
Authentication in Reprogramming of Sensor Networks for Mote Class
Adversaries 1

Limin Wang Sandeep S. Kulkarni
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing MI 48824 USA

Abstract

Reprogramming is an essential service for wireless sensor
networks. Authenticating reprogramming process is impor-
tant as sensors need to verify that the code image is truly from
a trusted source. There are two ways to achieve authentica-
tion: public key based and symmetric key based. Although
previous work has shown that public key authentication is
feasible on sensor nodes if used sparingly, it is still quite ex-
pensive compared to symmetric key based approach. In this
paper, we propose a symmetric key based protocol for au-
thenticating reprogramming process. Our protocol is based
on the secret instantiation algorithm from [5, 11], which re-
quires only O(log n) keys to be maintained at each sensor.
We integrate this algorithm with the existing reprogramming
protocol. Through simulation, we show that it is able to au-
thenticate reprogramming process at very low communica-
tion cost, and has very short delay.

Keywords: Sensor networks, Reprogramming, Authenti-
cation, Symmetric keys

1 Introduction

Wireless reprogramming is an essential service for sensor
networks due to the fact that sensor networks consist of hun-
dreds or thousands of sensor nodes and they are often de-
ployed in remote or hostile environments. It is demanding
and sometimes impossible to collect all the sensor nodes from
the field for reprogramming. Therefore, it is necessary to re-
program sensor networks in place.

1Email: {wanglim1,sandeep}@cse.msu.edu.
Web: http://www.cse.msu.edu/˜{wanglim1,sandeep}.
This work was partially sponsored by NSF CAREER CCR-0092724,

DARPA Grant OSURS01-C-1901, ONR Grant N00014-01-1-0744, NSF
equipment grant EIA-0130724, and a grant from Michigan State University.

Reprogramming is performed via wireless radio, which is a
broadcast medium, and is vulnerable to packet injection or
corruption attacks. Moreover, the current reprogramming
protocols [7, 10, 13, 17, 21] are epidemic in nature. Once a
false or viral code image is installed on one sensor, it could
rapidly infect the entire network, and thus, lead to catas-
trophic damage. For these reasons, it is important that sensor
nodes be able to verify that the code image is from a trusted
source.

In this paper, we are interested in providing security for re-
programming. Specifically, we focus on authentication. Our
goal is to provide a way that sensor nodes can verify program
authenticity and integrity. Authentication can be achieved in
two ways: public key based, or symmetric key based. In pub-
lic key based authentication, a base station signs the packets
using its private key. All the sensors have the public key of
the base station, and can use it to verify that the packets are
from the base station. However, public key based authenti-
cation is computationally expensive. Although recent work
has shown that elliptic curve cryptography (ECC) is feasible
on Mica-2 motes [6, 16], it should still be avoided or used
sparingly.

By contrast, symmetric key based authentication needs much
less energy/memory/computation resources, and hence, is ex-
pected to be more appropriate for resource constrained sensor
nodes. (As an illustration, on the Mica motes, encryption us-
ing public key is approximately 100-1000 times slower than
the symmetric key encryption.) A simple approach is to use
a single network-wide key shared by the base station and all
the sensors [8]. The problem with this approach is that if one
sensor is compromised and the key is captured (which has
been shown to be relatively easy [2]), the entire network is no
longer secure. Another symmetric key based approach is to
share a pairwise key between the base station and each sen-

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

sor. Although this approach is resistant to node compromise,
it does not scale well to large networks.

In this paper, we show how a symmetric key based algorithm
can be used for authentication in reprogramming for mote-
class adversaries. Examples of such adversaries are likely to
occur in sensor network testbeds. Such testbeds are expected
to be typically physically secure so that attacks from a lap-
top class adversary are prevented/mitigated. However, since
the testbed relinquishes control of sensors to users for their
experiments, one experiment can be affected by another con-
current experiment. In this case, a potential adversary is in
mote-class, i.e., its computation and communication capabil-
ity as well as battery power is similar to the sensors in the
network. In our work, the network consists of a base station
and a collection of sensors. The sensors need to verify that
the code image is truly from the base station. We note that
the only communication that needs to be authenticated is the
communication from the base station, rather than the com-
munication between two arbitrary sensors. Utilizing this fact,
we apply a secret instantiation algorithm from [5, 11] to pro-
vide authentication. Thus, in the protocol, only a very small
number of keys are maintained at every sensor.

