
Synonymous Address Compaction for
Energy Reduction in Data TLB

Chinnakrishnan S. Ballapuram
chinnak@ece.gatech.edu

Hsien-Hsin S. Lee
leehs@ece.gatech.edu

Milos Prvulovic†

milos@cc.gatech.edu

School of Electrical and Computer Engineering
College of Computing†

Georgia Institute of Technology, Atlanta, GA 30332

ABSTRACT
Modern processors can issue and execute multiple instruc-
tions per cycle, often performing multiple memory opera-
tions simultaneously. To reduce stalls due to resource con-
flicts, most processors employ multi-ported L1 caches and
TLBs to enable concurrent memory accesses. In this pa-
per, we observe that data TLB lookups within a cycle and
across consecutive cycles are often synonymous — they go
to the same page. To exploit this finding, we propose two
new mechanisms — intra-cycle compaction and inter-cycle
compaction of address translation requests in order to save
energy in the data TLB. Our results show that average en-
ergy savings of 27% using intra-cycle, 42% using inter-cycle
in a conventional d-TLB, and 56% using inter-cycle com-
paction in semantic-aware d-TLBs can be achieved. When
these 2 compaction techniques are combined together and
applied to both the i-TLB and semantic-aware d-TLBs, an
average energy savings of 76% (up to 87%) is obtained.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Associative
memories, Cache memories, Virtual memory.

General Terms
Design, Experimentation, Performance.

Keywords
Low-power TLB, Spatial and temporal locality, Multi-porting.

1. INTRODUCTION
Multi-issue superscalar processors have become the de

facto standard not only for high performance computing
but also in embedded computing platforms. These sophis-
ticated processors issue and execute multiple instructions
per cycle and rely on accurate branch predictors, mul-
tiple address generation units (AGU), and multi-ported

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

translation lookaside buffers (TLBs) and caches to keep
the processor supplied with instructions and data. With
virtual memory support, address translation must also be
done for instruction and data fetches. Due to the differ-
ent needs of virtual memory management and cache co-
herency maintenance, most caches are either physically in-
dexed and physically tagged (PIPT), or virtually indexed
and physically tagged (VIPT). In both cases, an address
translation using the TLB is needed for each access. Mul-
tiple instructions issued in each cycle require multi-ported
instruction TLBs and data TLBs to avoid stalls due to
resource conflicts. Additionally, TLBs are typically or-
ganized as a fully-associative cache to eliminate memory
intensive page walks due to conflict misses. As a result,
TLBs are often implemented as content-addressable mem-
ory (CAM), where all CAM cells are probed and compared
to find a match each time a TLB access is initiated. Mea-
sured data [5, 6] from commercial processors such as Intel’s
StrongARM and Hitachi’s SH-3 indicates that as much as
17% on-chip power is consumed in the TLBs with an esca-
lating trend.
In this paper, we analyze the access pattern of mem-

ory operations performed within a cycle and in successive
cycles, and exploit the characteristics of the addresses for
energy reduction opportunities In particular, we find that
concurrent and consecutive memory operations demonstrate
very high locality and are often synonymous — accessing
the same memory page. As a result, a single TLB lookup
often suffices to find the correct translation for multiple
accesses in the same cycle, thus eliminating redundant
look-ups that could draw additional power. Similarly, the
most recently accessed data TLB entry can be latched and
reused in subsequent TLB look-ups. We propose two new
hardware-based mechanisms that exploit this behavior to
reduce the number of TLB lookups. These mechanisms
are complexity-effective and power-efficient, with minimal
impact on the hardware budget. In addition to reducing
power, these mechanisms can also be used, when chip area
is a concern, to reduce the number of TLB ports.
The rest of this paper is organized as follows: Section 2

motivates our work by characterizing data memory refer-
ences, Section 3 presents intra-cycle and inter-cycle address
compaction mechanisms, Section 4 presents our simulation
results, Section 5 discusses related work, and Section 6
presents our conclusions.

