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Polytechnic University of Catalonia - Computer Architecture Dept.

�jorge,jcorbal,llorenc,mateo�@ac.upc.es

Abstract

In this paper we address the design of a future high-speed
router that supports line rates as high as OC-3072 (160 Gb/s),
around one hundred ports and several service classes. Building
such a high-speed router would raise many technological prob-
lems, one of them being the packet buffer design, mainly because
in router design it is important to provide worst-case bandwidth
guarantees and not just average-case optimizations.

A previous packet buffer design provides worst-case bandwidth
guarantees by using a hybrid SRAM/DRAM approach. Next-
generation routers need to support hundreds of interfaces (i.e.,
ports and service classes). Unfortunately, high bandwidth for hun-
dreds of interfaces requires the previous design to use large SRAMs
which become a bandwidth bottleneck. The key observation we
make is that the SRAM size is proportional to the DRAM access
time but we can reduce the effective DRAM access time by overlap-
ping multiple accesses to different banks, allowing us to reduce the
SRAM size. The key challenge is that to keep the worst-case band-
width guarantees we need to guarantee that there are no bank con-
flicts while the accesses are in flight. We guarantee bank conflicts
by reordering the DRAM requests using a modern issue-queue-
like mechanism. Because our design may lead to fragmentation
of memory across packet buffer queues, we propose to share the
DRAM space among multiple queues by renaming the queue slots.
To the best of our knowledge, the design proposed in this paper is
the fastest buffer design using commodity DRAM to be published
to date.

1. Introduction

Nowadays, router design follows two clearly different
trends. Firstly, advances in optical transmission technolo-
gies and the sustained growth of Internet traffic have led
to research efforts focused on supporting higher line-speed
rates and a larger number of line interfaces [15]. Secondly,
the pervasive use of the Internet and the introduction of
multimedia applications demanding more functionality (e.g.
stateless and stateful classification of packets, Quality of
Service, security support, etc.), has resulted in an increased
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interest in Network Processor design. Clearly, in order to
follow these developments, current router design needs to
be reconsidered and innovative research in all router sub-
systems is needed. In this paper we focus our attention on
packet buffer design for future high-speed Internet routers.

A router is a network node connecting several transmis-
sion lines whose basic function is to forward Internetwork-
ing Protocol (IP) packets across the lines depending on the
packet’s destination IP address and the information stored in
a routing table. The main functional units of a router are: (i)
Line interfaces, which connect the router to each transmis-
sion line, (ii) Network processors, [22, 2, 1] which process
the packet headers, look up routing tables, classify packets,
and perform related tasks, (iii) Packet buffers, which store
the packets waiting to be forwarded, (iv) the switch fab-
ric, which interconnects the router’s packet processing units,
and (v) the system processor, which performs the control
functions such as routing table computation, configuration
tasks, etc.

Packet buffers for the next generation routers will require
a storage capacity for several Gb (giga bits) of data and a
bandwidth of several hundreds of Gb/s, and managing inter-
nal data structures of almost one thousand queues. More-
over, the design must be able to handle any input pattern,
and not only traffic patterns that can be present in average.
This restrictive condition is usual in networking equipment,
and leads to design choices that optimize the worst case
and not the most common case. Currently proposed packet
buffer architectures do not meet these strict requirements.

Traditionally, fast packet buffers were built using low-
latency SRAM. However, with the increasing capacity re-
quirements, high density DRAMs have become the pre-
ferred choice. DRAM-based packet buffers can easily pro-
vide for a bandwidth of up to around 1 Gb/s, but if we in-
crease the required bandwidth to several Gb/s the design be-
comes difficult. For instance, [9] addresses the design of
a packet buffer using a single-chip 16 Mb SDRAM with a
16 bit data interface and a 100 MHz clock. Even though
the peak bandwidth is of 1.6 Gb/s, the guaranteed band-
width drops to 1.2 Gb/s, due to activate and precharge over-
head. A multiple chip design would increase the buffer
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bandwidth, but the increase in bandwidth would not be pro-
portional to the total number of chips. Using, for instance,
the same SDRAM parameters, an 8-chip configuration with
a 8x wider bus would provide a guaranteed bandwidth of
only 5.12 Gb/s. Increasing the number of chips and widen-
ing the data bus therefore yields diminishing returns, while
creating problems [6] such as higher memory granularity,
more memory components in the line card, wider data paths,
etc.

The low efficiency of multichip DRAM buffers can be
improved using some special techniques oriented to reduce
bank conflicts in a DRAM buffer using pipelining and out-
of-order access techniques [24, 23, 16], or exploiting row
locality whenever possible in order to enhance average-case
DRAM bandwidth [4, 10]. Using faster DRAM components
(e.g. RLDRAM [21], FCDRAM [7], etc) would also lead
to faster buffers. However, from the previous discussion it
is clear that for supporting a line-rate as high as OC-3072
alternatives to DRAM-only buffers should be considered.

To our knowledge, the fastest packet buffer with worst-
case bandwidth guarantees that can be found in the literature
is the hybrid SRAM-DRAM design proposed in [13]. In this
hybrid DRAM-SRAM design, in each line interface the ar-
riving cells are stored in two SRAMs which cache the front
and back of the queues (tail and head SRAMs), and in one
central DRAM. Cells that come into the buffer are placed
in the tail SRAM, whereas cells that will leave the system
in the near future are placed in the head SRAM. The avail-
ability of room in the tail SRAM and the availability of cells
to be served in the head SRAM are controlled using a Mem-
ory Management Algorithm (MMA), which must guarantee
that there is always room in the head SRAM for an incoming
packet and that any packet to be output is always present in
the tail SRAM before the outputting needs to be done (i.e.
the cache never misses). When the occupancy of the tail
SRAM reaches a given threshold, a transfer from SRAM to
DRAM of a group of cells addressed to the same output in-
terface is ordered by the MMA. Conversely, when the head
SRAM needs to serve a cell that currently resides in DRAM,
the MMA orders a group transfer from DRAM to SRAM.

