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Abstract  

We present a scalable, hierarchical control 
system for the dynamic resource management of 
a distributed real-time embedded (DRE) system. 
This DRE is inspired by the DARPA Adaptive 
and Reflective Middleware Systems (ARMS) 
program.  The goal of the control system is to 
simultaneously manage multiple resources and 
QoS concerns using a utility-driven approach for 
decision making and performance evaluation.  At 
each level of the control hierarchy there are 
multiple local controllers which autonomously 
make decisions to optimize their local utility.  
The controllers in the hierarchy can use 
different, localized resource control algorithms 
and the system’s user can tune the operations of 
the local controllers.  We discuss how the 
selections of local control algorithms affect the 
behavior of the overall system.  The control 
system is designed to be easily adaptable to 
other multi-tiered DRE systems. 

 

1. Introduction 

Large distributed real-time embedded 
systems are often designed with static resource 
management strategies tailored for specific goals 
or missions. These rigid resource allocation 
strategies are incapable of adapting to changing 
system goals, resource levels and operating 
environments. This inability to adapt can cause 
DRE systems to fail to meet end-to-end quality 
of service (QoS) requirements when conditions 
change. 
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We present a hierarchical control system for 
the dynamic resource management of 
hierarchical DRE systems that is capable of 
simultaneously managing multiple resources and 
QoS concerns. Dynamic resource management 
has the capability to achieve much higher 
performance in a constrained resource system 
than static resource management approaches. 

The DRE application area is inspired by the 
DARPA Adaptive and Reflective Middleware 
Systems (ARMS) program in conjunction with 
Raytheon and Lockheed Martin. The ARMS 
system can be decomposed into multiple 
missions and missions can be decomposed into 
multiple submissions called application strings 
or strings. A multi-tiered behavioral hierarchy 
such as this is a common aspect of many DRE 
systems.  

A key element of the control system we are 
designing for these DRE systems is a utility-
driven approach for decision-making and 
performance evaluation with respect to resource 
allocation in the controllers. Utility is computed 
for each element in the system hierarchy (string, 
mission, system) and is a measure of that 
element’s ability to perform its desired tasks. 
The allocation of system resources is 
dynamically managed to locally maximize utility 
at each level of the system hierarchy with 
individual controllers deployed for the whole 
system and all missions and its strings. 

The general philosophy for the control 
system is a bottom-up approach to dynamic 
resource management. At the lowest levels, 
controllers perform fast, frequent, local tunings 
of system behavior, while at the highest levels, 
controllers perform less frequent, but more 
aggressive control actions. This bottom-up 
scalable control approach can be easily applied 
to other hierarchical DRE systems. Other 



dynamic control approaches to meet QoS 
requirements are in [2, 3]. 

The next section describes key elements of 
the multi-tiered hierarchical system we are 
controlling. The control objectives and utility 
measures for dynamic resource management are 
outlined in Section 3.  The control architecture 
and the algorithms used by the controllers are 
discussed in Section 4.  We discuss the 
behavioral effects of using the various control 
algorithms in Section 5.  We conclude the paper 
and discuss several avenues of future work in 
Section 6. 

2. System Architecture 

Properties of DRE systems can be 
understood via aspects of both their resources 
and applications running on those resources.  
The resource aspects of DRE systems include the 
computation and communication resources of the 
system. The computational resources are a set of 
general purpose computer hosts. The 
communication resources in the system are the 
communication links formed between various 
hosts in the systems and the attributes of these 
links such as bandwidth, maximum delay and 
operating modes. 

Hosts are assumed to be grouped into pools 
or clusters of computing resources based on their 
physical locations. Pools are managed 
independently of one another by local pool 
managers. Communication between hosts in the 
same pool is assumed to be generally 
inexpensive, while hosts in a pool share limited 
communication gateways to hosts in other pools. 
Therefore, communications between hosts is 
partitioned into intra- and inter-pool 

communications.  A diagram of the system 
resource interactions can be seen in Figure 1. 

Software applications are deployed onto the 
computational resources and can be viewed at 
multiple levels of abstraction.  At the lowest 
level of abstraction, applications run on hosts 
and perform work requiring certain computing 
resources. 

At the next highest level of abstraction, an 
application string, or string, is a logical sequence 
of applications that sequentially process 
information with unique starting and ending 
applications. Strings are generally deployed 
across multiple hosts and pools, so string 
controllers need to manage inter- and intra-pool 
communication. Strings generally perform work 
subject to end-to-endQoS requirements. Two or 
more strings may share an application. 

At the penultimate level of abstraction, a 
mission is a group of strings that cooperate to 
achieve common goals.  At the highest level of 
abstraction, the system incorporates all running 
missions and resources those missions have 
access to. A schematic of the system-mission-
string decomposition can be seen in Figure 2. 

