
Generating Efficient Distributed Deadlock Avoidance Controllers ∗

César Sánchez Henny B. Sipma Zohar Manna

Stanford University
Computer Science Department

Stanford, CA 94305 USA
E-mail: {cesar,sipma,zm}@CS.Stanford.EDU

Abstract

General solutions to deadlock avoidance in dis-
tributed systems are considered impractical due to the
high communication overhead. In previous work we
showed that practical solutions exist when all possi-
ble sequences of resource requests are known a priori
in the form of call graphs; in this case protocols can
be constructed that involve no communication. These
run-time protocols make use of annotations of the call
graph that are computed statically based on the struc-
ture of the call graph. If the annotations are acyclic,
then deadlocks are unreachable.

This paper focuses on the computation of these an-
notations. We first show that our algorithm for com-
puting acyclic annotations is complete: every optimal
annotation can be generated. We then show that, given
a cyclic annotation and a fixed set of resources, check-
ing whether deadlocks are reachable is NP-complete.
Finally, we consider the problem of computing mini-
mal annotations that satisfy given constraints on the
number of available resources. We show that the prob-
lem is NP-complete in the general case, but that it can
be solved in polynomial time if the only restrictions are
that the number of certain resources is 1, that is, these
resources are binary semaphores.

Keywords: Scheduling, Deadlock Avoidance, Dis-
tributed Algorithms

∗This research was supported in part by NSF grants CCR-01-
21403, CCR-02-20134, CCR-02-09237, CNS-0411363, and CCF-
0430102, and by NAVY/ONR contract N00014-03-1-0939.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction

Computations in distributed real-time and embed-
ded systems (DRE) involve a distribution of method
calls over multiple sites. At each site these compu-
tations need resources to proceed. Since resources are
limited (such as a fixed-size pool of threads or locks pro-
tecting mutually exclusive regions), and multiple pro-
cesses can be spawned at different sites deadlocks may
arise [1, 2]. Traditionally three techniques are used to
deal with deadlocks: detection, prevention and avoid-
ance.

Deadlock detection is an optimistic method for con-
currency control [3], where deadlocks are detected at
run-time and corrected by, for example, the roll-back of
transactions. This approach is common in databases,
but in embedded systems it is usually not applicable,
especially in systems interacting with physical devices.
Deadlock prevention is a pessimistic method, that en-
sures statically that one of the necessary conditions
for deadlock is broken. Monotone locking [4], widely
used in practice, imposes a fixed total order in which
resources are acquired. This strategy, however, im-
poses some burden on the programmer, and—often a
more important concern in DRE systems—can sub-
stantially reduce performance, by artificially limiting
concurrency.

Deadlock avoidance methods take a middle route.
A run-time protocol implements a resource allocation
controller that decides whether to grant a request
based on resource availability and possible future re-
quests. A resource is granted only if it is safe, that
is, if the controller has a strategy such that all pro-
cesses can complete. To make this possible, when a
process enters the system it must inform the protocol
about its resource utilization. The first algorithm fol-
lowing this approach was Dijkstra’s Banker’s algorithm
[5, 6, 7] where each process reports the maximum num-
ber of resources that it can request during its execution.

This information is later used to decide, together with
current utilization, to grant or deny requests. When re-
sources are distributed across multiple sites, however,
this approach to deadlock avoidance is harder, because
different sites may have to consult each other to deter-
mine whether a particular allocation is safe. Because
of this need for distributed agreement, a general solu-
tion to distributed deadlock avoidance is considered im-
practical [8]; the communication costs involved simply
outweigh the benefits gained from deadlock avoidance
over deadlock prevention.

In previous research [9] we have demonstrated
that deadlock avoidance without communication (us-
ing only operations over local data to decide requests)
is possible by providing additional information about
resource usage, in the form of call graphs that repre-
sent all possible sequences of remote invocations that
processes can perform. This technique is applicable to
distributed systems in which processes perform method
invocations at different sites and lock local resources
until all remote calls have returned. In particular, if the
chain of remote calls arrives back to a site previously
visited a new resource is needed. This model arises, for
example, in DRE architectures that use the WaitOn-
Connection policy for nested up-calls [10, 11, 12]. In
DRE systems, the call graphs can be extracted from
the component specifications or from the source code
directly by static analysis.