2. MOTIVATION
Using MiBench [3] and SPEC CPU2000 benchmarks,

Figure 1 shows that more than 40% of dynamic instruc-

357

39.2%
41.4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

blo
wfis

h

bit
co

un
t

cjp
eg

dij
ks

tra
djp

eg fft

pa
tric

ia

rijn
da

el

MiBen
ch

 A
vg art

bz
ip2 gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk

SPEC A
vg

MiBench SPEC 2000

Figure 1: Dynamic memory references as a fraction
of all dynamic instructions

tions executed in a program are memory references,1 in
other words, there is a memory instruction for almost every
other instruction issued. Therefore, in a superscalar pro-
cessor, multiple memory operations will be performed con-
currently in each cycle, using multiple AGUs, larger mem-
ory order buffers for address disambiguation, and multi-
ported TLBs and caches. To study the behavior of mem-
ory references in a given cycle (intra-cycle) and in consec-
utive cycles (inter-cycle), we examine the distribution of
dynamic memory accesses.2

2.1 Intra-cycle behavior of memory references

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

blo
wfis

h

bit
co

un
t

cjp
eg

dij
ks

tra
djp

eg fft

pa
tri

cia

rijn
da

el ar
t

bz
ip

gc
c

gz
ip

pa
rs

er

pe
rlb

m
k

Avg

%
 o

f
d

at
a

T
L

B
 a

cc
es

se
s

1 dtlb access / clk 2 dtlb accesses / clk 3 dtlb accesses / clk 4 dtlb accesses / clk

Figure 2: Breakdown of d-TLB accesses

Figure 2 shows the breakdown of data TLB accesses ac-
cording to the number of concurrent references per cycle.
On average for 58% of accesses, the processor issues more
than one data TLB lookup in a cycle, that requires a multi-
ported TLB to avoid stalls. An interesting property of

1We ran all the benchmark programs to completion ex-
cept for art which stopped at 500 billion instructions. For
SPEC2000, reference inputs were used. We randomly se-
lected the programs from each benchmark suite without
prejudice for figure’s readability. Our full SPEC2000INT
and FP benchmark runs show 40% and 41% of dynamic
instructions are memory references.
2A 4-wide machine with 4KB pages is simulated.

0%

20%

40%

60%

80%

100%

blo
wfis

h

bit
co

un
t

cjp
eg

dij
ks

tra
djp

eg fft

pa
tri

cia

rijn
da

el ar
t

bz
ip gc

c
gz

ip

pa
rs

er

pe
rlb

m
k

Avg

%
 o

f
sy

n
o

ym
o

u
s

ac
ce

ss
es

 in
 d

-T
L

B

syn(3) in 4 mem ref / clk
syn(2) in 4 mem ref / clk
syn(2) in 3 mem ref / clk
syn(1) in 4 mem ref / clk
syn(1) in 3 mem ref / clk
syn(1) in 2 mem ref / clk
syn(0) in 4 mem ref / clk
syn(0) in 3 mem ref / clk
syn(0) in 2 mem ref / clk
syn(0) in 1 mem ref / clk

MiBench SPEC2000

Figure 3: Breakdown of synonymous intra-cycle ac-
cesses in d-TLB

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

blo
wfis

h

bit
co

un
t

cjp
eg

djp
eg

dij
ks

tra fft

pa
tric

ia

rijn
da

el ar
t

bz
ip2 gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

m
k

av
g

Baseline stack-TLB global-TLB heap-TLB

Figure 4: Inter-cycle reuse of d-TLB translations.