Finally, observe that authentication is sufficient for repro-
gramming in sensor networks. In other words, it suffices to
ensure that the sensors can be assured that the code is from
the trusted source. However, in this application, confidential-
ity is not required, i.e., the code being transmitted is public
and can be acquired by the adversary. Hence, the code is sent
in plain text along with appropriate authentication.

Contributions of the paper. We integrate the secret instan-
tiation algorithm from [5, 11] with the existing reprogram-
ming protocols. The algorithm requires only O(log n) keys
to be maintained at each sensor, and a small signature is in-
cluded in the messages from the base station that can be veri-
fied at the sensors. Through simulation on TOSSIM [15], we
show that it is able to authenticate reprogramming process
at low communication cost, and has short delay. We illus-
trate this by evaluating the effect of adding authentication to
MNP [13], a multihop network reprogramming protocol.

Organization of the paper. In Section 2, we describe the
system model and requirements of secure reprogramming
problem. In Section 3, we present our authentication pro-
tocol, and illustrate the process of integrating it to the exist-
ing reprogramming protocols, MNP and Deluge. In Section
4, we evaluate our approach in terms of communication cost
and delay. We survey related work in Section 5 and conclude
in Section 6.

2. System Model

The goal of this paper is to add security to the existing repro-
gramming protocols, such as MNP [13] and Deluge [7], in
which the code image is propagated from a base station to all
the sensors in the network. These reprogramming protocols
are all based on the advertise-request-data three-way hand-
shake model [9]. The program to be distributed is divided
into N segments. Each segment contains K packets; the last
segment may contain fewer packets. The default packet pay-
load is 23 bytes. Sensors must receive the segments in order.
However, within a segment, the packets can be received out of
order. The sensors broadcast advertisements of the available
segments. When the neighbors receive the advertisements,
if they haven’t received that segment completely, they will
send requests to the advertiser. This request also specifies the
packets that the requester wants. The sender then transmits
the requested packets in the segment. This process continues
until every packet is received by every receiver. This model
provides efficient and reliable transmission in a highly lossy
and unstable wireless environment.

We consider an adversary as one who tries to inject its own
code into sensor nodes. It can eavesdrop on any communica-
tion in the network. It is able to compromise a sensor node,
and acquire all information inside it. However, an adversary
cannot compromise the base station. Initially, we do not con-
sider collusion among sensor nodes. We discuss the effect of
collusion in Section 3.1. As mentioned in the Introduction,
we only consider a mote-class adversary, i.e., an adversary
has limited computational resources, and cannot launch De-
nial of Service attack. We expect that the proposed algorithm
would be useful in a testbed setting. To illustrate this, con-
sider the case where a sensor network testbed [1] provides
a user with a certain set of sensors for performing an ex-
periment. In this case, typically, the testbed itself is phys-
ically secure from laptop-class adversaries. However, since
the testbed may relinquish control of some sensors to users,
such sensors may be able interfere with other experiments
running on the testbed. Moreover, since an adversary is likely
to be detected by auditing techniques that may exist in the
testbed, the likelihood of security attacks is further reduced.

The goals of the proposed protocol are as follows:

1. Authenticity. Each sensor must be able to verify that a
code image is from a trusted source and has not been
changed during transit. We consider the base station as
a trusted source, and is protected against compromise.

2. Compromise resilience. Because current mote-class de-
vices are not tamper-resistant, it is relatively easy to

2

compromise a sensor. It must not be possible that com-
promising a single sensor node will cause the other parts
of the network insecure.

3. Low cost. The security scheme should be efficient in
terms of computation, communication, and memory us-
age. Moreover, it should not add long delay to the re-
programming process.

3. Protocol

Our authentication protocol for reprogramming is symmetric
key based. In Section 3.1, we describe the secret instantia-
tion algorithm [5, 11], which specifies how the secrets (i.e.,
keys) are distributed and used for authenticating the commu-
nication from the base station to sensors. In Section 3.2, we
discuss the issues of integrating the secret instantiation algo-
rithm with the existing reprogramming protocols.