Our approach is based on annotations of the call-
graph vertices, computed statically, and a run-time
protocol. In [9] we showed that if the annotation is
acyclic deadlocks are not reachable. If the annotation
is cyclic deadlocks may not be reachable for a given
set of resources. We have shown [13], however, that
given sufficient resources, a deadlock is always reach-
able with a cyclic annotation1. In this paper we show
that checking whether deadlock is reachable for a given
fixed number of resources and a cyclic annotation is
NP-complete. This new result adds support to the de-
sign principle to construct protocols based on acyclic
annotations only.

Yet, to minimize resource requirements and max-
imize resource utilization, we want minimal annota-
tions. In this paper, we show that the algorithm pre-
sented in [13] for computing acyclic annotations is com-
plete: it can generate all minimal annotations (mini-
mal annotations are not unique). This result is then
used to determine the complexity of computing acyclic
annotations when some constraints are imposed on

1This resembles the Belady anomaly [14] in Operating Sys-
tems in the sense that a system can be deadlock free, but pro-
viding more resources can make the system have reachable dead-
locks.

the total number of resources available. For arbitrary
constraints on the number of the different resources,
checking whether an acyclic annotation exists is NP-
complete. If, however, the constraints on the number
of resources consist exclusively of constraints that state
that the number of certain resources is one, then check-
ing for the existence of an acyclic annotation can be
performed in polynomial time.

These results emphasize the importance of accurate
specifications and static analysis. The more specific
the call graph, the easier it is to generate acyclic an-
notations, and fewer resources are needed to ensure
deadlock free operation.

The rest of this paper is structured as follows. Sec-
tion 2 introduces the computational model and recalls
the basics of our deadlock avoidance algorithms [9, 13].
Section 3 shows that checking deadlock reachability for
cyclic annotations is hard. In Section 4 we prove that
the algorithm proposed in [13] is complete. Section 5
studies how to generate acyclic annotations given con-
straints on the resources. Section 6 concludes.

2. Model of Computation

We model a distributed system S : 〈R,G〉 as a
set of sites and a call graph specification. Sites R :
{r1, . . . , r|R|} model distributed devices that perform
computations and handle a necessary and scarce local
resource, for example a finite pool of threads or execu-
tion contexts. A call graph specification G : (V,→, I) is
an acyclic graph that captures all the possible flows of
the computations. A call graph vertex n = (f :r) mod-
els the method call f to be performed at site r (if the
method name is unimportant we simply write n : r).
An edge from n = (f :r) to m = (g :s) denotes a pos-
sible remote invocation of method g at site s. Vertices
in I denote initial methods that processes can execute
when spawned. In the remainder of this paper we will
use r, s, r1, r2, . . . to refer to sites and n,m, n1,m1, . . .
to refer to call graph vertices. Each site r stores some
local data, including a constant Tr representing the to-
tal units of resource in r, and a variable tr whose value
represents the available resources at each point in time.
Initially, tr = Tr.

The execution of a system consists of processes,
which can be created dynamically, executing computa-
tions that only perform remote calls according to the
edges in the call graph. When a new process is spawned
it announces the initial call graph vertex (from the
set I) whose outgoing paths describe the remote calls
that the process may perform. All invocations of a call
graph vertex require a new resource in the correspond-
ing site, while call returns release the resource. Hence,

a process running a method n locks its resource at least
until all the remote invocations initiated have returned.

There is no restriction on the topology of the call
graph or on the number of process instances, and thus
deadlocks can be reached if all requests for resources
are immediately granted.

Example 1. Consider a system with two sites
R = {r, s}, a call graph with four nodes V =
{n1, n2,m1,m2}, and edges

n1 r n2 s

m1 s m2 r

If sites s and r each handle exactly two resources
(Tr = Ts = 2) and four processes are created, two run-
ning n1 and two running m1, no more resources are
available after each process starts its execution. Hence,
the resulting state is a deadlock since none of the pro-
cesses can proceed.

To avoid deadlocks a protocol must be provided that
restricts access to the resources. Our deadlock avoid-
ance algorithms consist of two parts:

1. The offline computation of call-graph annotations,
α : V �→ N, a map from call-graph nodes to natural
numbers;

2. A run-time protocol that controls resource alloca-
tions and deallocations based on local data and
call-graph annotations.