these simultaneous memory accesses is that they often ac-
cess the same page (thus using the same virtual-to-physical
translation in the TLB). We call these intra-cycle synony-
mous accesses.
Figure 3 shows the breakdown of memory accesses ac-

cording to the number of d-TLB access synonyms. In the
figure, syn(0) means no access synonym, i.e., all mem-
ory references in the intra-cycle are unique. An access is
syn(1), when one other access in the intra-cycle is its syn-
onym, i.e., the same page is used by two memory references
in the same cycle. More generally, syn(N) is when there
are N other memory references in the intra-cycle accessing
the same page. Within each syn(N) group, accesses are
further broken down according to the number of memory
references per cycle, yielding a total of 10 categories. As
the simulated machine is 4-wide, a maximum of 4 memory
accesses can be issued in each cycle. The bottom four seg-
ments in each bar represent non-synonymous, i.e., syn(0),
accesses in 1, 2, 3, or 4 simultaneous memory accesses per
cycle. The next 3 bar segments represent syn(1) accesses in
2, 3, or 4 memory references per cycle. Similarly, the next
2 bar segments show the portion of syn(2) accesses and, fi-
nally, the top bar segment represents syn(3) accesses that
can occur only when there are 4 memory operations issued
in the same cycle.
As shown in Figure 3, 30% of references have synonyms,

358

indicating that there is access redundancy that can be elim-
inated by using a single d-TLB lookup to satisfy these syn-
onymous accesses. With this technique, we can remove d-
TLB lookups for 1

2
of all the syn(1) accesses, 2

3
of all the

syn(2) accesses, and 3
4
of all the syn(3) accesses.

2.2 Inter-cycle behavior of memory references
Another congruent memory reference behavior that oc-

curs during program execution is when two consecutive
memory references go to the same page. We call these type
of memory references as inter-cycle synonymous accesses.
Inter-cycle synonymous accesses can be exploited by a sim-
ple mechanism that detects the reuse of immediately pre-
ceding address translations. Our mechanism keeps the
most recently accessed TLB translation and reuses it if
the next access is synonymous. As shown in the leftmost
bar (baseline) of Figure 4, using a fully-associative TLB
76% of accesses could reuse the last address translation.
This rate of reuse can be further increased if the data TLB
is horizontally segregated into discrete differentially-sized
TLBs based on semantic regions — stack, global, and heap,
as proposed in [8]. As shown in Figure 4, the stack-TLB
shows almost perfect inter-cycle reuse of nearly 99%, fol-
lowed by 82% for the global-TLB and 80% for the heap-
TLB. In addition to improving the probability of reuse,
these semantic-aware d-TLBs also allow reuse detection to
be applied selectively, that will be shown in experimental
results section.

3. VPN COMPACTION MECHANISMS
Intra-cycle, and inter-cycle synonymous memory refer-

ences provide an opportunity to reduce the energy con-
sumed by TLBs. In this section, we describe two orthog-
onal virtual address compaction techniques that make use
of these properties. Figure 2 and Figure 3 show that 58%
of memory references have companions in the same cycle,
and even three or four memory references per cycle are not
uncommon, 14% on average. Furthermore, access locality
can be very high and synonymous accesses may look up
the same memory page or even the same cache line in the
same cycle or in consecutive cycles.

3.1 Overview of VPN Compaction

cycle i 0xdeadbeee 0xdeadbeef 0xdeadbef0 0xffffffff
cycle (i+1) 0xdeadbef2 0xdeadbef3 0x12345678 —

Table 1: Virtual address access sequence

cycle i 0xdeadb 0xdeadb 0xdeadb 0xfffff
cycle (i+1) 0xdeadb 0xdeadb 0x12345 —

Table 2: VPN translation lookup in d-TLB

Table 1 shows an example of two back-to-back execu-
tion cycles for a 4-issue machine with 4KB pages and a
4-ported d-TLB. The corresponding virtual page numbers
(VPN) looked up in d-TLB are shown in Table 2. This
example will be used in the following sections to illustrate
our compaction mechanisms.