3.1 Secret Instantiation Algorithm

The base station has a collection of secrets. Initially, each
sensor receives some subset of this collection. The base sta-
tion knows the secret distribution, i.e., it knows the subset of
secrets received by each sensor. Whenever the base station
sends a message, it separately signs it using all the secrets in
its collection. Thus, message transmission is associated with
a collection of signatures, one for each secret that the base
station has. To sign message m, with secret s, the base sta-
tion can use algorithms such as MD5. (Additionally, if the
length of the signature needs to be small, then only a small
part of this signature (e.g., last byte) may be used.) When-
ever a sensor receives this communication, it verifies the sig-
natures based on the collection of secrets it has. Of course, a
sensor will only be able to verify a subset of the signatures,
as it does not have all the secrets. If the verification of all
the signatures a sensor has is successful, the sensor can as-
sume that the communication is truly from the base station
(and not from an outsider or anther sensor pretending to be
the base station).

To implement this, a 2-dimensional array of secrets with r

rows (numbered 0..r − 1) and logr n (numbered 1.. logr n)
columns (where 2 ≤ r ≤ n and n is the number of sensors)
is maintained. As mentioned above, the base station knows
all these secrets. Each sensor is assigned a unique ID that
is a number with radix r. Observe that the ID is of length
logrn. (Leading 0s are added if necessary.) This ID identifies
the secrets that a sensor should get. Specifically, if the first
digit (most significant) of the ID is x then the sensor gets xth

0 0 1 1 0 0 10 0 0 01

0 0 00

1 0 01

1 1 01

1 1 10

1 1 00

0 1 11

1 0 10

0 1 10

0 1 00

0 1 01

1 0 00

1 0 11

...

...

0

1

...

...

...

...

...

...

0

1

Figure 1. Secret instantiation: an example.

secret in the first column. If the second digit of the ID is y

then the sensor gets yth secret in the second column, and so
on.

Theorem 1. If sensor j receives a message and it verifies all
the signatures based on the secrets it knows then that message
must be sent by the base station.

Proof: Each sensor has a unique ID that is of length logrn,
thus it is associated with a unique combination of logrn se-
crets. Only the base station contains all the secrets. There-
fore, no other sensor, except the base station, has all the se-
crets that sensor j has. Hence, if j verifies logrn signatures,
it is assured that the message originated at the base station.

To illustrate the algorithm, we show an example in Figure
1. Let the number of nodes be 16 and let r be 2. Then the
base station (the upper left node) contains 8 (i.e., 2 log

2
16)

secrets with 2 rows and 4 columns. Each sensor has 4 (i.e.,
log

2
16) secrets. The set of secrets a sensor has are decided

by its unique ID. For example, if a sensor’s ID is 0011, then
it has the secrets on the first row in the first two columns and
the secrets on the second row in the next two columns.

Collusion. In the secret instantiation algorithm, compro-
mising a single sensor node will not compromise the entire
network. This is due to the facts that each sensor has only a
subset of the secrets, and if an adversary attempts to pretend
to be the base station, it needs to get all the secrets. How-
ever, colluding users may be able to obtain all the keys and,
thereby, pretend to be the base station. By choosing an ap-
propriate value for r, this key distribution provides a trade-
off between level of collusion resistance and number of keys
at the base station. The smallest value for r is 2; for this
case, the base station maintains 2log2n secrets and each sen-
sor maintains log2n secrets. However, collusion of 2 users

3

with complementary IDs (e.g., a sensor with ID 1010 and a
sensor with ID 0101) can allow them to pretend to be the base
station.

As the value of r increases, the number of secrets maintained
by the base station (rlogrn) increases. However, in this case,
the number of secrets maintained by each sensor (logrn) de-
creases. Moreover, when r increases, the collusion resistance
also increases. For r =

√
n, the algorithm corresponds to the

grid algorithm in [12]. For r = n, the algorithm corresponds
to the case where each sensor maintains a unique secret that
is known only to that sensor and the base station. In this case,
collusion between sensors does not allow them to pretend to
be the base station.

3.2 Integration with Reprogramming Protocols

In this section, we integrate our secret instantiation algorithm
with reprogramming protocols. As a program normally con-
sists of hundreds or thousands of packets, it would incur a
lot of overhead if the base station signs every packet it sends.
Hence, we use the chained hash approach proposed in [4].