The protocol consists of two stages: one that runs
when the resource is requested, and another that exe-
cutes upon release. A schematic view of a protocol is
shown below:

n ::

}
entry

f()
}

invocation}
exit

A process that is granted access into the method sec-
tion is called active, while a process whose request is
rejected is called waiting. We assume that the actions
of the entry and exit sections of a protocol cancel each
other, and that the successful execution of an entry sec-
tion cannot help a waiting process to obtain its desired
resources.

Intuitively, the annotation α(n : r) provides a mea-
sure of how many execution contexts site r should re-
serve for processes executing at other sites that may
perform remote calls to r with lower annotations.

n ::

[
when α(n) < tr do

tr--

]

f()

tr++

Figure 1. Basic-P

Thus, the annotation provides a static data structure
that can be used by a protocol to ensure at run-time
that there will be no cyclic dependencies between pro-
cesses waiting for resources.

The simplest protocol based on this annotation is
Basic-P, shown in Figure 1. It grants a resource to
a process executing a call graph node n : r if α(n) is
less than the number of resources available, represented
by the local variable tr. In previous papers we proved
that this protocol avoids deadlock if the annotation
is acyclic in the following sense. Given a system S :
〈R,G〉 and an annotation α, the annotated call graph
(V,→, ���) adds to G one edge n ��� m for every pair of
nodes n and m that reside in the same site and α(n) ≥
α(m). A node n depends on a node m, represented as
n � m, if there is a path in the annotated graph from n
to m that follows at least one → edge. The annotated
graph is acyclic if no node depends on itself, in which
case we say that the annotation is acyclic.

Theorem 1 (Annotation Theorem for Basic-P [9]).
Given a system S and an acyclic annotation, if
Basic-P is used to control resource allocations then
all executions of S are deadlock free.

Example 2. Reconsider the system described in Ex-
ample 1. By granting resources whenever they are
available, it implicitly assumes the following annota-
tion graph,

n1 r
0

n2 s
0

m1 s 0 m2 r
0

in which all nodes have annotation 0. Clearly, this
graph has a dependency cycle, and thus deadlock avoid-
ance is not guaranteed. If we set α(m1) = 1, this de-
pendency cycle is eliminated, resulting in the acyclic
annotated call graph,

n1 r
0

n2 s
0

m1 s 1 m2 r
0

Deadlock is avoided by always reserving at least one

resource in site s for a remote call from a process P
executing node n1, so that P can complete.

In [9, 15] we showed that there is a spectrum of
protocols that are all based on annotations. For all
of them the maximum annotations labeling call-graph
vertices determines the minimum number of resources
the corresponding component must provide. Moreover,
lower annotations allow more concurrency for a given
set of resources. Thus our objective is to determine
minimal acyclic annotations

Problem Statement Given a system specification
S : 〈R,G〉 let 〈S, α, T 〉 denote the system S along
with an annotation α and configuration of resources
T : {Tr = kr}r∈R. In the next three sections we study
the following problems:

1. 〈S, α, T 〉: For a given system S with cyclic an-
notation α and a given set of resources, does α
guarantee absence of deadlock?

2. 〈S, ?, ?〉: For a given system with no constraints on
the configuration of resources, compute an acyclic
annotation and determine the minimum resources
required.

3. 〈S, ?, {Tr = kr}r∈X〉: For a given system with the
given constraints on the number of resources in
the set X ⊆ R, determine whether there exists an
acyclic annotation.

3. Deciding Deadlock Reachability

In this section we show that checking deadlock
reachability for a fixed number of resources when the
annotation is cyclic is computationally hard. We first
present a nondeterministic algorithm that decides in
polynomial time whether a system has reachable dead-
locks. Then, we introduce a reduction from 3-CNF to
deadlock reachability that proves that the problem is
NP-hard. In summary:

Lemma 2 (Finding Deadlocks). Given a system S,
cyclic annotation α, and assignment of resources T :
{Tr = kr}r∈R, there exists a non-deterministic algo-
rithm that decides in polynomial time whether a dead-
lock is reachable.