3.1.1 Intra-cycle compaction
Combining same-cycle synonymous lookups into one can

be regarded as compaction of virtual page numbers called
intra-cycle compaction. This compaction is shown in Ta-
ble 3, where in the first cycle (cycle i) three lookups (for

addresses 0xdeadbeee, 0xdeadbeef, and 0xdeadbef0 in Ta-
ble 1) can be compacted into one and, similarly, in cycle
(i+1) two VPN lookups can be compacted into one. As
shown, after intra-cycle compaction only two TLB accesses
are needed in each cycle, that saves power and reduces the
number of required d-TLB ports. To perform intra-cycle
compaction, dedicated logic to be discussed in Section 3.2.1
is designed to detect access synonyms and eliminate redun-
dant d-TLB accesses.

cycle i 0xdeadb — — 0xfffff
cycle (i+1) 0xdeadb — 0x12345 —

Table 3: VPNs after intra-cycle compaction

3.1.2 Inter-cycle compaction
The reuse of address translations in consecutive cycles

can also be regarded as compaction of virtual page num-
bers, or inter-cycle compaction. Using the access example
in Table 2, this technique latches the d-TLB translation
used in cycle i for addresses 0xdeadbeee and 0xdeadbeef,
and reuses it for the addresses 0xdeadbef2, and 0xdead-
bef3 in cycle (i+1). Table 4 shows address translations
needed after inter-cycle compaction. Effectively, two d-
TLB lookups are saved in cycle (i+1). We note that the
reused translation remains latched and could be reused
again as long as the same memory page is accessed consec-
utively. For example, Figure 4 shows stack address trans-
lation often fits in this category. The extra prediction logic
for intra-cycle compaction also needs careful trade-off eval-
uation to ensure that extra energy consumed does not ex-
ceed the energy saved by compaction.

cycle i 0xdeadb 0xdeadb 0xdeadb 0xfffff
cycle (i+1) — — 0x12345 —

Table 4: VPNs after inter-cycle compaction

3.2 Implementation of VPN Compaction

3.2.1 Intra-Cycle Compaction

AGUs

Reservation Station

FPUs IUs

Load
Buffer

Store
Buffer

Six 20−bit comparators

32−entry fully−associative
 data TLBs

Physical
Address

Memory Order

 Buffer

(a) Modified Microar-
chitecture

Memory Order
Buffer

1=2=
3=4

1=2=3 1=3
1=3=4

2=3=4
1=2=4

1=4
2=3

2=4
3=41=2

VPN1

VPN2

=
=

VPN1

=
=

VPN1

=
=

=
=

=
=

=
=

VPN3 VPN4

VPN2

VPN3

VPN2

VPN4

VPN3

VPN4

(b) Comparator Logic

Figure 5: Architectural enhancements for intra-
cycle compaction

359

Based on prior discussion, we propose an intra-cycle
compaction mechanism to eliminate the same-cycle syn-
onymous d-TLB lookups. For an N-wide machine, we add
C(N,2) comparators at the end of the memory order buffer
after address disambiguation but before addresses are used
for actual memory accesses. For instance, a 4-issue ma-
chine needs C(4,2)=6 comparators. The width of each
comparator has the same width of the VPN. The compara-
tors are used in each cycle to eliminate VPN redundancy so
only unique VPNs are sent to the fully-associative d-TLB
for address translation. Figure 5(a) illustrates the pro-
posed microarchitecture enhancement assuming a 4-issue
machine with 4KB pages and 32-bit address space (thus
six 20-bit comparators). The comparator logic is detailed
in Figure 5(b) that asserts one of the output signals to
indicate the degree of access synonym for eliminating re-
dundant lookups.
In addition to saving energy, this technique also offers

potential benefits in reducing d-TLB lookup latency and
the port requirement. For instance, for a 4-issue machine,
the d-TLB does not need to be designed for the worst-
case, i.e. 4-ported, since the occurrence of syn(3) is rare
for 4 memory references in a cycle, though syn(2) is not
uncommon as shown in Figure 3. This means that to
avoid performance loss at least three ports are needed for
the d-TLB. Using our proposed intra-cycle compaction, as
some of syn(2) can be compacted to 1 or 2 memory ref-
erences when the opportunity arises, a d-TLB with two
ports would suffice. A d-TLB with fewer ports is a smaller
structure with a shorter lookup latency. This could be
used to reduce the number of cycles needed for a d-TLB
lookup when operating frequency is high, or it can be used
to increase the number of entries in the d-TLB without
increasing the lookup latency.