We illustrate the chained hash mechanism in Figure 2. A
program is divided into N segments, shown as N rows of
packets. Each segment (row) has K packets. We represent
the jth data packet of the ith segment as P (i, j), i = 1..N ,
j = 1..K . The hash value of packet P (i, j) is denoted as
H(i, j). A data packet P (i, j) has two parts, the data part (de-
noted as data(i, j)) and a hash of the next packet. If P (i, j)
is the last packet in segment i (1 ≤ i < N), then the next
packet is the first packet of segment i + 1. If P (i, j) is the
last packet in the program, then the hash value is 0. Hence,
each data packet can be represented as

If P (i, j) is the last packet of the program

P (i, j) = data(i, j)

else if j is the last packet in the segment

P (i, j) = data(i, j)|H(i + 1, 1), i = 1..N − 1, j = K

else

P (i, j) = data(i, j)|H(i, j + 1), i = 1..N, j = 1..K − 1

Note that the hash value is computed over the entire packet,
not just the data part. As shown in Figure 2, the hash val-
ues of the packets construct a chain. The head of the hash
chain, i.e., the hash value of the first packet, is signed by the
base station. In our algorithm, the base station signs the first
hash H(1, 1) using all the secrets. We denote the signature as
sign(H(1, 1)) in Figure 2.

 Data Data Data Data Data

H(1,2) H(1,3) H(1,4) H(1,K)

P(1,1) P(1,2) P(1,3) P(1,4) P(1,K)

H(1,5)

......

 Data Data Data Data Data

H(2,2) H(2,3) H(2,4) H(2,K)

P(2,1) P(2,2) P(2,3) P(2,4) P(2,K)

H(2,5)

......

H(2,1)

 Data Data Data Data Data

H(3,2) H(3,3) H(3,4) H(3,K)

P(3,1) P(3,2) P(3,3) P(3,4) P(3,K)

H(3,5)

......

H(3,1)

 Data Data Data Data Data

H(N,2) H(N,3) H(N,4) H(N,K)

P(N,1) P(N,2) P(N,3) P(N,4) P(N,K)

H(N,5)

......

H(4,1)

......

H(N,1)

H(1,1)

Sign (H(1,1))

H H H H H

H

HH

HHHH

H H H

H HHH

0

......

H(1,1)

Figure 2. chained hash mechanism.

In multihop reprogramming, every sensor needs to receive
the program. And once they receive part of the program (one
or more segments), they can start advertising and forward the
program to its neighbors. When sensors receive and forward
the program, the signature and hash H(1, 1) are also buffered
and forwarded. This signature and the hash H(1, 1) should
be sent right before the transmission of the segment starts.
In the remainder of this paper, we use MNP as an example.
MNP uses a sender selection algorithm to try to guarantee
that there is only one sender in a neighborhood at a time. If
a sensor wins in the sender selection algorithm and becomes
the sender, it broadcasts a “StartDownload” message several
times, then starts transmitting the requested data packets in
the segment. We add the signature and the hash H(1, 1) in
the “StartDownload” message. If the signature plus hash is
too long, and does not fit in one message, we can use multi-
ple messages for “StartDownload”. In this case, the receiver
needs to receive all of them in order to get the entire signa-
ture.

When a node receives the packet(s) that contains
sign(H(1, 1)) and H(1, 1), it decrypts the signature
using the collection of secrets it has, and verifies H(1, 1).
If all the signature verification are successful, it assumes
that the packet is truly from the base station. When a node
receives a data packet P (i, j), it can verify its authenticity
and integrity if and only if it has already received and verified
H(i, j) from a previously received packet. Therefore, it
implies that the data packets have to be verified in order.

However, packets do not arrive in the same order as they are
sent due to packet losses and/or delay. If we require that
the data packets have to be received/stored in sequential or-
der, we have to throw away a large portion of the data pack-
ets that have been received. Our simulation results (as well
as the results from [3, 4]) show that if we require that the

4

data packets can only be received and stored in order, repro-
gramming process will be delayed significantly (the comple-
tion time for reprogramming increases by 6 or 7 times if we
use the default segment size 128 packets/segment in MNP).
Correspondingly, the energy consumption also increases by
a large amount. On the other hand, if out of order delivery
is allowed then an adversary can mount a denial of service
attack by sending a large number of garbage packets, as stor-
ing the packets (to EEPROM, i.e., the external flash of motes)
requires significant energy. However, since a mote class ad-
versary has limited power and message transmission requires
significant energy, the adversary cannot launch such attack
for a large duration. Therefore, in our design, we allow the
packets that arrive out of order (within one segment) to be
received and stored immediately.