Proof. First, we say that a process is “relevant” in an
execution if it is granted some resource. It is clear that
if there is a run to a deadlock, then there is a run
where only relevant processes exist; moreover, there is
a run where only allocations are performed. From [16]
we know that every reachable state of the system can

be reached by Basic-P following only a series of al-
locations (with no deallocation). Moreover, there is
a topological total order < on the call-graph vertices
such that every reachable state can be reached by allo-
cations performed following that order (all allocations
for a method are performed before any allocation for
any lower method).

We construct an algorithm that guesses a deadlock
state σ, and then guesses an order < such that Basic-
P reaches σ following <. The run is constructed by
merging all allocations of a single method into a macro
step (more than one process acquires a resource at the
same node).

Given a system specification 〈S, α, T 〉 a state of the
algorithm is a vector 〈p1, . . . , p|V |〉, where entry pj rep-
resents the number of processes active in call-graph
method j. A macro step is represented by 	n

j , cor-
responding to n processes gaining access to method j:

〈p1, . . . , pj , . . . , p|V |〉 	n
j 〈p1, . . . , pj + n, . . . , p|V |〉

where the only entry modified is pj . A run is a se-
quence σ1 	n1

j1
σ2 	n2

j2
. . . 	nk

jk
σk of macro steps. A

run is legal if σ1 is 〈0, . . . , 0〉, and if every state σi+1

is obtained from σi by a legal (macro)allocation. It is
easy to establish that a macro allocation 	ni

ji
is legal,

by checking that:

1. the enabling condition of Basic-P for method ji

holds in σi for all the ni processes,

2. the only entry modified is pji
which is increased in

exactly ni units, and

3. the parent node j of node ji satisfies pj ≥ pji
+n1,

i.e., there are enough caller processes to perform
all the remote calls.

A legal run follows a total order < if all the steps
are carried out in < order: ji < ji+1 for all i. This
implies that the maximum length of a run that follows
some total order is |V |.

The state of the algorithm can be encoded in size
linear in the specification, each step can be checked in
linear time, and the final state being a deadlock can
also be checked in linear time, as desired.

Lemma 3 (Deadlock Reachability). Given a system
S, cyclic annotation α and assignment of resources T :
{Tr = kr}r∈R, deciding whether a deadlock is reachable
is NP-hard.

Proof. The proof proceeds by reducing 3-CNF to dead-
lock reachability. Given a 3-CNF formula ϕ, we create
a system specification

〈R,G, α, {Tr = 1}r∈R〉

whose size is linear in the size of the formula, and which
has deadlocks reachable if and only the formula is sat-
isfiable. We use Cj for the clauses in ϕ and Xi for its
variables.

Sites: R includes one site ci per clause Ci and one
site rj per variable Xj :

R def= {ci} ∪ {rj}.

Methods: There are two call-graph methods per
variable, xj and xj , both running in site rj . Similarly,
for every clause Ci there are two methods ai and bi,
both residing in the corresponding site ci:

V ={(xj :rj), (xj , rj) | for every variable Xj}∪
{(ai :ci), (bi :ci) | for every clause Ci}

Resources: The total number of resources is Tri
= 1

for all variable sites and Tcj
= 1 for all clause sites.

Annotations: The annotation of every node is 0,
the only possible value. Consequently, since Tr = 1,
there can be at most one active process running every
method.

Edges: Each method ai is connected to the method
bi+1 of the next clause including, ak → b1 for the last
clause. Given that all annotation values are 0, this
immediately creates a cycle in the annotated graph:

a1 → b2 ��� a2 → b3 · · · ak → b1 ��� a1.

We also add an edge between a variable xi to all
the clauses where Xi appears in positive form and one
edge between xi to all the clauses where Xi it appears
in negative form. For example, if X1 appears in clauses
C1 and C3, and X1 appears in clause Ck, the call-graph
will include:

a1 c1

0

b2 c2

0

x1 r1

0

a2 c2

0

b3 c3

0

x1 r1

0

a3 c3

0

b4 c4

0

.

ak ck

0

b1 c1

0

Since, for all variables, the call-graph methods xi

and xi reside in the same site and the annotation is
0, in any execution, at most one of them can have an
active process. This corresponds to picking a valuation
for the variable Xi. Then, the only clause methods that
can have active processes are those with some process
in a predecessor node: this corresponds to a clause
being satisfied. Therefore, there is a run to a deadlock
(exercising the only cycle in the graph), if and only if
all the clauses can be satisfied.