3.2.2 Inter-cycle Compaction
The inter-cycle compaction mechanism can be imple-

mented by simply latching the most recently used (MRU)
TLB entry and its virtual page number, and later read-
ing the latch to detect reuse and obtain the translation.
Figure 6 shows a semantic-aware memory (SAM) architec-
ture [8] extended with this mechanism. The SAM architec-
ture uses a Data Address Router to decouple a single mem-
ory stream into stack, global, and the rest (primarily heap
data) substreams. In this case, the semantic-aware TLB
splits a conventional TLB into a 2-entry stack-TLB, a 4-
entry global-TLB, and a 32-entry heap-TLB for exploiting
the semantic-region affinity. In the same figure, inter-cycle
compaction is enabled for each individual semantic-aware
TLB. For a multi-ported TLB, the number of reuse latches
can be equivalent to the number of ports. Typically, TLBs
are already designed with latches to test the read and write
circuitry. During address translation, the VPN of the vir-
tual address is compared against these latches, that hold
input and the result of the previous translation lookup.
If the VPN matches (hit), the latched physical address is
used. If the VPN does not match (miss), a lookup to the
corresponding fully associative semantic-aware TLB will
be performed. The performance impact of misses in the
reuse detection circuitry will be discussed in the next sec-
tion, along with methods of reducing the penalty impact.

4. EXPERIMENTAL RESULTS
Our performance evaluation infrastructure is based on

Simplescalar for the ARM ISA. We integrated Wattch [2]
into the Simplescalar ARM model for energy simulation

sCache
L1 L1 L1

hCache gCache

Unified L2 Cache

To Processor To Processor

Virtual Address

ld_environ_base_register
ld_data_bound_register

ld_data_base_register

gTLB 0

MRU Latch

1

Data Address Router

sTLB 0

1

MRU Latch

1

2

MRU Latch

hTLB 0

31

 last access reuse

2
3

Figure 6: Semantic-aware memory architecture
with inter-cycle compaction

32-bit Processor Parameters Values

Execution Engine out-of-order
Fetch/Decode Width 4 / 4
Issue/Commit Width 4 / 4

Number of data TLB entries 32
Page size 4 KB

L1/L2 cache hit latency 1 / 6 cycle
Memory latency 150 cycles

TLB hit/miss latency 1 / 30 cycles
L1 Cache baseline Directed-mapped,

32KB, 32B line
L2 Cache 4-way 512KB, 32B line

Number of TLB ports used 2
Each 20-bit comparator power 300µW
Each MRU latch power in TLB 140µW

Table 5: Processor model parameters

and made the necessary changes to enable our studies for
semantic-aware memory architecture, and compaction of
synonymous virtual addresses. The MiBench simulations
were run to the end. The SPEC2000 simulations were first
fast forwarded by 1 billion instructions, and simulated the
next 3 billion instructions. The total memory references
for these benchmarks vary from as low as 25% for bitcount
to as high as 72% for blowfish in MiBench, and from 34%
for mcf to 43% for bzip2 in SPEC benchmarks. Table 5
describes our machine model.
To evaluate the energy savings using intra-cycle com-

paction mechanism, the power consumption of the six 20-
bit comparators used in eliminating redundant TLB lookups
are taken into account in the Wattch simulation. We de-
signed the comparators in Verilog and synthesized them
using Synopsys Design Compiler targeting at 0.35µm tech-
nology. Each 20-bit comparator consumes 300µW, and
takes about 550ps according to our synthesized results.
Similarly, each MRU latch comparison for the inter-cycle
compaction mechanism consumes 140µW. The energy con-
sumed by the comparators, and latches are added each cy-
cle even if only one d-TLB access is issued. We charge one
extra cycle for the six 20-bit comparators, and one extra
cycle for the MRU latch comparison. We also added an
extra 10% of the dynamic power to account for the leakage
power when there is no TLB access activity. The rest of
the processor modules also use the same 0.35µm technol-
ogy scaling for power measurements using Wattch.