In our protocol, each sensor maintains a received vector (cor-
responds to MissingVector in MNP), which is a bitmap of
the current segment, indicating which packets have been re-
ceived. All the bits in the received vector are initialized to 0.
Once a sensor receives a packet for the first time, it stores the
packet (the data part) in EEPROM, and sets the correspond-
ing bit in received to 1. The hash value part of the packet
needs be buffered in memory so that it can be retrieved fast
for verification. Moreover, each sensor contains a variable,
verifiedPackets, which is the number of packets the sensor
has received and verified.

When a sensor node receives a packet P (i, j), if the pre-
vious packet has been verified, i.e., j = verifiedPackets+1,
then the node can verify packet P (i, j) using the saved (and
verified) H(i, j) from the previous packet. If the verifica-
tion is successful, the node will increase verifiedPackets by
1, and continue verifying the next received (but not verified)
packet. (When we talk about previous or next packet, we refer
to the previous or next node on the hash chain.) This verifi-
cation process continues until we reach a missing packet. On
the other hand, if the packet verification fails, the packet is
thrown away (i.e., received(j) is set to 0), and the verifica-
tion process stops.

The operation a sensor performs when it receives a data
packet P (i, j) (the jth packet in the ith segment) is shown
in Figure 3.

4. Evaluation

In this section, we evaluate the performance of our secure
reprogramming protocol. We integrate our protocol with
MNP [13] as described in Section 3.2. We refer to the in-
tegrated protocol as SecureMNP. We simulate SecureMNP
using TOSSIM. TOSSIM is a discrete event simulator for

when a data packet P(i,j) arrives
if P(i,j) is received the first time, i.e., received(j) == 0

store P(i,j): store data part in EEPROM and the hash value
for the next packet in memory, set received(j) to 1

while ((received(j) == 1) and (j == verifiedPackets + 1))
Compute H(i,j)
if computed H(i,j) == saved H(i,j) from the previous packet

verifiedPackets++, j++
else // the packet cannot be verified, hence is thrown away

set received(j) to 0, break while loop
endif

endwhile
endif

Figure 3. Operation a node performs when it receives a
data packet P(i,j)

TinyOS wireless sensor networks. In TOSSIM, the network
is modeled as a directed graph. Each vertex in the graph is
a sensor node. Each edge has a bit-error rate, representing
the probability with which a bit can be corrupted if it is sent
along this link.

In our simulation, each segment has 128 data packets. The
simulations are performed in a grid topology. The inter-node
distance is 10 feet. Due to the fact that the execution time of
each simulation is of order of tens of hours, we do not provide
confidence intervals.

The default payload size of each packet in MNP is 23 bytes.
In SecureMNP, each packet carries a 4-byte hash, which is
the hash value of the next packet. Hence, excluding the hash
value, the effective data payload is 19 bytes. Therefore, in ev-
ery data packet, 4 out of 23 bytes of the payload is consumed
in authentication. Therefore, in order to transmit a program
of certain size, more data packets need to be received at every
sensor.

We consider a 20x20 network, i.e., the number of sensors
in the network is 400. We set r to be 2. In this case, the
base station contains 18 (i. e., 2 log

2
400) secrets, and each

sensor has 9 secrets. As we described in Section 3.2, the base
station signs H(1, 1) using all the secrets, and attaches all
the signatures and H(1, 1) in “StartDownload” messages. If
sensors only verify the last bytes of the signatures, we only
need 18 bytes for the signatures, and the signatures fit in a
single packet. If two bytes of each signature are used, then
the length of the 18 signatures is 36 bytes. In this case, two
packets for “StartDownload” messages need to be sent.