Bank conflicts are avoided by spacing consecutive
DRAM accesses by a DRAM random access time. Thus,
group size must be set to the ratio of DRAM random access
time to the transmission time of a cell. As this factor directly
influences the SRAM size, large SRAMs are needed to sus-
tain high line rates and a large number of interfaces. This,
in turn, limits what access times are attainable. This buffer
design would support line rates up to OC-3072, but only for
a reduced number of interfaces.

Currently available high-speed routers support up to 16
interfaces at OC-192 (10 Gb/s) or OC-768 (40 Gb/s) line
rates. It is devised, however, that next generation high-end
systems will support a much more larger number of inter-
faces (e.g. 624 or even more) at OC-192, OC-768 or even

OC-3072 (160 Gb/s) line rates. The goal of this paper is to
reduce the SRAM size of [13] while supporting a large num-
ber of interfaces. The key observation we make is that we
can reduce the effective DRAM access time by overlapping
multiple accesses to different banks, allowing us to reduce
the granularity of the accesses thereby reducing the SRAM
size. The key challenge is that to keep the worst-case guar-
antees of [13] we need to guarantee that there are no bank
conflicts while the accesses are in flight.

In the proposal presented in this paper we maintain
the same SRAM/DRAM structure and MMA subsystem as
in [13], but we completely redesign the DRAM system.
We propose a DRAM storage scheme and associated access
method that achieves a conflict-free access memory orga-
nization with a reduction of the granularity of DRAM ac-
cesses. As we show, we obtain peak memory performance
while reducing SRAM size by an order of magnitude. This
basic scheme would lead to DRAM memory fragmentation,
which is dealt with by means of renaming of queues, al-
though for some quite specific traffic patterns, some degree
of memory fragmentation still could appear

To our best knowledge, the design proposed in this paper
is the fastest buffer design using commodity DRAM that
has been published up to date. A technological evaluation
presented in this paper shows that our design can support up
to 800 queues for line rates of 160 Gb/s using commodity
DRAM.

2. System assumptions

During the next few years, aggregate router throughput
will probably grow by increasing the number of interfaces
rather than increasing line rates [15]. Firstly, the current in-
dustry standard supports 16 ports. However the use of Dense
Wavelength-Division Multiplexing (DWDM) increases the
number of channels available on a single fiber (without in-
creasing the individual line rates), leading to a number of
interfaces in the order of several hundreds. Secondly, al-
though line rates have increased rapidly over the past years
(up to OC-192 or OC-768), it seems that this increase is
close to its limits: around OC-3072.

In this paper we address the design of packet buffers
for router supporting line rates as high as OC-3072 and al-
most one thousand line interfaces. We can therefore set sev-
eral parameters that are of utmost importance in the packet
buffer design: required bandwidth, buffer size, basic time-
slot and number of internal data structures internal to the
buffer.

Required bandwidth: We assume that most buffering
is placed at the input line interfaces (input-queuing archi-
tecture) as this leads to minimum packet buffer bandwidth
requirements. For input-queuing architecture the required
packet buffer bandwidth is twice the line rate, as every
packet must be both written and read from memory before
being forwarded. We do not consider any further speeding-
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Figure 1. Input-queueing router architecture
using VOQ buffer.

up that could be needed in order to compensate for header
and segmentation overhead. We should also point out that
most of the results in this paper could be applied to the de-
sign of other types of packet buffers, such as shared-memory
routers with a high aggregated throughput.

Buffer size: The amount of required buffering would be
fairly large. As a rule of thumb, router manufacturers usu-
ally employ packet buffers of a size equal to an estimate of
a typical packet round-trip-time over the Internet times the
line rate [6]. Taking a typical round-trip-time of 0.2 sec, the
required buffer size for a line rate of 160 Gb/s is of 4 GB.

Basic time-slot: We assume that packets in the router
are internally fragmented into fixed-length 64 byte units that
we call cells [3]. Cells are handled as independent units, al-
though they are reassembled at the output port before packet
transmission. The system operates synchronously into fixed
time-slots, which correspond to the transmission time of a
cell at the line rate. For instance, for a line rate of 160 Gb/s
the basic time-slot is of 3.2 ns.

Number of internal data structures: As is well
known, in order to achieve full link utilization, input-
buffered routers require the use of Virtual Output Queuing
(VOQ) [20]. In VOQ, (see Figure 1) the input buffer main-
tains � separate logical FIFO queues. Each logical queue
corresponds to an output line interface and a class of service.
When a cell arrives to the input line interface, it is placed at
the tail of the queue corresponding to its outgoing interface.
When an input port receives a request for a cell addressed
to a given output, the cell is taken from the head of the cor-
responding queue in the VOQ buffer. We will assume that
our packet buffer incorporates this mechanism. We assume
that the number of Virtual Output Queues to be supported is
around one thousand.

3. Random Access DRAM System (RADS)

In [13] a VOQ buffer design targeted at worst-case band-
width is discussed. The system (see Figure 2) consists of
two fast but costly SRAM modules (t-SRAM and h-SRAM),
a slow but low cost DRAM system, and two Memory
Management Algorithm modules (t-MMA and h-MMA).
t-SRAM and h-SRAM respectively cache the tail and head
of each VOQ logical queue. The rest is stored in DRAM.
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Figure 2. RADS memory architecture of the
packet buffer.

The SRAM memory bandwidth must fit the line rate, which
means that the SRAM access time must be less than or equal
to the transmission time of a cell.

