart data layout
techniques can be used to overcome almost all these situa-
tions. We have found that they never occur in our experi-
ments.

As explained above, store instructions update the local L0
buffer (if marked as PAR_ACCESS) and L1 in parallel. Store
instructions never update other remote L0 buffers in order to avoid
traffic among clusters. Thus, it is the responsibility of the compiler
to guarantee the coherence among L1 and L0 buffers.

All these features together make the design of the memory hier-
archy simple (e.g. no arbitration is needed in the buses) and adap-
tive to the particular patterns. Besides, most latencies are
deterministic, which facilitates the generation of more effective
schedules.

4. Instruction Scheduling Techniques

In this section, the proposed scheduling algorithm is introduced,
which is targeted to cyclic code. First, software mechanisms to
guarantee data coherence are presented in Section 4.1. After that, a
brief overview to modulo scheduling is exposed in Section 4.2. The
scheduling algorithm itself is explained next in Section 4.3.

4.1. Data Coherence

The proposed scheduling algorithm includes techniques to guaran-
tee data coherence between data residing in the L1 cache and in L0
buffers. These are classified as local techniques (that work at inner-
loop granularity, although bigger regions of code could also be con-
sidered), and global techniques. We first describe local techniques
referred to as intra-loop techniques in this paper, while global or
inter-loop techniques are discussed next.

Intra-loop coherence

Coherence must be guaranteed at two different levels inside a
loop: within a cluster and among different clusters. Intra-cluster
coherence is needed since the same data may be mapped to the
same L0 buffer multiple times with a different mapping function.
For example, assuming that an integer array labeled a is aligned at
an L1 block boundary, a subblock consisting of a[0] and a[4] could
be mapped to cluster 1’s L0 buffer (interleaved mapping), while a
subblock consisting of a[0] and a[1] could be mapped to the same
buffer as well (linear mapping). In this case, any load instruction
that references a[0] can be satisfied by any of the two entries. How-
ever, in case of a store, one copy of the data will be updated while
the other will be invalidated. We do so in order not to increase the
number of write ports to the L0 buffers. Data may also be replicated
when it is mapped twice in an interleaved manner but with different
interleaving factors.

On the other hand, coherence must be also guaranteed among
clusters. This is due to the possibility of having multiple instances

INTERLEAVED_MAP: an L1 block is split into subblocks in an interleaved
manner and each subblock is mapped in the L0 buffers of consecutive clusters.
Data is interleaved at an element granularity. The first subblock is mapped in the
L0 buffer of the cluster where the instruction has been scheduled.

NO_PREFETCH: do not perform prefetching at all.

POSITIVE: prefetch next subblock to L0 when the last element of a subblock
that is mapped in an L0 buffer is accessed.

NEGATIVE: prefetch previous subblock when the first element of a subblock
that is mapped in an L0 buffer is accessed.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
of the same data mapped to different L0 buffers simultaneously. For
this purpose, loads and stores that depend among them must be
scheduled carefully so that the contents in all L0 buffers are always
consistent (up to date). In a recent paper [11], two local scheduling
techniques to guarantee coherence were proposed for a clustered
architecture with a distributed data cache. In this paper, we have
adapted these solutions to better match the characteristics of the
proposed underlying architecture and propose a third one. All three
coherence solutions are software-based solutions applied by the
compiler and work at an inner-loop granularity (although bigger
regions of code could also be considered). In particular these solu-
tions restrict the assignment of instructions to clusters along with
restrictions on the assignment of the L1 or L0 latencies to memory
instructions, as described below.

Given a loop, the scheduling algorithm builds all sets Si of
memory dependent instructions. A set Si contains all memory
instructions of the loop that depend among them according to mem-
ory disambiguation techniques applied by the compiler [7]. Mem-
ory instructions that do not depend on any other memory instruction
(all sets Si with just one instruction) can be freely assigned to any
cluster and scheduled with either the L1 or L0 latency1. This is also
true for all sets Si that only contain store instructions, since stores
do not use explicitly the L0 buffers (stores are not write-allocate)
and L1 is always up to date. However, sets Si that contain loads and
stores must be handled carefully. For example, a load instruction
may read a stale value of variable X if it reads X from its local L0
buffer and a previous store to X is scheduled in different cluster
(recall that the store will only update X in its local L0 buffer and in
L1, but not in other remote L0 buffers). From now on in this section
we will refer to sets Si with both load and store instructions.

A first alternative is to mark all memory instructions belonging
to the same set Si not to use (allocate) data in the buffers. These

instructions will then be scheduled using the latency of L1. In such
scenario, there only exists one copy of the data referenced by the set
and this copy always resides in L1 (never in L0). We will refer to
this technique as “not use L0” or NL0 for short.

Another approach is to schedule all instructions of Si in the
same cluster. This guarantees that data referenced by Si is mapped
in only one buffer in case some instructions in Si are marked to use
the buffers. This technique can be further refined. In particular, only
loads in Si that have been scheduled with the L0 latency and stores
in Si must be scheduled in the same cluster. Load instructions in Si
that have been scheduled with the L1 latency can be assigned to any
cluster since they will always find the correct data in L1. We refer
to this technique as “one cluster” or 1C for short. A graphic exam-
ple can be seen in the middle of Figure 3.

Finally, the third and last technique replicates all stores in Si N
times (being N the number of clusters), and schedules each instance
of the same store in a different cluster. The register used to compute
the effective address of the store is broadcast to all clusters (to all
instances) by inserting a register-to-register communication opera-
tion, while the value to store will only be consumed by one of the
instances referred to as the primary instance of the store. The pri-
mary instance of the store is the one responsible to perform the
actual store, update its local L0 buffer (in case the data is present
there) and update L1 as well. The role of the other instances is just
to invalidate any entry that may contain the same data in their
respective L0 buffer2. Using this approach, all loads in Si can be
freely assigned to any cluster and scheduled with either the L1 or
L0 latency. This technique will be referred to as “partial store-rep-
lication” or PSR for short. An example of “partial store replication”
is shown on the right part of Figure 3.