Computation cost. For each program to be distributed, the
signatures are only signed at the base station once. Sen-
sors verify the signatures once, i.e., when they start receiv-

5

ing the first segment. When a sensor forwards the program
to its neighbors, it simply uses the signatures received from
the base station. Therefore, the computation cost is mini-
mized, as encryption or decryption is only performed once
on each sensor at the start of reprogramming. Finally, while
hash computation is performed for every packet, it is very ef-
ficient (less than 10ms per packet). Hence, hash computation
also does not significantly increase the computation cost.

Memory cost. Our authentication protocol has memory cost
in the following ways. First, the algorithm uses a variable
verifiedPackets to keep track of how many packets have been
verified/authenticated. Second, logr n secrets are maintained
at each sensor. When r increases, the number of secrets main-
tained at the sensor decreases. In a 20x20 network, the num-
ber of secrets at each sensor is no more than 9. Third, since
we allow packets to be received and stored out of order, we
need to store all the hash values for the packets in the cur-
rent segment. As we assume a 4-byte hash value is used and
each segment contains 128 packets, the space that is used to
store hash values is 512 bytes. The hash values can be stored
in memory if reprogramming speed is important. Fourth, the
signatures from the base station also need to be saved either in
memory or in flash. Fifth, the encryption/decryption process
consumes some amount of memory.

Delay. We assume that the last two bytes of each signa-
ture are used, then the collection of the signatures from the
base station are contained in two “StartDownload” messages:
“StartDownload1” and “StartDownload2”. In order to get the
entire set of signatures, each node needs to receive both mes-
sages. As we allow packets to be saved before verified, and
hash values can be computed very fast, authentication pro-
cess does not affect reprogramming time significantly. Given
a certain number of data packets to be sent, the reprogram-
ming time remains almost the same no matter whether the
security protocol is used. The major overhead is the hash
values that are carried in data payload. As we have pointed
out earlier, 4 out of 23 bytes data payload in a data packet are
used for authentication. The size of code image that is sent by
a MNP segment is 2.94KB (128× 23 bytes). By contrast, the
size of the code image that is sent by a SecureMNP segment
is 2.43KB (128×19 bytes). In Figure 4, we show that given a
certain amount of code image to be sent, the reprogramming
time required by SecureMNP is only a little higher than that
required by MNP.

Communication cost. Similarly, the communication cost
required by SecureMNP is a little higher than that is required
by MNP due to fact that the hash values that are attached with
every packet. In Figure 5, we show that for a given program
size to be distributed, the message transmission and reception
of SecureMNP is about 20% higher than that of MNP.

0 5 10 15 20
200

400

600

800

1000

1200

1400

1600

1800

Program Size (KB)

R
ep

ro
gr

am
m

in
g

T
im

e
(s

)

SecureMNP
MNP

Figure 4. Delay of authentication under different program
sizes.

0 5 10 15 20
0

50

100

150

200

250

300

350

Program Size (KB)

M
es

sa
ge

s
se

nt
 b

y
a

no
de

SecureMNP
MNP

(a)

0 5 10 15 20
0

500

1000

1500

2000

2500

3000

Program Size (KB)

M
es

sa
ge

s
re

ce
iv

ed
 b

y
a

no
de

SecureMNP
MNP

(b)

Figure 5. Communication cost of authentication under dif-
ferent program sizes.

5. Related Work

In this section, we review related work in the areas of network
reprogramming, authenticated broadcast, and secure network
reprogramming.

Network reprogramming. The work on network repro-
gramming include MOAP [21], Deluge [7], MNP [13], In-
fuse [10], Sprinkler [17]. Although these protocols differ
in many aspects, such as suppression schemes, transmission
scheduling, loss detection and recovery mechanisms, they are
all designed to send the entire code image from one (or a
few) base station to all the sensors in the network. Although
we only showed how to integrate our authentication protocol
with MNP, it can be used with other reprogramming proto-
cols as well. For example, if we want to authenticate Del-
uge reprogramming process, the only difference compared to
SecureMNP is that the signatures and the hash value of the

6

first packet are attached with advertisement messages, rather
than “StartDownload” messages in SecureMNP. Our proto-
col can also be used to authenticate TDMA based reprogram-
ming protocols, such as Infuse [10] and Sprinkler [17]. In
this case, we can think of the whole program as a big seg-
ment. The integration process is straightforward.