In order to match DRAM/SRAM access times, transfers
between DRAM and SRAM occur in batches of cells. We
shall refer to the batch length as the data granularity of the
memory scheme. The design in [13] considers that transfers
between SRAM and DRAM are done every random access
time of the DRAM. We shall refer to this system as Random
Access DRAM System (RADS). We define � as the mini-
mum granularity that can be used in RADS. Therefore, us-
ing RADS, the DRAM-SRAM transfers consist of batches
of � cells that begin every random access time of DRAM.
Thus, the random access time of DRAM must be equal to �
time-slots.

Every� time-slots, the t-MMA must select a queue from
which� cells are to be transferred from t-SRAM to DRAM.
This algorithm should guarantee that the t-SRAM does not
fill up before DRAM. Otherwise, losses would occur before
the DRAM is full. A t-MMA that would avoid these losses
is simple: transfer � cells to DRAM from any queue with
an occupancy counter (i.e. the number of cells of the queue
present in the SRAM) higher than or equal to �. In this
case, the required tail SRAM size would be � �� � �� � �
cells.

The h-SRAM is a more complex system. This algorithm
has to guarantee that cells transferred between DRAM and
h-SRAM can accommodate the sequence of cells requested
by the external scheduler. Otherwise, the cell requested by
the scheduler may not be present in the h-SRAM as it may
not yet have been transferred from the DRAM. We shall re-
fer this condition as a miss. In rest of the paper we will
focus our attention on the h-MMA and h-SRAM, and we
shall refer to them simply as MMA and SRAM.

Figure 3 shows the general MMA scheme: an arbiter
(e.g., the switch fabric scheduler) issues a cell request ev-
ery slot. This request is stored in the tail of a lookahead
shift register of � positions. At every slot, one cell from the
queue demanded by the head of the lookahead is read from
the SRAM and granted to the arbiter. In order to guarantee
that the requested cell is always in SRAM, every � slots a
queue is selected by the MMA and a group of � cells of this
queue are transferred from DRAM to SRAM.
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Figure 3. RADS Memory Architecture.

The decisions of the MMA take into account (i) the
SRAM occupancy counters, and (ii) the arbiter requests
stored in the lookahead. The lookahead allows the MMA
to select the queue to be replenished as it knows the � re-
quests that are going to be issued in the future. Armed with
this information, the MMA can make better decisions. This
means the SRAM size can be reduced while still guarantee-
ing zero miss probability.

An intuitive insight into why RADS works is as follows1:
the worst-case scenario for RADS is where the scheduler re-
quests goes through the queues (in the SRAM) in a round-
robin manner removing one packet per queue and going to
the next queue. The effect of this pattern is that all the
SRAM queues will empty at about the same time (to be
precise, one transfer time apart), putting the most pressure
on the algorithm. Intuitively, because all the queues empty
about the same time, RADS needs about � � � � � time
slots to fill the � queues before any one of them is com-
pletely empty. ��� is the total number of cells, but by the
time the first queue drains completely there is still one cell
left in each of the other queues, hence �� � ��, assum-
ing perfectly synchronized hardware where as the last cell
drains out of a queue, the next batch of � cells enters the
queue.

For example, suppose that the parameters of the system
shown in Figure 3 are: � � �, � � �, � � �. Suppose also
that the MMA is called with the SRAM occupancy counters
and the lookahead values shown in the figure. The MMA
should select the queue 1. This queue would be replenished
with 3 cells after 3 slots, and would remain with 2 cells after
5 slots. If the MMA had selected queue 3, a miss would
occur for queue 1 after 5 slots.

In [13] various proposals for MMAs are studied. In this
section we summarize the main dimensioning results for the
Earliest Critical Queue First (ECQF) MMA, which mini-
mizes SRAM size. The ECQF-MMA algorithm works as

1The worst case scenario described here applies for the ECQF-MMA
explained later. For other MMAs the worst case pattern could be different.

follows: read the lookahead from the head (slot 1) to the tail
(slot �). For every request, read from the lookahead and de-
crease the occupancy counter of the corresponding queue.
If this modified occupancy counter is less than zero, then
the queue is said to be critical. The first queue found to be
critical is the queue selected by the ECQF-MMA. The mini-
mum SRAM size necessary to guarantee zero miss probabil-
ity is SRAM��� � � ����� and the required lookahead is
� � � �������. Note that this lookahead value guarantees
that there is always at least one critical queue. Other MMAs
reduce the required lookahead and in turn pay the cost by
having to increase SRAM size. rads sram size��� �� �� is the
required SRAM size that would be needed using the scheme
described in this section as a function of the lookahead �,
the number of queues � and the granularity �. We refer the
reader to [13] for a solution of this formula.

As we can see, t-SRAM and h-SRAM sizes are roughly
proportional to ��� cells. Decreasing the value � would
lead to smaller and hence faster SRAMs, leading to a VOQ
design suitable for faster input line rates. Unfortunately,
commodity DRAM random access times decrease at a rela-
tively low pace (around 10% every 18 months). Therefore,
in order to decrease the value �, we cannot rely on purely
technological improvements. In Section 7 we perform an
evaluation of RADS in order to assess its limitations.

4. Potential of bank interleaving

In response to the growing gap between processor and
memory speed, DRAM manufacturers have created several
new architectures that address the problem of latency, band-
width and cycle time (e.g. DDR-SDRAM [12] or RAMBUS
DRDRAM [5]). All these commercial DRAM solutions im-
plement a number of memory banks–as many as 512–that
can be addressed independently. RADS’s SRAM size is
proportional to the DRAM access time and does not scale
for high packet rates. We exploit banking in DRAM to re-
duce the effective DRAM access time. The main advantage
of having independent banks is that we can begin to access
one bank while the other is still busy. In practical terms, this
means we can potentially reduce the ’random’ access time of
a DRAM memory system by performing several on-the-fly
requests to different banks. Reducing the effective DRAM
access time allows us to reduce the SRAM size needed by
RADS.