360

4.1 Energy Reduction of Intra-cycle and Inter-
cycle Compaction

Figure 7 presents the energy savings by applying intra-
cycle and inter-cycle compaction mechanism separately to
the d-TLB. The baseline in this figure is a conventional
32-entry d-TLB. The rightmost bar shows the total energy
savings attained by applying intra-cycle compaction mech-
anism to baseline d-TLB. In average, nearly 27% of d-TLB
energy savings is achieved with 9% penalty as shown by the
last bar in Figure 8.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

blo
wfis

h

bit
co

un
t

cjp
eg

djp
eg

dij
ks

tra fft

pa
tric

ia

rijn
da

el ar
t

bz
ip2 gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

m
k

Avg

d
at

a
T

L
B

E
n

er
g

y
S

av
in

g
s

%

Inter-Cycle: semnatic-aware stack-only Inter-Cycle: semantic-aware stack + global
Inter-Cycle: semantic-aware stack + heap Inter-Cycle: all semantic-aware
Inter-Cycle: applied to baseline d-TLB Intra-Cycle: applied to baseline d-TLB

Figure 7: Energy savings using intra-cycle or inter-
cycle compaction mechanism

Also shown in Figure 7 are the combinations of inter-
cycle compaction mechanism applied to selective semantic-
aware d-TLBs to trade-off the miss penalty. The first four
bars show the energy savings achieved by employing stack-
only, stack+global, stack+heap, and stack+global+heap
(i.e., all semantic-aware) using inter-cycle compaction. In

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

blo
wfis

h

bit
co

un
t

cjp
eg

djp
eg

dij
ks

tra fft

pa
tric

ia

rijn
da

el ar
t

bz
ip2 gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

m
k

Avg

P
er

fo
rm

an
ce

 s
pe

ed
up

Inter-Cycle: semantic-aware stack only Inter-Cycle: semantic-aware stack+global
Inter-Cycle: semantic-aware stack+heap Inter-Cycle: all semantic-aware
Inter-Cycle: applied to baseline d-TLB Intra-Cycle: applied to baseline d-TLB

Figure 8: Performance impact due to intra-cycle
or inter-cycle compaction mechanism

general, the energy savings reaches a maximum of 56%
when inter-cycle compaction is applied to all semantic-
aware d-TLBs while encountering less than 4% performance
penalty. (the 4th bar from the left in Figure 8). Us-
ing inter-cycle compaction mechanism in a conventional d-
TLB results in 42% energy reduction, with 8% performance
slowdown (fifth bar in Figure 7 and and Figure 8.) The
inter-cycle compaction scheme can be advantageous over
the intra-cycle compaction when the reuse address transla-
tion hit rate is higher. Thus, most of the benchmarks show

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

blo
wfis

h

bit
co

un
t

cjp
eg

djp
eg

dij
ks

tra fft

pa
tric

ia

rijn
da

el ar
t

bz
ip2 gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

m
k

Avg

T
LB

 E
ne

rg
y

S
av

in
gs

 %

Intra-Cycle + Inter-Cycle: applied to baseline iTLB
Intra-Cycle + Inter-Cycle: applied to baseline dTLB
Intra-Cycle + Inter-Cycle: applied to both iTLB + baseline dTLB
Intra-Cycle + Inter-Cycle: applied to both iTLB + all semantic-aware

Figure 9: Overall i-TLB and d-TLB energy sav-
ings using both intra- and inter-cycle compaction
mechanism

better performance using inter-cycle compaction over the
intra-cycle compaction scheme.