1. An instruction is scheduled with the L0 buffer latency when it is marked to use
the buffers. Otherwise, the instruction is scheduled using the L1 latency.

cycle i

cycle i+1

cycle i+2

cycle i+3

n1 n2

n3

n4

n5

SCHEDULE

n3

n5
store

n5

load
n4

store
n3

load
n2

load
n1

all dependences represent memory dependences

backward dependences are assumed to have a distance of 1

DATA DEPENDENCE GRAPH EXAMPLE

of D

let D’ be a subset

insts n1,n2,n3,n4,n5

data accessed by

let D be the set of

CLUSTER 1

L0 buffer

D’

FU + regs

CLUSTER 2

L0 buffer

FU + regs

UNIFIED L1 DATA CACHE

D

cycle i

cycle i+1

cycle i+2

cycle i+3

n1 n2

n3

n4

n5

SCHEDULE

n2 can be scheduled in cluster 2

since L1 is always up to date
with the latency of L1

ONE CLUSTER (1C) PARTIAL STORE REPLICATION

CLUSTER 1

L0 buffer

FU + regs

CLUSTER 2

L0 buffer

FU + regs

UNIFIED L1 DATA CACHE

INVALIDATE

the instance of n3 in cluster 1 is marked
as the primary instance of the store

n2 can be scheduled in cluster 2
with the latency of L0 buffer

UPDATE

Figure 3. Example of the “one cluster” heuristic (in the middle) in order to guarantee coherence. n2 can be scheduled in cluster 2 if it is
marked not to cache data in cluster 2’s L0 buffer. On the right, the same example but with “partial-store replication”. The instance of n3 in
cluster 1 is responsible to update L0 and L1 while the instance in cluster 2 is only responsible to invalidate its local L0 buffer.

2. A primary instance of a store can be differentiated from non-primary instances
by using a different opcode or by using a flag in the same store instruction.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
Qualitative comparison of the proposed intra-loop coherence
solutions

All three solutions have advantages and drawbacks. For exam-
ple, if all instructions in a set Si with both loads and stores are
scheduled using the L1 latency (NL0 solution), execution time may
be increased due to the increased latencies. However, the schedul-
ing algorithm has complete freedom to assign and schedule these
instructions in any cluster, thus possibly reducing the amount of
register-to-register communications.

On the other hand, if memory instructions in Si are scheduled
in one cluster (1C solution), some load instructions can be sched-
uled with a smaller latency (L0 latency). The drawback of this
approach is that it introduces some restrictions in the assignment of
memory instructions to clusters compared to NL0, where the algo-
rithm has complete freedom.

Finally, register-to-register communications may be increased
with partial store-replication (PSR) because the address of repli-
cated stores must be broadcast to all clusters. In addition, the num-
ber of memory slots that are used is also increased because each
replicated store is converted to N store instructions. These two fac-
tors may result in a higher execution time. Finally, some mechanism
must be provided to distinguish between primary instances of the
stores and the rest. However, load instructions can be freely
assigned to any cluster which can be translated to a more efficient
usage of L0 buffers in some cases. For example, given a loop with
only a big set Si with 4 stores and 16 loads and a 4-cluster processor
with 2-entry L0 buffers, up to 8 loads can be scheduled with the L0
latency in PSR (all buffers are used), while only 2 loads can be
scheduled with the L0 latency when 1C is used instead (the buffer
in just one cluster).

We have observed that memory dependent sets tend to be small
in all benchmarks except in epicdec, pgpdec, pgpenc and rasta.
However, most memory dependences in these benchmarks are con-
servative and can be eliminated by code specialization [4]. In code
specialization, two versions of the loop are provided (a conservative
version with all memory dependences and an aggressive version
without most of such dependences). One version or the other is exe-
cuted based on some check code added by the compiler. We have
applied code specialization to the most important loops of epicdec,
pgpdec, pgpenc and rasta and we have observed that the aggressive
version can always be executed in these cases. The aggressive ver-
sion always contains several sets of memory dependent instructions
and not just one. Hence, the advantage of PSR over the 1C (a more
efficient usage of L0 buffers) is overcome by code specialization.
From now on in the paper PSR will not be used and the scheduling
algorithm will choose between the NL0 and 1C schemes.

Inter-loop coherence

All solutions presented before work at inner-loop granularity,
but coherence must also be maintained between loops. The solution
we use for inter-loop coherence consists on flushing the contents of
all L0 buffers once a loop finishes. This is achieved by scheduling
an invalidate_buffer instruction in all clusters at the end of the loop.
Since the buffers are write-through, flushing only implies the inval-
idation of all their entries. Note that flushing can be avoided in some
cases. For example, once a loop finishes, no flushing action is
needed if either (i) there are no memory dependences between the
loop and the code following it (up to the next flushing point), or (ii)

instructions following the loop that are memory dependent on any
instruction in the loop are either marked not to use the L0 buffers or
are scheduled in the same cluster than those in the loop. In addition,
the contents of the buffers could be flushed in some selectively cho-
sen clusters depending on the data accessed by each cluster. All
these selective flushing techniques are not further investigated in
this paper.

4.2. Introduction to Modulo Scheduling and the
BASE Scheduling Algorithm

Modulo scheduling is an effective technique to extract instruction-
level parallelism (ILP) from loops by overlapping the execution of
successive iterations of the original loop without the need to unroll
it [6]. It is a well-understood technique used by many current com-
pilers.

The parameters that most affect the performance of a modulo
scheduled loop are the Initiation Interval (II), the Stage Count (SC)
and the register pressure. The II is the number of cycles between the
initiation of consecutive iterations. For loops with a high trip count,
the execution time is almost proportional to the II. The Stage Count
specifies the number of overlapped iterations. The register pressure
can have an important effect on performance in those cases that the
schedule requires more registers than the available ones. This may
require the insertion of spill code or the increase of the II, which in
both cases may reduce performance.

The scheduling algorithm we have used for a clustered VLIW
processor with a unified L1 data cache is targeted to cyclic code (it
performs modulo scheduling) and it uses previously published
state-of-the-art heuristics in order to generate efficient code [22].
We refer to this algorithm as the BASE scheduling algorithm. The
algorithm starts by computing the Minimum Initiation Interval
(MII) of a loop based on resources and recurrences. It then sorts the
nodes of the Data Dependence Graph (DDG) (each node corre-
sponds to an instruction). Next, the algorithm schedules one
instruction at a time based on the ordering computed previously.
The algorithm tries to schedule each instruction in the cluster where
register-to-register communications are minimized and workload
balance is maximized in order to reduce execution time. The algo-
rithm iterates until a valid schedule is found with the smallest pos-
sible II value.