Theorem 4. Deciding whether 〈S, α, T 〉 has reachable
deadlocks, where α is cyclic, is NP-complete.

4. Generating All Minimal Annotations

We demonstrate a complete algorithm to generate
minimal acyclic annotations. An acyclic annotation
is minimal if no annotation value of any node in the
call graph can be reduced without creating cycles; it
follows that reducing more than one value also creates
cycles. The algorithm is complete in the sense that it
can generate every acyclic annotation.

Fig. 2 shows an algorithm that computes mini-
mal acyclic annotations for a system 〈R,G〉. It is
parametrized by a reverse topological order of the call-
graph nodes. This order is followed to calculate the
value of the annotations, which ensures that when cal-
culating α(n), all descendants of n have been calcu-
lated.

1: {Order N in reverse topological order}
2: {Let ReachX = {m | x(→ ∪ ���)∗m,x ∈ X}}
3: {Let Siten = {m | n ≡R m} }
4: for n = n1 to n|N | do
5: R = {n}
6: repeat
7: R← ReachR

8: until fix-point
9: if R ∩ Siten is empty then

10: α(n) = 0
11: else
12: α(n) = 1 + max{α(m) | m ∈ R ∩ Siten}
13: end if
14: end for

Figure 2. CalcMin: Algorithm for computing
minimal acyclic annotations

The algorithm can generate every acyclic annota-
tion, simply by providing the right order. This is shown
by, given a minimal acyclic annotation α, defining an
order <α such that CalcMin generates α.

Lemma 5. Every minimal acyclic annotation can be
produced by CalcMin.

Proof. Given a minimal acyclic annotation α, let < be
a reverse topological order such that:

1. if α(n) > α(m) and n ≡R m then n > m, and

2. if n � m then n > m.

There is one such order since the annotation is acyclic.
We show by induction on < that CalcMin(<) gener-
ates an acyclic minimal annotation β with β(n) = α(n)
for every node n. Let n be an arbitrary node. Clearly,
all nodes m in ReachR at step 8 satisfy n � m, so
β(m) = α(m) by the inductive hypothesis. Then,
β(n) ≤ α(n) at line 12 since otherwise there would
be cycles in α. Assume, by contradiction, that β(n) <
α(n). In this case replacing α(n) by β(n) makes α still
an acyclic annotation which contradicts the minimality
of α.

5. Resource Constraints

Often constraints are imposed on the number of re-
sources available in certain sites. Since the algorithm
presented in the previous section generates all minimal
acyclic annotations, this algorithm immediately pro-
vides a decision procedures for the question whether
an acyclic annotation exists that accommodates these
constraints. Indeed we can guess a reverse topological
order <, generate the annotation α with CalcMin, (<)
and check whether α satisfies T . Therefore:

Lemma 6. Checking whether there is an acyclic an-
notation for 〈S, ?, {Ts = ks}s∈X〉 is in NP.

In the following two subsections we show that
the problem 〈S, ?, {Tr = kr}r∈X〉, that is, checking
whether there exists an annotation α that satisfies the
constraints {Tr = kr}r∈X is NP-hard for arbitrary val-
ues of kr, but that it can be decided in polynomial time
for problems where kr = 1 for all r ∈ X.

5.1 Arbitrary number of Resources

Lemma 7. The problem 〈S, ?, {Ts = ks}s∈X〉 is NP-
hard.

Proof. We use a reduction from 3-CNF. First, every
formula ϕ can be transformed into an equisatisfiable
formula ϕ′ by rewriting each clause Cj : (x1 ∨x2 ∨x3),
where x1 stands for a variable X1 or its negation X1,
as follows

C ′
j : (x1 ∨ Yj ∨ Zj) ∧ (x2 ∨ Yj) ∧ (x3 ∨ Zj).

The auxiliary variables Yj and Zj separate the occur-
rences of the xi from the original formula. We say that
ϕ′ is in separated normal form (SNF). This transfor-
mation increases the number of variables by at most
2|C|, with |C| the number of clauses, and increases the
number of clauses by a factor of 3, so the generated
formula is linear in the size of the original one.