The ARMS system has software 
components called the Infrastructure Allocator 
(IA) that allocates applications to hosts and a 
Bandwidth Broker (BB) that allocates bandwidth 
on intra- and inter-pool communication links. 
The IA actuates the control actions of the control 
system by (re)allocating computational 
resources, and the BB actuates the control 
actions of the control system by (re)allocating 
communication resources. It is assumed that the 
DRE systems considered in this paper have 
similar software components to actuate control 
actions. It is also assumed that system status 
measurement information is shared by a 
distributed publish-and-subscribe service called 
RSS (Resource Status Service). RSS allows 
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system components to improve efficiency by not 
having to redundantly gather and distribute status 
information independently([4]).  

3. Resource Management Objectives 

The hierarchical control system uses a set of 
utility functions to evaluate the performance of 
strings and missions in the system against 
current resource allocations. The control system 
also uses the utility estimation function to 
estimate the desirability of various control 
actions with respect to the future performance 
and utility of the system. The control system 
chooses control actions that would result in a 
higher level of estimated utility. 

If the system has enough unused system 
resources, the system could allocate resources to 
previously undeployed missions or application 
strings to boost its overall utility and 
performance. Conversely, if resource contention 
were to occur due to an over-deployment of 
missions (possibly due to resource failure among 
other possible causes), then the performance and 
utility of the deployed missions would drop. A 
change in resource availability indicates that the 
controllers may need to adjust resource usage to 
attempt to maximize utility due to the current 
operating conditions. 

We use a set of hierarchical utility functions 
to measure the performance of the system that 
follows the system-mission-string hierarchy 
outlined in the introduction. Utility functions are 
defined for the system, each of the missions and 
each of the application strings that measure the 
performance of these entities under current 
resource allocation.  More formally, at a given 
time t: 

( )tU  is the utility of system performance. 

( )tU m
i  is the utility of mission i. 

( )tU js
i  is the utility of string j of mission i. 

We define the system-level utility, ( )tU  to 
be a weighted sum of the mission-level utilities: 
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The weight factor m
iw  is a measure of the 

relative importance of mission i. 
Similarly, the mission’s ability to complete 

its required tasks depends on the ability of its 
strings to complete their desired tasks, so 
mission utility ( )tU m

i  is a weighted sum of the 
mission’s string-level utilities: 
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The weight factor jS
iw  is a measure of the 

relative importance of string js  of mission i. 

The utility of string js  from mission i 
depends on the timeliness, quality, and 
throughput of information processed by the 
string. These factors are an indication of how 
well the string can process and transmit 

information.  Timeliness ( ( )tT js
i ) is a measure 

of the application string’s ability to meet end-to-

end real-time requirements.  Quality ( ( )tq js
i ) is 

a measure of how useful the information 
processed by an application string is.  

Throughput ( ( )tTh js
i ) is the rate at which 

information to be processed is sent to the string.  

The mapping of the ( )tT js
i , ( )tq js

i  and 

( )tTh js
i  to the utility of the string may vary 

from string to string, so we define ( )tU js
i  to be 

computed by a generic function ( )⋅⋅⋅ ,,js
iF : 
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The utility ( )tU js
i  is periodically computed 

by its string controller and published on RSS so 
that the higher level controllers can compute 

( )tU m
i  and ( )tU .  Expressions for timeliness, 

quality, and throughput are application 
dependent. 

4. Control Architecture 

In order to hierarchically allocate resources 
in the system to maximize system utility, 
controllers are deployed with one controller for 
every string (called the string controllers), one 
controller for every mission (called the Mission 
Controllers or MC’s) and one system controller 
(called the Multi-Mission Coordinator or MMC). 
A diagram of the system-mission-string 
hierarchy can be seen in Figure 3. At the top of 
the diagram, the MMC controls the gross 
allocation of resources to the missions.  At the 
next level down, the local MC’s coordinate the 
local deployment of strings which consume the 
local allocation of resources. At the lowest level, 
the string controllers, fast local tunings of the 
local resource usages. 



All of the controllers in the hierarchy 
communicate with their parents and/or children 
to facilitate tradeoffs between local run-time 
utilities and resource allocations among control 
layers in the bottom-up control design.  The 
controllers interact with each other through 
direct communications, but the controllers 
receive information about system resource status 
or performance through RSS. 

The low level controllers are generally fast 
and responsive, while the high level controllers 
have the ability to take more aggressive control 
actions.  Higher level control actions are more 
invasive, so the higher level controllers are 
designed take more time to better estimate which 
of their control actions will maximize their local 
utility.  Local controllers in this design attempt 
to greedily maintain their local utility and the 
bottom-up control philosophy limits local, fast 
utility gains that are potentially detrimental to 
the overall system utility. 