4.3. Modifications to BASE Scheduling Algorithm

We have adapted the BASE scheduling algorithm for a clustered
processor with a unified data cache in order to generate code for a
clustered architecture with L0 buffers. The main goal of the algo-
rithm is to use the buffers efficiently. It is very important that
instructions that are scheduled with the L0 buffer latency find their
data in the buffers. Otherwise, the processor will be stalled often
and performance will be degraded. In order to make such effective
use of L0 buffers, instructions that are critical and will benefit from
the use of such buffers are marked to use them, while the rest of the
instructions are not. Attention is paid not to overflow the buffers.

The algorithm distinguishes between candidate instructions
(those that can benefit from the use of the buffers) and non-candi-
date instructions. Candidate instructions are the only ones that will
be considered for using the buffers. We have considered as candi-
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
date instructions all memory instructions that have a stride because:
(i) their behavior is very predictable and will have a high L0 buffer
hit rate, and (ii) they are very common in media programs that are
often run in embedded/DSP processors.

The algorithm can be divided in the following steps:

1) Loop unrolling

2) Order the nodes (instructions) of the DDG (Data Depen-
dence Graph)

3) Cluster assignment and instruction scheduling

4) Assign hints to memory instructions

5) Add and schedule explicit prefetch instructions

Each step is covered in deeper detail in the following subsec-
tions.

Step 1: Loop unrolling

Loop unrolling is often applied to extract ILP from loops and it
is also beneficial for clustered microarchitectures [22]. Given the
two different mapping schemes offered by L0 buffers, the compiler
will choose between two different unrolling factors for each loop:
N (where N is the number of clusters, in this work, 4), and no
unrolling. In particular, the algorithm will choose the unrolling fac-
tor (1 or N) that minimizes compute time, which can be computed
statically by the compiler. When a loop is unrolled N times, it may
benefit from the interleaved mapping capability offered by the
architecture.

We should point out at this point that unrolling is also used in
the case of a clustered architecture with a unified L1 data cache and
no L0 buffers, so that the comparison between a processor with and
without such buffers is not biased by factors (e.g. loop unrolling)
other than the use of the buffers itself.

Step 2: Order the nodes (instructions) of the DDG

The nodes of the DDG are ordered using the Swing Modulo
Scheduling (SMS) heuristic [17]. SMS is used because it favors the
reduction of II and register pressure.

The algorithm assumes at this point that all candidate instruc-
tions will be scheduled with the L0 buffer latency (although it may
not be the case since the algorithm controls not to overflow the
capacity of the buffers as explained in step 3) while non-candidate
instructions will be scheduled using the L1 latency. In addition, the
Minimum Initiation Interval (MII) is computed at this point.

Step 3: Cluster assignment and scheduling

Once the nodes of the graph are ordered, the algorithm tries to
find a schedule with the smallest possible II. In order to do that, the

II is initialized to MII and the function try_schedule is called itera-
tively (Figure 4) until a valid schedule is found. Each time
try_schedule is not able to find a valid schedule, the II is increased
by one and the function is called again. Given a value for the II, the
algorithm proceeds as shown in Figure 4.

First, the algorithm initializes the variable
num_free_L0_entries that will be used to keep track of the number
of L0 buffer entries that have not been used yet in each cluster (➊).
The variable is initialized to {NE, NE, NE, NE} assuming 4 clusters
and that NE is the number of L0 buffer entries in one cluster. As
memory instructions are assigned and scheduled in different clus-
ters, the appropriate num_free_L0_entries entry is updated accord-
ingly. No more memory instructions will be scheduled with the L0
buffer latency once the entries in all clusters have been consumed.
In addition, the algorithm initially assigns the L0 buffer latency to
the most critical N*NE candidate memory instructions (N being the
number of clusters)(➋). The criticality of an instruction is defined
as its slack (the difference between the earliest cycle at which the
instruction can be scheduled and the latest one) [13]. Such slack is
computed using the value of the II and the structure of the graph.
Finally, the last action of the initialization phase is to initialize the
recommended cluster field associated with each memory instruc-
tion (➌). This field is initialized to NULL and will be used to guide
the instruction-to-cluster assignment process as explained later on.

After this initialization phase, the scheduling algorithm sched-
ules one instruction at a time based on the order computed in step
2. Given a memory instruction that belongs to a memory dependent
set, the algorithm decides which is the best way to guarantee coher-
ence within this set (➍). As we have said before, two out of the three
alternatives are considered in this case: one cluster (1C) or not use
L0 (NL0). If the set contains at least one load instruction with the
L0 latency assigned and there are still L0 buffer entries available,
the algorithm will choose to use the 1C heuristic. This tries to
schedule as many memory instructions as possible with the L0
latency. Thus, the NL0 heuristic is only used when no more buffer
entries are available.

Next, the set of possible clusters P where instruction I can be
scheduled is computed (➎). This set contains all clusters with
enough free resources (functional units, registers, ...) to execute the
instruction. Once P is computed, it is ordered using two different
heuristics (➏). In case of non-memory instructions, the set is
ordered so that clusters where register-to-register communications
are minimized and workload balance is maximized are selected
first. This is the same heuristic used by the BASE scheduling algo-
rithm for a clustered processor without L0 buffers.

boolean try schedule (graph G, int II) {

➊ initialize variable num_free_L0_entries
➋ assign latencies to memory instructions
 taking into account their slack
➌ initialize recommended cluster of each
 memory instruction
 foreach instruction I of G {
➍ if I belongs to memory dependent set

 then decide how to treat such set
➎ P = compute set of possible clusters
➏ order P using heuristics + compute
 possible latencies for each cluster

➐ foreach cluster C in P {
 try schedule I in cluster C
 if succeeded --> break
 } /* end_foreach cluster */
 if not succeeded in any cluster then return false
➑ mark insts. I’ related with I and belonging
 to same memory dependent set as I
➒ update num_free_L0_entries
➓ assign latencies to memory instructions
 taking into account their new slack
 } /* end_foreach instruction */
 return true
} /* end_function */