Figure 4 illustrates the concept of a memory bank and
an interleaved memory system. A memory bank is a set of
memory modules that are always accessed in parallel with
the same memory address. The number of memory modules
grouped in parallel is dictated by the size of the data element
we want to address. This size in cells is the data granularity.

Figure 4 also shows a possible memory bank config-
uration (similar to that of a DRDRAM-like memory sys-
tem [5]). In a conventional DRAM memory system, the data
is interleaved across all memory banks using a specific pol-
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icy, and the memory controller is simply in charge of broad-
casting the addresses to them. Each memory bank has a
special logic that determines whether the address identifies
a data item that the bank contains or not.

In the RADS scheme described in Section 3 the data
granularity (�) was given by the DRAM random access of
a single bank. Now, given an array of � memory banks and
a random cycle time of � seconds per bank, it is theoreti-
cally possible to initiate a new memory access every ���
seconds. Therefore, the data granularity can be potentially
reduced by a factor of � (as we can perform sequential ac-
cesses at an � times faster rate).

There are two fundamental limits to the bank interleav-
ing exploitation. The first is the bus address speed, that is,
the cycle time required to broadcast again an address to all
memory banks. The second is the problem of bank colli-
sions. In order to fully exploit the potential bandwidth of an
interleaved memory system, we need to guarantee that the
same bank is not accessed twice within its random access
time (� ).

The implementation of conflict-free mechanisms is es-
pecially relevant in the context of fast packet buffering, as
we need to make sure that no bank collision is ever pro-
duced. This is because a collision would result in the loss
of a packet. For instance, the RADS memory system can-

not take advantage of banks, as there is no guarantee that a
series of requests produced by the arbiter will not produce
a conflict. Therefore, it is forced to rely on the worst-case
scenario (the random access time of a single DRAM bank).

5. Conflict Free DRAM System (CFDS)

While the previous section shows the potential of bank-
ing, worst-case guarantees needed in packet buffer design
requires a conflict-free banking scheme. In this section we
describe a novel DRAM memory system that guarantees
conflict-free access along with affordable cost. The system
is based on a special memory bank organization coupled to
a reordering mechanism that schedules the different MMA
requests so as to guarantee no bank conflicts. Figure 5 sum-
marizes the Conflict-Free DRAM System (CFDS) memory
architecture. The following items are particular to CFDS: (i)
CFDS exploits the DRAM bank organization. (ii) The MMA
Subsystem works in exactly the same way as the MMA sub-
system of the RADS memory architecture described in Sec-
tion 3. It uses, however, a granularity of � 	 � for cell trans-
fers between DRAM and SRAM. (iii) The DRAM Scheduler
Subsystem (DSS) hides the DRAM bank organization from
the former MMA Subsystem. The MMA operates under
the illusion that the DRAM access time is � time-slots, al-
though in reality the DRAM access time remains � time
slots (as in RADS). It is this illusion that reduces the SRAM
size. Both DSS and MMA subsystems order the transfer of
� cells from the same queue every � time-slots. However,
transfers requested by DSS can take place in a different or-
der than that requested by the MMA. Reordering these cells
implies an additional cost in terms of latency and SRAM
size. It can be shown, however, that introducing an addi-
tional delay and storage, an exact delivery of cells to the
arbiter can be guaranteed: Thus, our banking can decrease
the effective DRAM access time to allow smaller SRAM
while guaranteeing worst-case bandwidth through conflict
freedom. Moreover, the benefits of decreasing the granular-
ity outweigh the additional cost introduced by the reordering
process. These items are discussed in the following subsec-
tions.

5.1. DRAM Bank Organization

Let � be the number of DRAM banks. We organize
these banks into 
 � ������� groups of ��� banks
per group (see Figure 6). Each group stores cells of ��

queues. Banks are accessed by transferring � cells in the
same queue. Furthermore, in order to avoid bank conflicts,
the cells in each queue are stored in blocks of � cells follow-
ing a round-robin configuration across all the banks of the
group (block-cyclic interleaving). This way, we can perform
��� consecutive accesses to the same queue (transferring�
cells overall) without bank conflicts. The distribution of the
queues among the maximum number of groups maximizes
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the likelihood of finding independent accesses, reducing the
hardware requirements of providing conflict-free access.

Figure 6 shows the mapping function used to obtain the
bank and group indexes. The ����� � ����	� lowest-order
bits of the memory address are always set to 0, since we
want to address data with a granularity of � cells (i.e., ��	�
bytes). The higher-order bits contain two different fields:
one determines the queue identifier and another determines
the relative order of the group of � cells inside that same
queue. The bank group index we need to address is obtained
using the low-order bits of the queue field while the bank
index inside that group is obtained using the low order-bits
of the ordinal field. The other bits are used to determine row
and column addresses of the specified DRAM bank.

Table 1 summarizes the terms used to explain RADS and
CFDS.

5.2. MMA Subsystem

The MMA Subsystem shown in Figure 5 works in the
same way as the MMA subsystem of the RADS memory
architecture described in Section 3, but it is assumed that
� 	 � cells are transferred every DRAM memory access.
Every � slots the MMA decides whether the queue is to be
replenished, issues the request to the DRAM Scheduler Sub-
system, and increases the occupancy counter of this queue
accordingly (by adding �). Every time a cell request leaves
the lookahead register, the occupancy counter of the corre-
sponding queue is decreased.

Note that in this scheme the occupancy counters of the
MMA subsystem do not concur with the number of cells in
the physical SRAM. This is because: (i) the requests leaving
the lookahead still suffer an additional latency before being
issued to the SRAM, and (ii) because the replenish requests
issued by the MMA are delayed and possibly delivered in a
different order by the DRAM Scheduler Subsystem.