5. Local Control Algorithms 

We now discuss the operations of the 
individual controllers at each level of the control 
hierarchy. 

5.1 String Controller 

String controllers perform fast low-level 
tuning of quality and throughput in order to 
maintain their local string utility. A drop in 
string utility could be caused by either resource 
contention or failure, but on resource failures, the 
string controller is expected to receive 
notification about the failures from RSS. In the 
absence of a notification from RSS indicating 
otherwise, the string controller assumes drops in 
utility are caused by resource contention. 

Generally the quality ( ( )tq js
i ) and the 

throughput ( ( )tTh js
i ) of an application string 

can be directly controlled by the string’s 
controller by adjusting applications in a string, 
but the timeliness ( ( )tT js

i ) cannot. However, 
the timeliness of a string can be influenced by 
tuning the quality and throughput of information 
processed by a string. When a string controller 

observes that ( )tU js
i  is significantly below its 

measured baseline, the string controller attempts 
to decrease the string’s quality and throughput. 
Any observed improvement in timeliness by 
decreasing quality and throughput will not be 
instantaneous, so incremental decreases are made 
in both quality and throughput on the utility 
measurement cycles. Quality and throughput are 
continually decremented until a local maximum 

of the measured string utility ( )tU js
i  is found.  

If the local maximum is not sufficiently 
close to the utility baseline, the string controller 
sends a signal to the mission controller that the 
mission controller should attempt to relieve the 
string’s observed resource contention. It remains 
an open problem to determine how aggressively 
the string controllers should decrement quality 
and throughput in attempts to maintain their 
local utility. 

5.2 Mission Controller 

When given access to an amount of 
resources, an MC decides which of its mission’s 
strings should be deployed using those resources 
to maximize the mission’s utility. We have 
designed an ARMS mission controller that 
operates with two algorithmic components.  A 
schematic of the mission controllers’ internal 
operational logic is seen in Figure 4.  One 
mission control algorithmic component, called 
the string selection logic, determines which 
strings to deploy/kill/redeploy based on the 
strings’ importance to the mission, the amount of 
resources the mission is allowed to use and the 
strings’ current deployment status. The second 
algorithmic component, called the string binding 
logic, selects the resources that deployed strings 
should use based on how much resources are 
available to the mission.  The string binding 
logic interfaces with the IA to determine which 
resources are free and strings should be deployed 
on. 
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The string selection logic operates in 
response to partial system failures and user input 
to ensure that importance revaluation are 
followed through the missions’ string 
deployments.  We have tested various algorithms 
for the string selection logic.  These algorithms 
include importance-based greedy ordering, 
resource-efficiency-based greedy ordering and 
dynamic programming. 

When selecting which strings to deploy, the 
amount of resources the mission is allowed to 
use is intended to be used as an input from the 

MMC so that the MMC can direct the overall 
division of resources to the missions.  Note that 
instead of being allocating specific resources, the 
missions are given input as to how much 
resources they are allowed to use. 

5.3 Multi-Mission Coordinator 

The MMC performs the gross-level 
allocation of resources between the missions.  
Note that rather than giving the mission 
controllers access to specific resources, the 
MMC gives the mission controllers the right to 
use an amount of resources. 

When dividing the available system 
resources up amongst the missions, the MMC 
predicts what utility the system would attain 
from allocating various amounts of resources to 
the missions.  To do this, the MMC receives a 
lookup tables from each mission controllers that 
maps an approximation of the sums of the 
importance values of strings the mission 
controllers could deploy for their missions if 
given the ability to use various levels of 
resources.  The lookup tables are generated and 
sent to the MMC by every mission controller at 
initialization and are based on user-commanded 
mission goals.  The lookup tables are also 
intended to be updated regularly whenever a 
mission receives a command directive to refine 
its local behavior based on the relative 
importance values of the missions and its strings.  
Figure 5 contains a schematic of MMC operation 
which indicates that the lookup tables of 
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missions’ resource-value mappings. 
When the lookup tables are sent to the 

mission controller, the resource levels listed in 
the lookup table are quantized based on the 
levels of quality of service provided by the 
missions for deploying groups of strings.  
Because the deployment of the missions’ most 
important/critical strings is necessary for 
minimal mission operation, the lowest 
quantization level of the lookup tables 
correspond to the resources necessary to deploy 
just the most important/critical strings for each 
of the missions.  The other quantization levels in 
the mission lookup tables are dependent upon the 
context of the mission and could be used to tune 
the operation of the MMC when dividing system 
resources among the missions. 