Figure 4. Pseudo-code of step 3: assign instructions to clusters and schedule them.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
On the other hand, the heuristic to sort the set P for memory
instructions also considers the number of free L0 entries in each
cluster and whether the instruction belongs to a memory dependent
set or not. In addition, in this case, the heuristic must also compute
the latencies (L0 or L1) that will be used for such memory instruc-
tion in each possible cluster of P. For example, an instruction may
be scheduled using one latency or another depending on whether
the instruction has been marked to use the buffers or not, or whether
there are L0 entries available in one cluster or another (using vari-
able num_free_L0_entries) or even use a different latency depend-
ing on whether the instruction belongs to a memory dependent set
or not1. P is ordered giving priority to I’s recommended cluster (if
any) and clusters where I can be scheduled using the L0 buffer
latency (if any).

After the set of possible clusters P has been ordered, the algo-
rithm schedules the instruction in the first cluster where a valid slot
is found (➐). If the scheduling algorithm is not able to schedule I in
any cluster, the function returns, the II is increased and the process
starts again.

Once a memory instruction I has been scheduled in one cluster,
other memory instructions related with I are marked (➑). For exam-
ple, if an instruction load a[i] has been scheduled in cluster 2 with
the L0 latency, the recommended cluster of another instruction load
a[i]2 is updated to cluster 2. The recommended cluster of other load
instructions is updated as well, such as load a[i+1], where the rec-
ommended cluster is cluster 3, and so on. Memory instructions that
are memory dependent on I (belong to the same memory dependent
set) are also marked if I is a load instruction and has been scheduled
using the L0 latency. Stores that belong to the same set are marked
to be scheduled in the same cluster as I.

Then, the number of L0 entries is updated (variable
num_free_L0_entries) in the appropriate cluster/s if I has been
scheduled with the L0 latency (➒). Finally, candidate memory
instructions that have not been scheduled yet are reassigned the L0
or L1 latency taking into account the new number of free L0 buffer
entries and their new slack based on the partial schedule (➓). This
function is similar to the one used in the initialization phase (➋).
However, at this point the NFREE most critical candidate instruc-
tions are only marked to use the buffers (are assigned the L0
latency), where NFREE is the sum of all free L0 buffer entries in all
clusters.

Step 4: Assign hints to memory instructions

Once all instructions have been scheduled, the appropriate hints
are attached to each memory instruction. Two cases should be
emphasized at this point. First, load instructions that are marked to
access the buffers can be marked as PAR_ACCESS or
SEQ_ACCESS. The algorithm will assign the SEQ_ACCESS hint
to as many load instructions as possible, since loads that access the
buffers will often hit in the buffers and L1 will only be accessed on
misses (L1 accesses are minimized compared to PAR_ACCESS).
However, SEQ_ACCESS, where the L0 buffers and the L1 cache

are probed one after the other, is only possible if there is no resource
contention between the instruction and posterior memory instruc-
tions scheduled in the same cluster. The algorithm must be sure that
if the access misses in the buffer, the bus that connects the cluster
with L1 will be free (that is, there is not another memory instruction
scheduled in the same cluster competing for the same bus in the
same cycle).

Furthermore, prefetch hints are assigned so that the L0 hit rate
is high. Prefetch hints are assigned to memory instructions that have
been marked to use the buffers and will automatically bring the
next/previous block/subblock to L0 depending on the access pat-
tern. However, redundant prefetches should be avoided. For
instance, given four load instructions load a[i], load a[i+1], load
a[i+2], load a[i+3] scheduled in consecutive clusters and marked
as interleaved mapping, only one of them is marked to prefetch the
next L1 block to the buffers (POSITIVE prefetch in case variable i
is increased at the end of the loop). In particular, only the first
instruction in the final schedule is marked. In this case, the block
brought from L1 will be split into subblocks and will be mapped in
an interleaved manner among clusters.

Step 5: Add and schedule explicit prefetch instructions

After all instructions have been scheduled and the algorithm
has attached the appropriate hints to memory instructions, it may
add explicit software prefetch instructions for some memory oper-
ations. In particular, instructions that have a stride of 0, 1 or -1 ele-
ments map their data efficiently to the buffers and the prefetch hints
associated to them guarantee a high L0 hit rate (the same applies to
strides of N or -N elements when loops are unrolled N times due to
interleaved mapping, N being the number of clusters). However, the
algorithm may also have marked other strided memory instructions
for using the buffers even they may not map data so well in L0 (e.g.
instructions that access an array per columns instead of sequentially
mapped elements). In order to guarantee a high L0 hit rate for these
instructions, explicit prefetch instructions should be added. Other-
wise the processor will stall often. Hence, the algorithm will try to
add and schedule a software prefetch instruction for each of these
memory instructions that have been marked to use the buffers but
that do not take advantage of the proposed prefetch hints. Such
explicit prefetch instructions will only be added and scheduled if
there are enough resources (memory slots) to execute them and will
map data in L0 in a linear manner (there is no benefit from mapping
data in an interleaved manner).

5. Performance Evaluation

In this section, the proposed architecture/compilation techniques
are evaluated. The tools that have been used are introduced in Sec-
tion 5.1, while results are presented in Section 5.2 and Section 5.3.

5.1. Tools and Configurations

The IMPACT compiler [5] has been used as the base infrastructure
to compile the benchmarks and optimize them. The benchmarks we
have used are a subset of the Mediabench suite [16]. They represent
real workloads that can be found in media or embedded processors
such as DSPs. The benchmarks and their inputs are summarized in
Table 1. All these benchmarks have been simulated completely. In
Table 1, the column labeled as “S” indicates the percentage of

1. For instance, if all store instructions of a given memory dependent set are sched-
uled in cluster 1, a load instruction belonging to the same memory dependent set
can be scheduled with the L0 latency in cluster 1 and with the L1 latency in clus-
ters 2, 3 and 4.