Given a formula ϕ in SNF we build a distributed sys-
tem S : 〈R,G〉—linear in the size of the formula—and
a problem specification 〈S, ?, {Ts = ks}s∈R〉, such that
there is a one-to-one correspondence between acyclic
annotations and satisfying valuations of ϕ.

Resources: The resources are set to {Tr = 2} for
all sites. This enforces all feasible annotations to be
α(n) ≤ 1.

Sites: For each of the variables xi (similarly for yj

and zj) in the formula we introduce two sites, Xi and
Xi: one represents the positive occurrences of the vari-
able, and the other the negative occurrences.

Methods and Edges: For each of the variables in
the formula we introduce the following gadget:

• •

: Xi : Xi

: Xi : Xi

G(Xi)

The only two possible acyclic annotations of this gadget
that respect the constraints TXi

= 2 and TXi
= 2 are:

• •

: Xi

1

: Xi

0

: Xi

0

: Xi

0

• •

: Xi

0

: Xi

1

: Xi

0

: Xi

0

There is a one-to-one correspondence between acyclic
annotations of these gadgets and valuations as follows:
an annotation : Xi

1

denotes that variable Xi is false

in the corresponding valuation, while : Xi

1

Xi is
true in the corresponding valuation.

For each variable occurrence in a clause Cj : (x1 ∨
Yj ∨Zj) we introduce the following gadget if x1 occurs
positive (i.e., x1 = X1). We also show the only possible

acyclic annotation of this gadget:

: X1

1

: X1

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(Yj)

: Zj

1

: Zj

0

• •

G(X1)

Similarly, if x1 occurs negative (i.e., x1 = X1):

: X1

1

: X1

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(Zj)

: Zj

1

: Zj

0

• •

G(X1)

Similarly, for the clauses (x2 ∨ Yj) if x2 = X2, the
gadget is:

: X2

1

: X2

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(X2)

If x2 = X2 the gadget is:

: X2

1

: X2

0

• •

G(Yj)

: Yj

1

: Yj

0

• •

G(X2)

The gadget for the third clause (x3 ∨Zj) is analogous.
The separation variables yj only occur once in positive
form and once in negative form, so the only possible
cycles in the graph, once a valuation has been picked,
involve all the upper nodes in some clause gadget. This
cycle exists if and only if all the clauses are unsatisfied.
Therefore, if all clauses are satisfied the induced an-
notation has no cycles, and if there is an annotation
with no cycles the corresponding valuation is satisfy-
ing. This reduction implies that checking whether a
graph admits an acyclic annotation, with restrictions
{Tr = kr} for kr ≥ 2 is NP-hard.

5.2 Mutual Exclusion Resources

The problem 〈S, ?, {Ts = ks}S⊆R〉 becomes
tractable if ks = 1 for all s ∈ S, that is, if all con-
straints specify binary semaphores.

Lemma 8. The problem 〈S, ?, {Ts = 1}S⊆R〉 is in P.

Proof. Consider the partially annotated graph Gα that
only considers α(n) = 0 for all methods residing in
sites s ∈ S that are marked as binary semaphores (0 is
the only possible annotation for these nodes). If there
are dependency cycles in Gα then there is no acyclic
annotation since all annotated graphs extend Gα. Let
< be any reverse topological order that extends �. One
such order exists since Gα is acyclic.

Now, the algorithm CalcMin(<) generates an
acyclic annotation β. When n :s is visited in the algo-
rithm, no children of n can reach any node in s, since
that would imply that there is some ancestor of a node
in s that has been computed. Therefore, β(n) receives
value 0 in line 10, and β extends α as desired.

In case the technique described in Lemma 8 fails
there is no protocol that can provide deadlock avoid-
ance without communication. An alternative solution
is to use deadlock prevention to break the cycles in the
partially annotated call graph Gα: in some cases, a
resource that will be needed in the future is reserved
(and locked) before getting the actual resource needed.

Lemma 8 also provides an efficient conservative pro-
cedure to check the feasibility of the general problem,
presented above. Some of the constrained resources can
be restricted to be binary semaphores. Then Lemma 8
can be used to check feasibility: every solution with bi-
nary semaphores is a solution of the general problem.

6 Conclusions

The ability to compute minimal acyclic annotations
for the call graphs is an important requisite for the
successful application of our deadlock avoidance pro-
tocols for distributed systems. Minimal annotations
minimize the least number of resources that must be
provided and maximize concurrency.