�: Number of Virtual Output Queues.

�, �: Granularity used in access to DRAM. � is the value used
in Random Access DRAM System (RADS), while � is the
value used in Conflict Free DRAM System (CFDS).

�: Lookahead shift register size.

� : Number of memory banks.

� : Random Access Time to DRAM measured in seconds.

�: Number of memory bank groups used in CFDS.

�: Request Register (RR) size.

����: Maximum number of times a request can be delayed by
the DRAM Scheduler Algorithm (DSA).

��
�,�

�
� : Logical and physical queue names used in the renam-

ing scheme used in CFDS.

Table 1. RADS and CFDS legend.

5.3. DRAM Scheduler Subsystem

The DRAM Scheduler Subsystem (DSS) shown in Fig-
ure 5 manages the transfers between the DRAM and SRAM
in order to fulfill the requests issued by the MMA. The DSS
uses a DRAM Scheduler Algorithm (DSA) to avoid bank
conflicts, using two registers: the Requests Register (RR)
and the Ongoing Requests Register (ORR).

The RR is a shift register that stores the requests made by
the MMA that have not been fulfilled yet. Every � slots, the
DSA chooses a request of the RR, which can be located at
any position of the register. Once a request has been chosen,
it is removed from the RR and the requests from this posi-
tion to the tail of the RR are shifted ahead, making room for
the new request that will be issued by the MMA � slots later.
The ORR is a shift register that stores the identifiers of the
banks that are currently being accessed. Should a new re-
quest be issued to any of these banks, a bank conflict would
arise. Hence, the banks with identifiers stored in the ORR
are locked and the DSA never initiates a new transfer of the
cells that reside in these locked banks. Taking into account
that a bank is locked during � slots, we need to consider
the latest ���� � ongoing requests. The size of the ORR is
hence ���� �.

The DSA chooses the oldest request in the RR addressed
to a bank which is not locked, starting a new transfer of �
cells and placing the memory bank identifiers at the tail of
the ORR. It can be proved (see [8]) that the DSA can always
find a non-locked request2 provided that the RR has a size
of:

 � ����
� �� ����� �� � �� (1)

An intuitive explanation of equation (1) is as follows: Be-
cause within one bank there are at most ��
 queues and
because the next access to the same queue will go to the
modulo next bank within the group, the maximum number
of consecutive accesses to the same bank is roughly ��
.

2Empty requests are considered as requests to a special queue.
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Moreover, because each access takes � time slots to de-
liver � cells, at most roughly ��� requests can accumulate
in one access. Therefore, the RR need to be as large as
���
� �� ����� �� � � to guarantee conflict freedom.

Now we estimate the delay experienced by a request to
go through the RR. A request in the RR has two kinds of
delays: (i) the delay of � � �� � slots to go from the tail
of RR to the head, assuming the DSA empties the RR in a
FIFO manner, and (ii) the delay due to the DSA skipping
over requests. The maximum number of times a request can
be skipped over is:

���� � ����
� �� ����� ��� (2)

and thus the maximum delay due to skipping over is given
by ���� � �.

The intuitive explanation for equation (2) is as follows:
Because the maximum number of requests to any one bank
is ��
 and because a bank takes � time slots to access, the
DSA can skip over a request ���
� �� ����� �� times.

Finally, in formulas (1) and (2) we use �� instead of
� because the DRAM Scheduler Subsystem manages both
reads and writes to � queues in DRAM.

5.4. The Latency Register

In the proposed conflict-free access mechanism, the
DRAM subsystem may deliver cells out of order. There-
fore, we have to introduce a reordering mechanism which
introduces an additional delay and causes the SRAM size to
increase somewhat:

Firstly, an additional delay, equal to the maximum delay
that a replenish request can suffer due to the DSA reorder-
ing, has to be added to the lookahead of the MMA. This is
introduced by the latency shift register shown in Figure 5.
From the previous section’s discussions we can see that the
size of this register must be equal to:

latency (in slots) � � ��� �� ������

� � � ����
� �� ����� ���
(3)

Finally, note that requests are delivered to the DRAM
when they leave the RR register, but cells are removed from
the SRAM when they leave the latency shift register. The
mismatch between these two events requires an increase in
SRAM size (in order to store the cells downloaded to the
SRAM before they are granted to the arbiter). From that, we
conclude that there are two factors that contribute towards
SRAM dimensioning: (i) the size required by the MMA Sub-
system given by rads sram size�� �� �� (see Section 3),
and (ii) the additional SRAM size required to cope with the
mismatch described above. Summing both terms we have:

SRAM size (cells) � rads sram size�� �� ���

������
(4)
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Figure 7. Circular “renaming register” used
for the logical queue ��
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6. DRAM Fragmentation

The memory scheme previously described statically as-
signs queues to memory groups. This may prevent the full
usage of the DRAM. For instance, if the DRAM size is �
and we are using 
 groups, the ��
 queues assigned to a
certain group can only use a ��
th of the DRAM. Thus,
if the other queues are empty, only a ��
th of the DRAM
would be used. We shall refer to this problem as DRAM
fragmentation. In this section we explain a mechanism de-
signed to cope with this problem.

We reduce fragmentation by renaming. We allow each
logical queue name (��

�) to be associated with more than one
physical queue name (��

� ). By doing so cells from a given
logical queue can reside in more than one memory group,
and can potentially occupy the whole DRAM system. ��

�s
are the names used by the scheduler to identify the VOQ
logical queues, whereas ��

� s are the names used internally
for identifying queues assigned to a certain group.