2. Two load instructions inside a loop that access the same data are possible when
the compiler is not able to disambiguate them with some store instruction in be-
tween.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
dynamic strided memory instructions. Strides are computed stati-
cally by the compiler. Note that strided memory instructions are
common and this is why they have been considered as candidates to
map data in L0 buffers. In addition, the columns labeled as “SG”
and “SO” indicate the proportion of “good” strides (0, 1 or -1 strides
at an element granularity when loops are not unrolled because they
will benefit from the proposed mapping and prefetch hints) and
other types of strided accesses. “Good” strides are predominant so
explicit software prefetch instructions added for other strided mem-
ory operations should be rare.

We have evaluated the performance of a clustered VLIW pro-
cessor with a unified L1 data cache with and without L0 buffers. In
both cases, the scheduling algorithms perform modulo scheduling
on inner loops, which account for 80% of the dynamic instruction
stream approximately (depending on the benchmark). The parame-
ters we have used for both configurations are summarized in Table
2. Note that in the case a block is mapped in an interleaved manner
in the L0 buffers, a penalty of one extra cycle has been accounted
to perform the shift/shuffle operation of the block.

Finally, we should point out that the same loop unrolling heu-
ristic has been used for a clustered processor with and without L0
buffers so that the differences between the two configurations is
only due to the use of the buffers and not to other factors.

5.2. Evaluation of the Proposed Architecture and
Scheduling Techniques

First we have evaluated the number of L0 entries that must be used
to capture almost all memory accesses and reduce stall time. In Fig-
ure 5, execution time is shown for 4-entry, 8-entry, 16-entry and an
unbounded number of L0 buffer entries. Execution time has been
divided in compute time (shaded parts) and stall time (white parts).
Stall time is due to memory accesses that have been scheduled too
close to their consumers. Execution time has been normalized to
that of a clustered VLIW processor with a unified L1 data cache and
no L0 buffers whatsoever. As it can be observed, 8-entry buffers are
enough to capture almost all memory accesses and execution time
is reduced by 16% compared to a processor without such buffers.

The only benchmark where performance is worse compared to
a clustered architecture without L0 buffers is jpegdec. With 4-entry
L0 buffers, stall time is greatly increased in some of its important
loops due to the buffers’ LRU replacement policy. In this case,
prefetched subblocks replace from L0 buffers “useful” subblocks
that have not been used yet and that are accessed afterwards. If these
loops are simulated with 8-entry buffers (but scheduled as 4-entry
buffers), overall stall time is similar to that of 8-entry L0 buffers. On
the other hand, execution time is also increased for bigger L0 buff-
ers sizes (8 and 16 entries) compared to a clustered processor with

Input Used S SG SO

epicdec titanic3.pgm.E 99% 66% 33%

g721dec S_16_44.g721 100% 100% 0%

g721enc S_16_44.pcm 100% 100% 0%

gsmdec S_16_44.pcm.gsm 97% 97% 0%

gsmenc S_16_44.pcm 99% 99% 0%

jpegdec monalisa.jpg 60% 39% 21%

jpegenc monalisa.ppm 49% 40% 9%

mpeg2dec tek6.m2v 96% 42% 54%

pegwitdec report.txt.enc 50% 48% 2%

pegwitenc report.txt 56% 54% 2%

pgpdec report.txt.enc 99% 98% 1%

pgpenc report.txt 86% 86% 0%

rasta ex5_c1.wav 95% 87% 8%

Table 1. Benchmarks used in the experiments. For each bench-
mark, the input data set, the percentage of strided memory accesses
(S), “good” strides (SG) and other strides (SO) are shown.

Number of Clusters 4 clusters working in lock-step mode

Functional Units (1 integer + 1 memory + 1 FP) per cluster

L0 Buffers
Parameters

1 cycle latency + fully associative
+ 8-byte subblocks + 2 read/write ports

L1 Cache
Parameters

6 cycles latency (2 cycles for communicating
request or response + 2 cycle access)

2-way set-associative 8KB size, 32-byte blocks
1 extra cycle for shift/interleave logic

L2 Cache
Parameters

10 cycle latency
always hits

Register-to-register
Communication Buses

4 buses with 2-cycle latency

Table 2. Configuration parameters.

ep
icd

ec

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc
ras

ta

AM
EAN

0.0

0.5

1.0
E

xe
cu

ti
on

 t
im

e

stall time
4 entries
8 entries
16 entries
unbounded entries

Figure 5. Execution time results for different L0 buffer sizes.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
a unified cache. This is due to one loop where all memory slots are
busy (all loads are marked as PAR_ACCESS), some memory
instructions that should be scheduled with an interleaved mapping
are not, and prefetching is common. Such memory pressure is trans-
lated into contention in the memory hierarchy and stall time is
increased. The algorithm could give up using L0 buffers in this loop
and use a more conservative schedule (the same schedule as a clus-
tered processor without buffers), which in this case generates better
results. In particular, the execution time of such loop is reduced by
30% when the conservative schedule is used instead, compared to
the version generated for L0 buffers.

We also considered other configurations not shown in Figure 5.
First, 2-entry L0 buffers (very small buffers) have been simulated
and, in this case, overall execution time is reduced by 7% when
compared to an architecture without buffers. In addition, we also
tried a configuration with 4-entry L0 buffers in which all candidate
memory instructions were marked to use the buffers. In such sce-
nario, the buffers were overflown in some cases and execution time
was increased by 6% when compared to the same 4-entry buffers
architecture where memory instructions were marked to use the
buffers selectively as explained in Section 4.3. Hence, the selective
assignment of memory instructions to L0 buffers based on their
slack is important to exploit them efficiently.

In Figure 6, the proportion of subblocks that have been mapped
in a linear or in an interleaved way is shown in the first bar of each
benchmark, assuming 8-entry L0 buffers. This percentage is quite
related to the average unrolling factor used, which is shown at the
top of the graph. This is quite obvious since an interleaved mapping
is only helpful when a loop is unrolled N times, being N the number
of clusters.