Authenticated broadcast. A. Perrig et. al. proposed
TESLA [19] and µTESLA [20] to provide broadcast authen-
tication through a hash chain. µTESLA is designed to work
on the resource-constrained sensor nodes. It applies symmet-
ric keys, and achieves asymmetry for authentication by de-
laying the disclosure of the symmetric keys. BiBa [18] is an-
other protocol that performs authenticated broadcast via pre-
computed hash collisions and chains. However, all these pro-
tocols, TESLA, µTESLA, and BiBa require loose time syn-
chronization, and hence, introduce additional constraints and
overhead.

Secure network reprogramming. Researchers have shown
interest in secure network reprogramming recently. P. Lani-
gan et. al. proposed Sluice [14], which also uses a hash chain
for authentication. However, the hashes are verified on the
segment level rather than at the packet level. Although the
computation, communication and memory cost are relatively
less, Sluice is vulnerable to some form of attacks, e. g., a sin-
gle bad packet will cause the entire segment to be discarded.
P. Dutta et. al. [4] proposed a protocol, called SecureDeluge,
which provides authentication through a packet level hash
chain. In SecureDeluge, packets can only be received/stored
in order. All the packets that arrive out of order are thrown
away. This requirement increases the delay and message cost
significantly, especially when the network is lossy. J. Deng
et. al. [3] tries to address the problem by sending a hash tree
over the data packets before sending the actual data packets.
After sensors have received the entire hash tree, they can re-
ceive/verify data packets that arrive out of order. Receiving
the hash tree itself requires a partial order. And sending the
hash tree over the radio increases communication cost. In
our protocol, we allow the packets that are out of order to be
saved and wait for verification later. All these three proto-
cols mentioned above are based on the public key algorithm.
By contrast, our protocol is symmetric key based. We have
shown that our algorithm authenticates reprogramming pro-
cess without adding much delay and cost.

6. Conclusion

In this paper, we showed how authentication could be
achieved for reprogramming protocols in sensor networks.
We used symmetric key distribution algorithms from [5, 11]

to ensure that the base station can communicate securely with
each sensor in the network. Based on the security of the key
distribution, the reprogramming protocol allows sensors to
conclude that the code is truly transmitted by the base station.
Thus, they will not accept unauthorized code. We illustrated
this algorithm in the context of the MNP [13]. Our approach
can also be easily applied to other reprogramming protocols
such as [7, 10]. Our results show that the overhead added in
terms of communication cost, increased delay and memory
footprint is small.

Our focus in this paper was on mote-class adversary. Since
such adversary has limited energy, it cannot use extensive de-
nial of service attack. However, a laptop-class adversary can
mount a denial of service attack by sending garbage data to
the mote. In [4] authors provide an approach for mitigating
laptop-class adversary by requiring that the sensor receive the
data in order. By this requirement, the sensors will not save
any packets to EEPROM (an energy consuming operation)
unless the packet is authenticated. However, this requirement
increases the reprogramming time and energy usage signifi-
cantly, by as much as 6 to 7 times. (In [4], the use of public
key also contributes to increased time/energy usage.) More-
over, even with this requirement, a laptop-class adversary can
cause significant damage as message transmission and recep-
tion is also very energy consuming.

As discussed in Section 2, our algorithm is expected to be
especially valuable for security in sensor network testbed.
Such testbed is typically physically secure, thereby prevent-
ing/mitigating laptop-class attackers. However, the testbed
typically relinquishes control of individual sensor nodes that
are used in an experiment. Thus, an experiment could be
interfered by other sensors in the testbed. Our algorithm pro-
vides protection from such interference/attacks with a low
overhead.

Since the key distribution protocol used in this approach al-
lows tradeoff between the number of secrets and level of col-
lusion resistance, the designer can choose appropriate param-
eters to determine the desired level of collusion resistance.
In our experiments, for simplicity, we used the base r = 2
thereby choosing the least number of secrets at the base sta-
tion. However, if higher collusion resistance is desired, the
designer can choose higher base; for example, for a 20x20
network (400 sensors), if r = 10 is used then the number of
secrets maintained at the base station increases to 30 (as com-
pared to 18 when r = 2). Moreover, since these secrets are
used only a few times during reprogramming, it will not af-
fect the reprogramming cost (time/energy) significantly. Ad-
ditionally, with increased value for r, the number of secrets
at the sensor is reduced. Thus, providing higher level of col-
lusion resistance does not adversely affect the sensors.