In order to perform this renaming process, we use � cir-
cular renaming registers ��� (one for every��

�) to translate
��
� into ��

� . Each element of this register has two fields (see
Figure 7): (i) a queue renaming field (���

� ) that stores the
��
� that will be used to access the DRAM and (ii) a counter

(��	
� ) with the number of cells of ��

� that have been stored
in ��

� .
This register is initialized as follows. When � cells from a

��
� arriving to DRAM find the circular register ��� empty

(i.e., ��
� has no cells in DRAM), the first ��

� is chosen to
store the cells of this queue (this value would be stored in
���

� and ��	
� would be set to � cells). In order to balance

DRAM occupancy, the assignment algorithm could select a
��
� from the group with the least cells. Every time more

cells from ��
� are transferred to DRAM, the queue stored

in ���
� is used and the counter ��	

� is increased. If cells
arriving to this queue find that the DRAM assigned to the
group is full, a new ��


 would be chosen in another group
that could offer free DRAM space. The value of ��


 would
be stored in a new element added to the ��� register. Now,
the ����� index of this register would point to the last ��




associated with ��
�, and the ����� index would point the

the first one. Since cells are stored in FIFO configuration,
scheduler requests to the logical queue ��

� would be trans-
lated to the physical queue ��

� that ����� is pointing to.
Thus, each time a request for a��

� is issued by the scheduler,
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the element of the ��� register pointed to by ����� would
be accessed. The content of ���

� would then be stored in
the lookahead register and the ��	

� counter would be de-
creased. If ��	

� reached zero, ����� would be advanced to
the next position.

Each active logical queue needs to be associated with at
least one physical queue. Therefore, if we want to guarantee
that at least� logical queues can be active at any given time,
we need to oversubscribe the number of physical queues (� )
to � � �.

This mechanism allows the occupancy of the entire
DRAM by any logical queue. However, there are situa-
tions in which memory fragmentation can still arise. For in-
stance, fragmentation is possible if we have logical queues
with cells scattered through many physical queues, so that
all the physical queue identifiers are used, even though the
overall DRAM occupancy is low. However, we believe that
using a reasonable value of � , the probability of this DRAM
fragmentation problem arising may be very low.

Finally, note that this renaming scheme is hidden to the
rest of the memory management algorithm described in the
previous sections. Those algorithms deal only with the
physical queues. Thus, all previous results remain the same,
although � is used instead of �.

7. Evaluation of RADS

In this section we will perform an evaluation of the via-
bility of the RADS memory architecture described in Sec-
tion 3 for two different link rates, taking into account two
restricting factors: area and access time. Throughout this
section, we shall assume OC-768 (40 Gb/s) and OC-3072
(160 Gb/s) links for an input-buffer architecture. For the
OC-768, we will assume � � ��
. This could correspond
to 16 interfaces with 8 service classes. For OC-3072 we
have assumed a more aggressive design with � � ���. On
the other hand, taking into account the link rates of OC-768
and OC-3072, we will set the RADS data granularity (�) to
8 for the former system and 32 for the latter (assuming 48
ns of main DRAM random access time).

7.1. Design of SRAM buffers

In order to show how significant the benefits of our pro-
posed CFDS system are, we would like to evaluate whether
a RADS SRAM buffer will face technologic hurdles in the
near future. We have used CACTI 3.0 [19] to estimate the
access time (in ns) and the area (in ���) of different im-
plementations of the t-SRAM and h-SRAM buffers using
a 0.13 �m technological process. CACTI is an integrated
cache access time, cycle time, area, aspect ratio, and power
analytical model. The main advantage of CACTI is that, as
all these models are integrated, tradeoffs between the differ-
ent parameters are all based on the same assumptions and
hence are mutually consistent.

We assume that the t-SRAM and h-SRAM are shared by
all the queues, as the unified SRAM leads to smaller mem-
ories. However, the design of a unified (shared) SRAM
buffer is not as trivial as the design of a distributed (iso-
lated) SRAM buffer, where each queue has its own partition
of the available memory.

The second kind of SRAM buffer could be easily imple-
mented as a set of circular queues implemented with sim-
ple direct-mapped SRAM structures. On the other hand, in
the shared SRAM buffer, we need a mechanism to identify
where exactly the ��� element of a given queue �� is placed.
Intuitively, this seems analogous to the design of � linked
lists, where the next cell to be accessed by the scheduler is
located at the head of the corresponding list, and the next
cell to store coming from the DRAM is placed at the tail of
the corresponding list.

In [8] we proposed several RAM organizations to handle
the management of cells in a shared buffer. In this paper, we
are going to describe and focus on two of the designs: the
one targeted at minimum area and the one targeted at getting
the shortest access time. The first would be the most suitable
for moderately high link rates while the second would be
required for very high link rates.

The design targeted at the shortest access time is the
global CAM. The global CAM consists of a full content-
addressable memory where all the cells are stored together.
Each cell has a tag that identifies the queue related to that
cell, and the relative order within the list of cells of that
same queue. When the address (queue identifier and order)
of the cell is sent, the CAM searches across all entries re-
lated to that cell. This implementation requires two ports
(one for reading and another for writing cells). Note that
we assume that the refreshes from the DRAM are serialized
along � time slots at a rate of one cell per slot.

Our design targeted at minimum area investment is the
unified linked-list. The unified linked-list proposal is a
straightforward implementation of � linked lists in a direct-
mapped memory structure. Each entry of that direct-mapped
SRAM contains one cell and a pointer to the next cell (an-
other entry of the same structure). In order to be able to iden-
tify the head and the tail of each linked list, we have another
direct-mapped structure that stores the head and tail pointers
for each of the queues. This special structure requires an ad-
ditional write-port to store the position of the new tail onto
the pointer field of the old tail. This translates into a direct-
mapped SRAM with one read port and two write ports. If
we assume that we do not have time constraints, we can se-
rialize the three accesses (that is, time-multiplexing), thus
requiring just a single read/write port and substantially re-
ducing the area required.