The second bar of each benchmark in Figure 6 shows the L0
buffer hit rate. In most cases the L0 hit rate is above 95%. This is
very important, since memory instructions that have been sched-
uled with the L0 latency should find their data in the buffers. Oth-
erwise, stall time would be greatly increased. The exceptions are
epicdec, mpeg2dec, pegwitdec, pegwitenc, and rasta benchmarks.
For pegwitdec and pegwitenc, the lower L0 hit rate is due to a low
L1 hit rate as well. This is why stall time is considerable for these
two benchmarks even for an architecture with an unbounded num-
ber of L0 buffer entries. On the other hand, in the case of epicdec,
mpeg2dec and rasta, there are several loops with small II values
(values like 2, 3 or 4 cycles). In such scenarios, prefetch requests
(explicit prefetch instructions or implicit prefetches through hints)
are generated too close to the consumers of the data and data is

stored in the buffers too late. Thus, the processor is often stalled.
This phenomenon is translated in a rather large proportion of stall
time in case of epicdec and rasta, while stall time is not increased
that much in mpeg2dec (in this case, the values of the II are around
5 or 6 cycles). A smarter prefetch mechanism (that prefetches two
subblocks in advance instead of the next/previous subblock) can be
used to reduce stall time in these loops. In particular, overall execu-
tion time is reduced by 12% in epicdec and 4% in rasta when
prefetching two subblocks in advance. However, prefetching more
data in advance requires more L0 buffer entries. Further research on
prefetching distance is left for future work.

5.3. Comparison with Other Distributed Cache
Configurations

In [23], Sánchez and González proposed to distribute the L1 data
cache among clusters in a snoop-based cache coherent manner. This
architecture was named MultiVLIW. While the use of such config-
uration has the advantage that data is moved/replicated dynamically
to the clusters that make use of it (hence increasing the amount of
accesses satisfied by the local portion of the cache in each cluster),
the use of a snoop-based cache coherence protocol such as MSI has
a very high cost for the embedded domain, both in terms of com-
plexity and power.

Another approach was proposed in [10], where Gibert et. al.
used a much simpler configuration in which the L1 data cache was
distributed among clusters in a word-interleaved manner. The main
advantage of that approach is its simple design. However, data is
mapped statically to clusters and solutions were proposed to reduce
the amount of remote accesses that appear due to this static and
restrictive mapping. One of these solutions was to use Attraction
Buffers (small buffers in each cluster to cache remotely mapped
data). Attraction Buffers are an effective mechanism to increase
local accesses and reduce stall time. However, these buffers are not
controlled by the compiler, are not flexible and fail to capture all
remote accesses.

We have compared the performance of a clustered VLIW pro-
cessor with 8-entry L0 buffers with that of the MultiVLIW and that
of a clustered VLIW processor with a word-interleaved cache and
8-entry Attraction Buffers. The same loop unrolling heuristic has
been used again for all three architectures so that results are not
biased by different loop unrolling optimizations. Results are shown
in Figure 7, where each bar corresponds to the execution time for
L0 buffers, the MultiVLIW and two different scheduling heuristics
for a word-interleaved cache respectively. Execution time has been

ep
icd

ec

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc
ras

ta
0.0

0.5

1.0
R

at
io

linear subblocks

interleaved subblocks

L0 buffer misses

L0 buffer hits

1.9 4 4 2.3 2.2 3.2 2.6 2.2 1.5 1.5 1.5 1.4 2.6 average unrolling factor

Figure 6. Proportion of subblocks mapped in a linear or in an interleaved manner, along with results of the L0 buffer hit rate.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

Procee
0-7695
normalized to that of a clustered VLIW processor with a unified L1
data cache and no L0 buffers. As it can be observed, the proposed
L0 buffers outperform a word-interleaved cache clustered VLIW
processor and their performance is close to that of the MultiVLIW.
On the other hand, a clustered processor with L0 buffers is much
simpler than the MultiVLIW.

6. Conclusions

A cache memory architecture for clustered VLIW processors has
been proposed. It is based on the use of a very small L0 buffer in
each cluster to overcome wire delays in the memory hierarchy.
These buffers are flexible because they can be adapted to some
extent to the application and are controlled by the compiler through
hints associated with memory instructions. Scheduling techniques
targeted to this architecture have also been proposed. The main goal
of the scheduling algorithm is to make an effective use of the buffers
by carefully selecting the instructions that make use of them based
on their criticality.

The effectiveness of the proposed scheduling techniques has
been evaluated. Performance results for a clustered VLIW proces-
sor with 8-entry L0 buffers are 16% better on average than those
gathered for a processor without such buffers. Finally, the proposed
architecture has been compared to the MultiVLIW and a clustered
VLIW processor with a word-interleaved cache, two state-of-the-
art clustered processors with a distributed L1 data cache. A clus-
tered processor with L0 buffers outperforms a clustered processor
with a word-interleaved cache, while its performance is close to that
of the MultiVLIW, which requires a more complex memory design.

Acknowledgements

This work has been partially supported by El Ministerio de Ciencia
y Tecnologia, the European Union (FEDER funds) reference
TIC2001-0995-C02-01 and Intel, and it has been developed using
the resources of CESCA and CEPBA.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger, “Clock Rate
versus IPC: The End of the Road For Conventional Microarchitectures”,
in Procs. of the 27th Int. Symp. on Computer Architecture, pp. 248-259,
June 2000

[2] O. Avissar, R. Barua, D. Stewart, “Heterogeneous Memory Management
for Embedded Systems”, in Procs. of Int. Conf. on Compilers, Architec-
ture, and Synthesis for Embedded Systems, Nov. 2001

[3] R. Bahar, G. Albera, S. Manne, “Power and Performance Tradeoffs using
Various Caching Strategies”, in Procs. of Int. Symp. on Low Power Elec-
tronics and Design, 1998

[4] D. Bernstein, D. Cohen and D. Maydan, “Dynamic Memory Disambigu-
ation for Array References”, in Procs. of 27th Int. Symp. on Microarchi-
tecture, pp. 105-111, Nov. 1994

[5] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W. Hwu,
"IMPACT: An Architectural Framework for Multiple-Instruction-Issue
Processors", in Procs. of the 18th Int. Symp. on Computer Architecture, pp.
266-275, May 1991

[6] A. Charlesworth, “An Approach to Scientific Array Processing: The
Architectural Design of the AP120B/FPS-164 Family”, in Computer,
14(9), pp.18-27, 1981