4.2 Synergistic Synonymous Address Com-
paction

The intra-cycle and inter-cycle compaction can be com-
bined together to further reduce the overall energy con-
sumption. Hence, we applied the intra and inter-cycle com-
paction mechanisms to instruction TLB (i-TLB) as well
for it also exhibits high synonymous access behavior. Note
that the instructions change memory pages only when (1)
subsequent instructions cross the page boundary, or (2) a
cross-page branch is taken. First, by applying both the
compaction mechanisms to i-TLB and d-TLB separately,
an average of 85% of the i-TLB energy and 52% of the con-
ventional d-TLB energy are reduced as shown by the first
two bars in Figure 9. A more encouraging observation is
that several benchmark programs even demonstrated more
than 90% energy savings in the i-TLB. Next, we combined
both compaction schemes and applied to both i-TLB and
d-TLB together to evaluate the overall TLB energy sav-
ings. As shown by the last two bars in Figure 9, 70% and
76% energy reduction are attained. It shows that apply-
ing both compaction schemes to i-TLB and semantic-aware
d-TLB saves most of the energy spent in the TLBs.

4.3 Performance Impact for Combined Com-
paction

In the worst-case design, the two compactions require
two extra pipeline stages if the TLB lookup cycle bud-
get cannot accommodate them. We evaluated the perfor-
mance impact due to the increased latency in Figure 10.
In the worst case, 14% (3rd bar from left) performance is
lost, when the latency penalties for intra- and inter-cycle
compactions were charged to both the i-TLB and the con-
ventional d-TLB. The loss is reduced down to 11% (4th
bar from left) when the conventional d-TLB was replaced
with semantic-aware d-TLBs as the reuse address transla-
tions has higher hit rate. If the compaction mechanisms
are applied to only i-TLB, and d-TLB separately the per-
formance degradation is 5%, and 13% (1st, and 2nd bar)
as shown in Figure 10. The performance overhead can
be eliminated from the critical path for the i-TLB, if the
design can perform the comparison against the MRU latch
as soon as the PC is updated before the subsequent fetch
cycle.

361

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

blo
wfis

h

bit
co

un
t

cjp
eg

djp
eg

dij
ks

tra fft

pa
tric

ia

rijn
da

el ar
t

bz
ip2 gc

c
gz

ip
mcf

pa
rse

r

pe
rlb

m
k

Avg

P
er

fo
rm

an
ce

 s
pe

ed
up

Intra-Cycle + Inter-Cycle: applied to baseline iTLB
Intra-Cycle + Inter-Cycle: applied to baseline dTLB
Intra-Cycle + Inter-Cycle: iTLB + dTLB
Intra-Cycle + Inter-Cycle: iTLB + all semantic-aware

Figure 10: Overall i-TLB and d-TLB performance
impact using intra- and inter-cycle compaction
mechanism

5. RELATED WORK
A number of TLB power reduction schemes have been

proposed. Kadayif et al. [6] added a register called Current
Frame Register (CFR) to the instruction address transla-
tion. Instead of looking up the i-TLB, the processor fetches
the translated address from the CFR unless there is a mem-
ory page change. Our intra-cycle compaction differs from
this, as we also exploit redundancy among synonymous ac-
cesses in the same cycle, while the scheme in [6] only elim-
inates lookups in subsequent cycles, after the CFR has
been filled. A compiler-based data layout restructuring
was proposed in [7], combining with smaller translation
registers, to reduce d-TLB energy. The scheme is similar
to our inter-cycle compaction, but requires re-compilation.
Way-prediction [4] was proposed to reduce cache energy
by speculating one predicted way instead of looking up all
ways in a set-associative cache. Other approaches for TLB
power reduction include selective filter-bank TLB [9] and
semantic-aware memory [8]. Both are complementary to
our techniques.
Austin and Sohi [1] proposed re-translation and piggy-

backing ports to increase the address translation band-
width. To achieve higher bandwidth, a 4-ported 8-entry
pre-translation cache was added in the ID stage. The out-
put of the pre-translation cache is attached to the TLB
entry in the ID stage, making the TLB translation avail-
able at the start of the execution speculatively. The first
difference is that, piggybacking the translation happens
for the next cycle, unlike our intra-cycle compaction tech-
nique. The second difference is that, this high bandwidth is
achieved at the expense of higher power, and inter cluster
changes to the baseline architecture. The mechanisms that
we proposed consumes less power with minimum hardware
changes required in the memory cluster.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed intra-cycle and inter-cycle