7.2. RADS SRAM buffer performance

Figure 8 shows the access time and area of the two differ-
ent SRAM implementations for OC-768 and OC-3072, as a
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Figure 8. h-SRAM area and access time as a function of the lookahead for the RADS scheme (Q=128,
B=8 for OC-768 and Q=512, B=32 for OC-3072).

function of the number of slots of the lookahead. Given a
lookahead value, the SRAM size is obtained using the for-
mulas given in [13]. In practice, it would be desirable to
match the link-rate targets with the minimum look-ahead to
minimize the average cell delay. The size of OC-768 system
SRAM ranges from 300 kB (for minimum lookahead) to 64
kB (for maximum lookahead). The size of OC-3072 system
SRAM ranges from 6.2 MB (for minimum lookahead) to 1.0
MB (for maximum lookahead).

For an OC-768 system, we need to access a new cell ev-
ery 12.8 ns (assuming cells of a width of 64 bytes). We can
observe from Figure 8 that the access times of both SRAM
alternatives are far quicker, even for the shortest lookahead.
Therefore, as access time is not a concern, the most suit-
able alternative is the small-area design (the time-mux uni-
fied linked list), which matches OC-768 time requirements
with a modest investment in silicon (0.1 ��� even for the
shortest look-ahead). In conclusion, RADS is an ideal way
of providing fast packet buffering for OC-768.

For an OC-3072 system, we need to access a new cell
every 3.2 ns, which is a significantly harder constraint to
meet, taking into account that the SRAM buffers are now
larger. Indeed, Figure 8 clearly shows that none of the
SRAM implementation is able to comply with the 3.2 ns
target (not even for the longest lookaheads), including the
fastest one: global CAM. Furthermore, the area results show

that only time-multiplexed, direct-mapped SRAM have an
area smaller than 1 ���, which is already a significant frac-
tion of the overall transistor budget of a high-end system (as
we need both h-SRAM and t-SRAM buffers).

From the results, we can clearly see that RADS do not
scale well beyond OC-3072 and suffer from severe imple-
mentation hurdles. Therefore, techniques focused on reduc-
ing both the area and the access time of the SRAM buffers
are of the highest interest.

8. Evaluation of CFDS

In this section we will perform an extensive evaluation of
various implementation issues that concern the design of the
CFDS memory architecture described in Section 5. We will
discuss the design of the request register scheduling logic,
as well as the required modifications for the SRAM buffers.
Finally, we will compare the performance (in terms of area
and access time) of the RADS and CFDS memory architec-
tures.

8.1. Implementation issues of the DRAM Scheduler
Subsystem

As already described in Section 5.3, the Requests Regis-
ter (RR) is a special lookahead register for requests to the
DRAM memory system. The main function of this regis-
ter is to store the requests so the DSA can schedule them to
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Figure 9. Implementation of the request regis-
ter: (a) wake-up logic, (b) selection logic.

guarantee conflict-free access to the DRAM memory banks.
The scheduling algorithm for selecting the request to be ser-
viced is very simple. The Ongoing Requests Register (ORR)
contains the banks that are currently accessing a block of �
cells (������ � banks). The DSA scheduler is responsible
for finding the oldest request from the RR that will access
none of the banks contained in the ORR.

This logic problem is actually equivalent to the design of
instruction issue windows in out-of-order superscalar pro-
cessors [17, 11]. Figure 9 shows a possible design for the
RR scheduling logic, based on a conventional issue window
implementation. The logic is based on sending the tags from
the ORR (that is, the ����� � � indexes of the banks be-
ing accessed) across all the entries of the Requests Register.
Each entry is responsible for determining whether the bank
index corresponding to the request is different from all the
indexes coming from the ORR. If it is different, the entry is
marked as ready. This stage (wake-up) is performed every
time we want to select a new request candidate. After the
wake-up stage, the logic needs to select the oldest entry that
is in ready state (i.e. that can access the DRAM array with
no bank conflicts). In order to do so, we can use a hierar-
chical selection logic that first propagates the ready signal
across the tree, and then sends the selection signal back us-
ing priority encoders. This stage is known as the selection
stage. Finally, once the request has been selected, a mecha-
nism to perform compaction of requests is required in order
to maintain the ordering of the requests by age.

Table 2 shows the RR size for different values of � and the
time available to perform the scheduling of a single request.
In order to assess the technological hurdles of these imple-
mentations, it will be useful to study a current commercial
processor: the Alpha 21264. This processor implements,
with a 0.35 CMOS process, a 20-entry issue queue able to
select up to four instructions in 1 ns approximately [14], us-

 � ��  � ��  � �  � �  � �  � �

OC-768
RR size - - 0 2 16 64

Sched. time (ns) - - - 51.2 25.6 12.8

OC-3092
RR size 0 8 64 256 1024 4096

Sched. time (ns) - 51.2 25.6 12.8 6.4 3.2

Table 2. Requests register size and time to
perform the scheduling of a new request.

ing 0.05 cm� of the overall die area. From this basic result,
we can conclude that the implementation of the RR logic
for OC-768 is fairly trivial, since even for � � � we have
12.8 ns to search in an RR of a length of 64. For OC-3072,
the design is attainable for values of � higher than 2, and
possible (yet aggressive) for � � �. The implementation of
the RR scheduling logic for OC-3072 and � � � is certainly
of difficult viability.