[7] B. Cheng, “Compile-Time Memory Disambiguation for C Programs”,
PhD thesis, Dept. of Computer Science, University of Illinois, May 2000

[8] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Homewood, “Lx: A
Technology Platform for Customizable VLIW Embedded Processing”, in
Procs. of the 27th Int. Symp. on Computer Architecture, pp. 203-213, June
2000

[9] J. Fridman and Zvi Greefield, “The TigerSharc DSP Architecture”, IEEE
Micro, pp. 66-76, Jan-Feb. 2000

[10] E. Gibert, J. Sánchez and A. González, “Effective Instruction Scheduling
Techniques for an Interleaved Cache Clustered VLIW Processor”, in
Procs. of 35th Int. Symp. on Microarchitecture, Nov. 2002

[11] E. Gibert, J. Sánchez and A. González, “Local Scheduling Techniques for
Memory Coherence in a Clustered VLIW Processor with a Distributed
Data Cache”, in Procs. of 1st Int. Symp. on Code Generation and Optimi-
zation, March 2003

[12] L. Gwennap, “Digital 21264 Sets New Standard”, Microprocessor Report,
10(14), Oct. 1996

[13] R. Huff, “Lifetime-Sensitive Modulo Scheduling”, in Procs. of the ACM
SIGPLAN’93 Conf. on Programming Languages Design and Implementa-
tion, 1993

[14] K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A New Code Genera-
tion Framework for Clustered ILP Processors”, in Procs. of the 7th Int.
Symp. on High-Performance Computer Architecture, Jan. 2001

[15] J. Kin, M. Gupta, W. H. Mangione-Smith, “The Filter Cache: An Energy
Efficient Memory Structure”, in Procs. of 30th Int. Symp. on Microarchi-
tecture, Dec. 1997

[16] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: a Tool
for Evaluating and Synthesizing Multimedia and Communication Sys-
tems”, in Procs. of 30th Int. Symp. on Microarchitecture, pp. 330-335,
Dec. 1997

[17] J. Llosa, A. González, E. Ayguadé and M. Valero, “Swing Modulo Sched-
uling”, in Procs. of Int. Conf. on Parallel Architectures and Compilation
Techniques, pp.80-86, Oct. 1996

[18] E. Nystrom and A. E. Eichenberger, “Effective Cluster Assignment for
Modulo Scheduling”, in Procs. of the 31st Int. Symp. on Microarchitec-
ture, pp. 103-114, 1998

[19] E. Özer, S. Banerjia, T.M. Conte, “Unified Assign and Schedule: A New
Approach to Scheduling for Clustered Register File Microarchitectures”,
in Procs. of 31st Symp. on Microarchitecture, Nov. 1998

[20] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective Super-
scalar Processors”, in Procs. of the 24th Int. Symp. on Computer Architec-
ture, pp. 1-13, June 1997

[21] P. Panda, N. Dutt, A. Nicolau, “Efficient Utilization of Scratch-Pad Mem-
ory in Embedded Processor Applications”, in Procs. of European Design
and Test Conference, March 1997

[22] J. Sánchez and A. González, “The Effectiveness of Loop Unrolling for
Modulo Scheduling in Clustered VLIW Architectures”, in Procs. of the
29th Int. Conf. on Parallel Processing, Aug. 2000

[23] J. Sánchez, and A. González, “Modulo Scheduling for a Fully-Distributed
Clustered VLIW Architecture”, in Procs. of 33rd Int. Symp. on Microar-
chitecture, Dec. 2000

[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A.Agarwal,
“Baring it all to Software: Raw Machines”, IEEE Computer, September
1997

[25] Y. Wu, R. Rakvic, L. Chen, C. Miao, G. Chrysos, J. Fang, “Compiler Man-
aged Micro-cache Bypassing for High Performance EPIC Processors”, in
Procs. 35th Int. Symp. on Microarchitecture, Nov. 2002

ep
icd

ec

g7
21

de
c

g7
21

en
c

gs
mde

c

gs
men

c

jpe
gd

ec

jpe
ge

nc

mpe
g2

de
c

pe
gw

itd
ec

pe
gw

ite
nc

pg
pd

ec

pg
pe

nc
ras

ta

AM
EAN

0.0

0.5

1.0
E

xe
cu

ti
on

 t
im

e
stall time
8-entry L0 buffers
MultiVLIW
Interleaved 1
Interleaved 2

Figure 7. Performance results of L0 buffers compared to those of the MultiVLIW and a word-interleaved cache architecture.
dings of the 36th International Symposium on Microarchitecture (MICRO-36 2003)
-2043-X/03 $17.00 © 2003 IEEE

	Abstract
	1. Introduction
	Figure 1. On the left, a typical architecture consisting of 2 clusters and a unified L1 data cache. On the right, the same architecture with flexible compiler-managed L0 buffers.

	2. Related Work
	3. A Clustered VLIW Processor with Flexible L0 Buffers
	3.1. Mapping Flexibility
	Figure 2. Example of a linear mapping in cluster 2 and an interleaved mapping using a 2-byte granularity. Both examples assume a 4-cluster architecture and 16-byte L1 blocks.

	3.2. L0 Buffer Management through the Compiler
	3.3. Interaction between L0 Buffers and the L1 Cache

	4. Instruction Scheduling Techniques
	4.1. Data Coherence
	Intra-loop coherence
	Figure 3. Example of the “one cluster” heuristic (in the middle) in order to guarantee coherence. n2 can be scheduled in cluster...

	Qualitative comparison of the proposed intra-loop coherence solutions
	Inter-loop coherence

	4.2. Introduction to Modulo Scheduling and the BASE Scheduling Algorithm
	4.3. Modifications to BASE Scheduling Algorithm
	Step 1: Loop unrolling
	Step 2: Order the nodes (instructions) of the DDG
	Step 3: Cluster assignment and scheduling
	Figure 4. Pseudo-code of step 3: assign instructions to clusters and schedule them.

	Step 4: Assign hints to memory instructions
	Step 5: Add and schedule explicit prefetch instructions

	5. Performance Evaluation
	5.1. Tools and Configurations
	Table 1. Benchmarks used in the experiments. For each benchmark, the input data set, the percentage of strided memory accesses (S), “good” strides (SG) and other strides (SO) are shown.
	Table 2. Configuration parameters.