synonymous address compaction techniques that exploit
address translation redundancy to reduce TLB energy. First,
it is found that the concurrent and consecutive memory
accesses are often synonymous — going to the same mem-
ory page. The same-cycle synonymous accesses can be
eliminated using intra-cycle compaction mechanism that
uses comparators to eliminate the redundant TLB lookups.
Similarly, the inter-cycle synonymous accesses are elimi-

nated by reusing the most recently used address transla-
tion stored in latches. These address comparators and the
MRU latches add little power overhead and access time,
allowing significant energy savings.
We also quantified the frequency of synonymous accesses

in d-TLBs. More than 30% of intra-cycle, and nearly 76%
of inter-cycle d-TLB accesses are synonyms. In semantic-
aware TLBs, the ratio is even higher: 99% for stack, 82%
for global, and 80% for heap. To exploit these intra-cycle
and inter-cycle synonyms, we proposed two energy-efficient
microarchitecture mechanisms — (1) intra-cycle compaction
to eliminate the same-cycle synonymous accesses by using
simple comparators, (2) inter-cycle compaction that reuses
the address translation with an MRU latch. These tech-
niques result in an average energy savings of 27% and 42%
using intra- and inter-cycle compaction in conventional
d-TLBs with roughly 9% and 8% perfromance penalty.
And, when inter-cycle compaction techniques is applied
to semantic-aware architecture the energy savings is 56%
with 4% performance penalty. We also evaluated our com-
paction techniques by combining i-TLB and d-TLB to-
gether. The overall TLB energy savings is 70% for an
i-TLB with a conventional d-TLB and 76% for an i-TLB
with semantic-aware d-TLBs.
For area-constrained processors, our scheme can enable

more memory operations per cycle without adding extra
access ports for the TLB. Our simple hardware-only tech-
nique for saving energy is just one way of exploiting syn-
onymous access. Our future work will explore other inter-
esting mechanisms. These include compiler scheduling to
group accesses known to be synonymous in the same cy-
cle to take advantage of our hardware mechanism. Similar
kind of compaction techniques can be used for instruction
and data caches to exploit the synonymous accesses that
go to the same cache line.

7. REFERENCES
[1] T. M. Austin and G. S. Sohi. High-bandwidth Address

Translation for Multiple-issue Processors. In Proceedings of
International Symposium on Computer Architecture, 1996.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
Framework for Architectural-level Power Analysis and
Optimizations. In Proceedings of International Symposium on
Computer Architecture, 2000.

[3] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In the 4th
Workshop on Workload Characterization, 2001.

[4] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
Set-associative Cache for High Performance and Low Energy
Consumption. In Proceedings of International Symposium on
Low Power Electronics and Design, 1999.

[5] T. Juan, T. Lang, and J. J. Navarro. Reducing TLB Power
Requirements. In Proceedings of International Symposium on
Low Power Electronics and Design, 1997.

[6] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju,
and G. Chen. Generating physical addresses directly for saving
instruction TLB energy. In Proceedings of International
Symposium on Microarchitecture, 2002.

[7] M. Kandemir, I. Kadayif, and G. Chen. Compiler-Directed
Code Restructuring for Reducing Data TLB energy. In
Proceedings of International Conference on
Hardware/Software Codesign and System Synthesis, 2004.

[8] H.-H. S. Lee and C. S. Ballapuram. Energy Efficient D-TLB
and Data Cache using Semantic-aware Multilateral
Partitioning. In Proceedings of International Symposium on
Low Power Electronics and Design, 2003.

[9] J.-H. Lee, G.-H. Park, S.-B. Park, and S.-D. Kim. A Selective
Filter-bank TLB System. In Proceedings of International
Symposium on Low Power Electronics and Design, 2003.

362

	Main Page
	ISLPED'05
	Front Matter
	Table of Contents
	Author Index