8.2. Design of CFDS SRAM buffers

In order to implement an SRAM buffer for any CFDS
configuration, we have to tackle two main issues. Firstly,
the cells coming from the DRAM memory system of any
given queue may come out-of-order. Secondly, the SRAM
must contain ������ additional entries to be able to hold
elements before they are scheduled by the MMA. The first
problem can be easily overcome by implementing some ba-
sic changes to our proposed SRAM structures in order to
allow them to insert cells from a queue out of its natural
order: (i) global CAM: The implementation of out-of-order
writing operations is trivial in this configuration, since the
order is already specified in the tag of each entry of the
CAM which we use to find the correct element. (ii) uni-
fied linked-list: Out-of-order writing operations are com-
plex within a linked-list. However, an easy solution is to
implement � ����� linked-lists instead of �, since ��� is
the number of banks per group and two operations over the
same bank are always performed in strict order.

8.3. Performance comparison

Figure 10 allows us to demonstrate the performance ben-
efits of using CFDS instead of a basic RADS approach. The
figure shows the area (of both h-SRAM and t-SRAM) and
most restricting access time for OC-3072 as a function of the
delay (measured in �-seconds). The delay is the lookahead
delay for RADS and the lookahead delay plus latency for
CFDS. Again, the number of queues � is 512. The curves
with a data granularity � � �� correspond to the RADS im-
plementation. The rest of the curves correspond to different
CDFS configurations with varying values of �. We assume
the number of banks � to be 256.

There are two main conclusions that can be inferred from
the results in Figure 10. Firstly, one can observe the ev-
ident advantages of CFDS over RADS. A CFDS system
with � � � is compliant with the requirements of buffer-
ing packets at 160 Gb/s, as the access time is lower than
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3.2 ns. Moreover, this is accomplished with a modest looka-
head delay (10 �s) and an affordable area (0.6 cm� overall).
This contrasts heavily with its RADS counterpart, which is
hardly able to access data in 7 ns, even with a delay of more
than 50 �s. Another relevant issue is that the RADS system
requires an area of 2 cm�.

The second important conclusion is that there is an opti-
mal value of � for any given CFDS implementation. This is
due to the trade-off between the SRAM size required to tol-
erate the unpredictability of arrivals from the arbiter, which
is proportional to � (see Section 3), and the SRAM size re-
quired to absorb the level of reordering of the accesses from
the DRAM, which is proportional to ��� (see equation (2)).

8.4. Potential number of queues

An important parameter is the number of queues that can
be supported by our system [15]. Figure 11 shows the
maximum number of queues that the different SRAM buffer
approaches can afford, taking into account the access time
constraints (for OC-3072, less than 3.2 ns). The first column

bar (where � � �) corresponds to a RADS implementation,
while the rest of the columns correspond to CFDS imple-
mentations as we reduce the data granularity �. As shown in
the figure, CFDS allows 6 times more queues for OC-3072
(up to 850 queues). Note however, that this amount repre-
sents the number of physical queues available. The number
of real queues is slightly lower taking into account the re-
naming process used to avoid the problem of fragmentation.

9. Related Work

Virtual Output Queuing was proposed for the first time
in [20] (with the name of “dynamically-allocated multi-
queue buffers”). The amount of buffering and the line rates
considered in this seminal paper were far lower than those
required for our target application: high-speed backbone
routers. For OC192 (10 Gb/s) line rates, a time-slot is lower
than the random access time of DRAM. [16] proposes a de-
sign using DRAM only for a VOQ buffer architecture work-
ing at this line rate. The proposed design uses out-of-order
memory access in order to reduce the number of bank con-
flicts, although it does not guarantee zero miss loses.

[10] proposes techniques that exploit row locality when-
ever possible in order to enhance average-case DRAM band-
width. However, this scheme does not guarantee zero miss
probability, while the scheme proposed in this paper does.

For faster line rates, a combined SRAM-DRAM imple-
mentation of a VOQ buffer using ECQF for the h-MMA, is
discussed in [13]. It assumes random access time to DRAM,
which corresponds to what we call RADS.

There are many proposals dealing with mechanisms de-
signed to alleviate the problem of memory conflicts [18] or
to provide conflict-free access [23] This is especially true in
the vector processor domain. The novelty of our technique
resides in the application of these mechanisms to the con-
text of fast packet buffering. In packet buffering, no bank
collision can be produced as packets have to be guaranteed
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within a bounded delay.

10. Conclusions

In this paper we have analyzed a novel architecture tar-
geted at fast packet buffering. In order to overcome the
bandwidth problems of current commodity DRAM mem-
ory systems, the use of SRAM modules coupled to DRAM
modules have been proposed in the past. SRAM memories
act as ingress and egress caches to allow wide transfers be-
tween the buffering system and its main DRAM memory
system. The main drawback of this organization is that the
data granularity of the DRAM accesses has to be enlarged
in order to sidestep the high cycle times of DRAM. As a re-
sult, the SRAM memories are too large and slow for very
high link rates.

We make the key observation that we can reduce the ef-
fective DRAM access time by overlapping multiple accesses
to different banks, allowing us to reduce the SRAM size.
The key challenge is that to keep the worst-case bandwidth
guarantees we need to guarantee that there are no bank con-
flicts while the accesses are in flight. We guarantee bank
conflicts by reordering the DRAM requests using a modern
issue-queue-like mechanism. Because our design may lead
to fragmentation of memory across packet buffer queues, we
propose to share the DRAM space among multiple queues
by renaming the queue slots.

We carry out an analysis that shows that the reordering
introduced by the access scheme is bounded and that zero
miss conditions can be guaranteed. Moreover, a technolog-
ical study of the system implementation shows that our or-
ganization gives better results for area, access times, delay,
and maximum number of queues than the previously pro-
posed designs. For instance, OC-3072 line rates (160 Gb/s)
require an access time � 3.2 ns. This constraint is fulfilled
by our proposed mechanism with a delay of 10 �s, while the
baseline counterpart system would require an access time
� 7 ns with a delay of more than 50 �s.

To the best of our knowledge, the design proposed in this
paper is the fastest buffer design using commodity DRAM
to be published to date.
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