We have demonstrated an algorithm that can com-
pute all minimal acyclic annotations. We showed
that imposing constraints on the number of available
resources makes the problem of computing minimal
acyclic annotations NP-hard, except when the con-
straints only involve binary semaphores, in which case
the problem is in P.

We reemphasized the importance of using acyclic
annotations. We already knew that in a system with

cyclic annotations increasing the number of resources
may turn a deadlock free system into a system with
reachable deadlocks. Here we showed that checking
whether a particular number of resources does indeed
admit reachable deadlocks is NP-complete.

References

[1] W. Stallings, Operating Systems: Internals and
Design Principles, Third ed. Upper Saddle River,
NJ: Prentice Hall, Inc., 1998.

[2] A. Silberschatz, P. B. Galvin, and G. Gagne, Op-
erating System Concepts, Sixth ed. New York,
NY: John Wiley & Sons, Inc., 2003.

[3] C. Papadimitriou, The Theory of Database Con-
currency Control. Computer Science Press, 1986.

[4] A. D. Birrell, “An introduction to programming
with threads,” Digital Equipment Corporation
Systems Research Center, Research Report 35,
1989.

[5] E. W. Dijkstra, “Cooperating sequential pro-
cesses,” Technological University, Eindhoven, the
Netherlands, Tech. Rep. EWD-123, 1965.

[6] A. N. Habermann, “Prevention of system dead-
locks,” Communications of the ACM, vol. 12, pp.
373–377, 1969.

[7] J. W. Havender, “Avoiding deadlock in multi-
tasking systems,” IBM Systems Journal, vol. 2,
pp. 74–84, 1968.

[8] M. Singhal and N. G. Shivaratri, Advanced
Concepts in Operating Systems: Distributed,
Database, and Multiprocessor Operating Systems.
New York, NY: McGraw-Hill, Inc., 1994.

[9] C. Sánchez, H. B. Sipma, V. Subramonian, C. Gill,
and Z. Manna, “Thread allocation protocols for
distributed real-time and embedded systems,” in
25th IFIP WG 2.6 International Conference on
Formal Techniques for Networked and Distributed
Systems (FORTE’05), ser. LNCS, F. Wang, Ed.,
vol. 3731. Taipei, Taiwan: Springer-Verlag, Oc-
tober 2005, pp. 159–173.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann, Pattern-Oriented Software Archi-
tecture: Patterns for Concurrent and Networked
Objects, Volume 2. New York: Wiley & Sons,
2000.

[11] D. C. Schmidt, “Evaluating Architectures for
Multi-threaded CORBA Object Request Bro-
kers,” Communications of the ACM Special Issue
on CORBA, vol. 41, no. 10, pp. 54–60, Oct. 1998.

[12] V. Subramonian, G. Xing, C. D. Gill, C. Lu,
and R. Cytron, “Middleware specialization for
memory-constrained networked embedded sys-
tems,” in Proc. of 10th IEEE Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS’04). IEEE Computer Society Press, May
2004.

[13] C. Sánchez, H. B. Sipma, Z. Manna, V. Subramo-
nian, and C. Gill, “On efficient distributed dead-
lock avoidance for distributed real-time and em-
bedded systems,” in Proceedings of the 20th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS’06). Rhodas, Greece: IEEE
Computer Society Press, 2006.

[14] L. A. Belady, R. A. Nelson, and G. S. Shedler, “An
anomaly in space-time characteristics of certain
programs running in a paging machine,” Commu-
nications of the ACM, vol. 12, no. 6, pp. 349–353,
1970.

[15] C. Sánchez, H. B. Sipma, Z. Manna, and C. Gill,
“Efficient distributed deadlock avoidance with
liveness guarantees,” in To appear in the Proceed-
ings of the 6th Annual ACM Conference on Em-
bedded Software (EMSOFT’06). Seoul, South Ko-
rea: ACM Press, 2006.

[16] C. Sánchez and H. B. Sipma, “Reachable state
spaces of distributed deadlock avoidance al-
gorithms,” Stanford Computer Science, STeP
Group, Tech. Rep. 8-1, June 2006, available from
http://theory.stanford.edu/∼cesar.