	5.2. Evaluation of the Proposed Architecture and Scheduling Techniques
	Figure 5. Execution time results for different L0 buffer sizes.
	Figure 6. Proportion of subblocks mapped in a linear or in an interleaved manner, along with results of the L0 buffer hit rate.

	5.3. Comparison with Other Distributed Cache Configurations
	Figure 7. Performance results of L0 buffers compared to those of the MultiVLIW and a word-interleaved cache architecture.

	6. Conclusions
	Acknowledgements
	References
	[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler and D. Burger, “Clock Rate versus IPC: The End of the Road For Conventional Microarchitectures”, in Procs. of the 27th Int. Symp. on Computer Architecture, pp. 248-259, June 2000
	[2] O. Avissar, R. Barua, D. Stewart, “Heterogeneous Memory Management for Embedded Systems”, in Procs. of Int. Conf. on Compilers, Architecture, and Synthesis for Embedded Systems, Nov. 2001
	[3] R. Bahar, G. Albera, S. Manne, “Power and Performance Tradeoffs using Various Caching Strategies”, in Procs. of Int. Symp. on Low Power Electronics and Design, 1998
	[4] D. Bernstein, D. Cohen and D. Maydan, “Dynamic Memory Disambiguation for Array References”, in Procs. of 27th Int. Symp. on Microarchitecture, pp. 105-111, Nov. 1994
	[5] P.P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Water, and W.W. Hwu, "IMPACT: An Architectural Framework for Multiple-Instruction-Issue Processors", in Procs. of the 18th Int. Symp. on Computer Architecture, pp. 266-275, May 1991
	[6] A. Charlesworth, “An Approach to Scientific Array Processing: The Architectural Design of the AP120B/FPS-164 Family”, in Computer, 14(9), pp.18-27, 1981
	[7] B. Cheng, “Compile-Time Memory Disambiguation for C Programs”, PhD thesis, Dept. of Computer Science, University of Illinois, May 2000
	[8] P. Faraboschi, G. Brown, J. Fisher, G. Desoli and F. Homewood, “Lx: A Technology Platform for Customizable VLIW Embedded Processing”, in Procs. of the 27th Int. Symp. on Computer Architecture, pp. 203-213, June 2000
	[9] J. Fridman and Zvi Greefield, “The TigerSharc DSP Architecture”, IEEE Micro, pp. 66-76, Jan-Feb. 2000
	[10] E. Gibert, J. Sánchez and A. González, “Effective Instruction Scheduling Techniques for an Interleaved Cache Clustered VLIW Processor”, in Procs. of 35th Int. Symp. on Microarchitecture, Nov. 2002
	[11] E. Gibert, J. Sánchez and A. González, “Local Scheduling Techniques for Memory Coherence in a Clustered VLIW Processor with a Distributed Data Cache”, in Procs. of 1st Int. Symp. on Code Generation and Optimization, March 2003
	[12] L. Gwennap, “Digital 21264 Sets New Standard”, Microprocessor Report, 10(14), Oct. 1996
	[13] R. Huff, “Lifetime-Sensitive Modulo Scheduling”, in Procs. of the ACM SIGPLAN’93 Conf. on Programming Languages Design and Implementation, 1993
	[14] K. Kailas, K. Ebcioglu and A. Agrawala, “CARS: A New Code Generation Framework for Clustered ILP Processors”, in Procs. of the 7th Int. Symp. on High-Performance Computer Architecture, Jan. 2001
	[15] J. Kin, M. Gupta, W. H. Mangione-Smith, “The Filter Cache: An Energy Efficient Memory Structure”, in Procs. of 30th Int. Symp. on Microarchitecture, Dec. 1997
	[16] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: a Tool for Evaluating and Synthesizing Multimedia and Communication Systems”, in Procs. of 30th Int. Symp. on Microarchitecture, pp. 330-335, Dec. 1997
	[17] J. Llosa, A. González, E. Ayguadé and M. Valero, “Swing Modulo Scheduling”, in Procs. of Int. Conf. on Parallel Architectures and Compilation Techniques, pp.80-86, Oct. 1996
	[18] E. Nystrom and A. E. Eichenberger, “Effective Cluster Assignment for Modulo Scheduling”, in Procs. of the 31st Int. Symp. on Microarchitecture, pp. 103-114, 1998
	[19] E. Özer, S. Banerjia, T.M. Conte, “Unified Assign and Schedule: A New Approach to Scheduling for Clustered Register File Microarchitectures”, in Procs. of 31st Symp. on Microarchitecture, Nov. 1998
	[20] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective Superscalar Processors”, in Procs. of the 24th Int. Symp. on Computer Architecture, pp. 1-13, June 1997
	[21] P. Panda, N. Dutt, A. Nicolau, “Efficient Utilization of Scratch-Pad Memory in Embedded Processor Applications”, in Procs. of European Design and Test Conference, March 1997
	[22] J. Sánchez and A. González, “The Effectiveness of Loop Unrolling for Modulo Scheduling in Clustered VLIW Architectures”, in Procs. of the 29th Int. Conf. on Parallel Processing, Aug. 2000
	[23] J. Sánchez, and A. González, “Modulo Scheduling for a Fully-Distributed Clustered VLIW Architecture”, in Procs. of 33rd Int. Symp. on Microarchitecture, Dec. 2000
	[24] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A.Agarwal, “Baring it all to Software: Raw Machines”, IEEE Computer, September 1997
	[25] Y. Wu, R. Rakvic, L. Chen, C. Miao, G. Chrysos, J. Fang, “Compiler Managed Micro-cache Bypassing for High Performance EPIC Processors”, in Procs. 35th Int. Symp. on Microarchitecture, Nov. 2002

	¶ Department of Computer Architecture
	Universitat Politècnica de Catalunya
	Barcelona - SPAIN
	· Intel Barcelona Research Center
	Intel Labs - Universitat Politècnica de Catalunya
	Barcelona - SPAIN
	Enric Gibert¶, Jesús Sánchez·, Antonio González¶·
	E-mail: egibertc@ac.upc.es, jesusx.sanchez@intel.com, antonio@ac.upc.es