7

References

[1] A. Arora, E. Ertin, R. Ramnath, W. Leal, and M. Nesterenko.
Kansei: A high-fi delity sensing testbed. IEEE Internet Com-
puting, special issue on Large-Scale Sensor Networks, March
2006.

[2] J. Deng, R. Han, and S. Mishra. Practical study of transi-
tory master key establishment for wireless sensor networks.
the 1st IEEE/CreateNet Conference on Security and Privacy
in Communication Networks (SecureComm), pages 289–299,
September 2005.

[3] J. Deng, R. Han, and S. Mishra. Secure code distribution in
dynamically programmable wireless sensor networks. the Fifth
International Conference on Information Processing in Sensor
Networks (IPSN), April 2006.

[4] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler. Securing
the deluge network programming system. the Fifth Interna-
tional Conference on Information Processing in Sensor Net-
works (IPSN), April 2006.

[5] M. Gouda, S. Kulkarni, and E. Elmallah. Logarithmic keying
of communication networks. The Eighth International Sympo-
sium on Stabilization, Safety, and Security of Distributed Sys-
tems, November 2006.

[6] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz.
Comparing elliptic curve cryptography and RSA on 8-bit
CPUs. the 6th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES04), August 2004.

[7] J. W. Hui and D. Culler. The dynamic behavior of a data dis-
semination protocol for network programming at scale. In Pro-
ceedings of the second International Conference on Embedded
Networked Sensor Systems (SenSys 2004), Baltimore, Mary-
land, 2004.

[8] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer se-
curity architecture for wireless sensor networks. the 2nd ACM
Conference on Embedded Networked Sensor Systems (Sensys),
November 2004.

[9] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-
based protocols for disseminating information in wireless sen-
sor networks. Wireless Networks, 8:169–185, 2002.

[10] S. S. Kulkarni and M. Arumugam. Infuse: A tdma based
data dissemination protocol for sensor networks. International
Journal on Distributed Sensor Networks (IJDSN), 2(1):55–78,
2006.

[11] S. S. Kulkarni and M. G. Gouda. A note on instantiating se-
curity in sensor networks. Available at http://www.cse.
msu.edu/˜sandeep/securitydistribution/.

[12] S. S. Kulkarni, M. G. Gouda, and A. Arora. Secret instanti-
ation in ad hoc networks. Special Issue of Elsevier Journal
of Computer Communications on Dependable Wireless Sensor
Networks, 2005.

[13] S. S. Kulkarni and L. Wang. MNP: Multihop network repro-
gramming service for sensor networks. In Proceedings of the
25th International Conference on Distributed Computing Sys-
tems (ICDCS), pages 7–16, June 2005.

[14] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Se-
cure dissemination of code updates in sensor networks. the
26th International conference on distributed computing sys-
tems (ICDCS 06), July 2006.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Ac-
curate and scalable simulation of entire tinyos applications.
In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys 2003), Los Angeles, CA,
November 2003.

[16] D. Malan, M. Welsh, and M. Smith. A public-key infrastruc-
ture for key distribution in tinyos based on elliptic curve cryp-
tography. the 1st IEEE International Conference on Sensor
and Ad Hoc Communications and Networks, 2004.

[17] V. Naik, A. Arora, P. Sinha, and H. Zhang. Sprinkler: A reli-
able and energy effi cient data dissemination service for wire-
less embedded devices. To appear in Proceedings of the 26th
IEEE Real-Time Systems Symposium, December 2005.

[18] A. Perrig. The biba one-time signature and broadcast authen-
tication protocol. Proceedings of the Eighth ACM Conference
on Computer and Communication Security (CCS-8), Novem-
ber 2001.

[19] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Effi cient au-
thentication and signing of multicast streams over lossy chan-
nels. IEEE Symposium on Security and Privacy, pages 56–73,
May 2000.

[20] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. Seventh An-
nual International Conference on Mobile Computing and Net-
works (MobiCOM 2001), July 2001.

[21] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code
update mechanism for wireless sensor networks. Technical
report, UCLA, 2003.

8