When the MMC has the lookup tables from 
the mission controllers and given information 
about the availability of resources in the system, 
the MMC needs to decide how much resources 
should be provided to every mission controller in 
order to guarantee all critical strings can be run 
and to maximize the total value of all strings that 
can be deployed.  The problem of the MMC 
allocating resources to the missions can be 
formalized as a multiple-choice knapsack 
problem [1]. 

The MMC could use any number of 
algorithms to compute the most efficient division 
of resources based on information from the 
lookup tables and resource efficiency.  We found 
the dynamic programming algorithm to be very 
effective and efficient considering the relatively 
small numbers of missions that we are using. 

Once the MMC computes the division of the 
resources amongst the missions, the MMC 
communicates to the mission controllers how 
much of the computation resources they are each 
allowed to use.  This communication is indicated 
in the schematic of the MMC operation in Figure 
5. 

When the mission controllers have 
information about how many resources they are 
allowed to use, they decide which of their strings 
to deploy in order to maximize local utility.  The 
mission controllers receive no information about 
the allocation of resources to other missions.  
Therefore, on the occurrence of significant 
system events such as partial system failures or 
impotance revaluation, the mission controllers 
make all of their local resource allocation 
decisions under the assumption that their total 
resource allocation hasn’t changed unless they 
receive updated information from the MMC. 

6. System Simulation 

We developed a large-scale, highly 
configurable Matlab/Simulink model of the 
ARMS multi-mission system to objectively 
compare the utility-measured performance of the 
system using the dynamic resource controller to 
a baseline system where resources are statically 
allocated at initialization. 

For our simulation experiments, we 
configured the model to consist of three missions 
with 100 strings each that can be deployed on 5 
pools with inter-pool link resources.  When the 
mission controllers perform string deployment 
operations, there is a configurable actuation 
delay between the time the mission controller 
sends the actuation signal until the time the 
string becomes operational which we 
approximated as 0.1sec. 

In the simulation model, the operating 
conditions of the strings are highly configurable.  
The computational and communication 
requirements of the strings can be customized to 
model various mission scenarios as long as there 
are at least two applications in every string.  The 
user-assigned importance values of the strings 
are also configurable and can be used as 
experimental parameters in simulation. 

The amount of resources available to the 
multi-mission system can also be adjusted in the 
simulation model.  In particular, the number of 
pools and how many applications can be run in 
each pool and be individually adjusted along 
with the amount of inter-pool bandwidth 
available to the mission’s strings in the system’s 
inter-pool communication links.  It is not 
necessary that the pools and links have 
homogenous resource configurations.  We 
simulate partial system failures in real-time in 
the model by removing all of a pool’s nodes to 
model a complete pool failures. 

Using the large-scale Matlab/Simulink 
model of the ARMS system, we generated 100 
experimental string deployment scenarios 
consisting of 3 missions of 100 strings, each with 
randomly chosen application lengths uniformly 
distributed between 2 and 11.  Inter-application 
bandwidth requirements were randomly chosen 
to be either 1 or 2 megabits per second.  The 100 
strings were randomly assigned integer 
importance values with a uniform random 
distribution between 1 and 10, inclusive.  To 
generate the lookup tables generated by the 
mission controllers and sent to the MMC, we 
randomly grouped the missions’ string sets into 
10 quantization levels. 



For each scenario, the system had five 
operational pools at initialization with sufficient 
resources deploy all strings.  The pools were 
allocated computation resources such that after 
the failure of a specific pool, the mission 
controller would cause the mission to have only 
80% of the resources required to deploy all 
strings.  The failure of two pools would cause the 
system to have 60% of the resource to deploy all 
strings, the failure of three pools would cause the 
system to have 40% of the resources to deploy 
all strings and the failure of four pools would 
cause the system to have 20% of the resource to 
deploy all strings. 

The Matlab/Simulink simulations were run 
such that the MMC and mission controllers were 
given sufficient time to deploy all strings after 
initialization.  After initialization was completed, 
a set of pools was failed, and the mission 
controller was allowed to complete its recovery 
operations in response to the pool failure.  We 
recorded the utility attained by the mission 
controller immediately before the failure and 
after failure recovery operations completed. 

We also collected data on the performance 
of the system if a dynamic resource controller 
was used where resources are allocated at 
initialization and then no changes are made in 
the resource allocation.  This static resource 
allocation strategy was the baseline system in the 
ARMS program. 

Figure 6 contains a graph that demonstrates 
how the ratio of  performance for systems using 
the static and dynamic MMC’s vary with 
resource deficiency.  As can be seen from the 
graph, as resource deficiency increases, the 

dynamic MMC is able to achieve over 2x 
performance gains over the static MMC. 

7. Conclusions 

We have presented a utility driven 
hierarchical controller design for multi-tiered 
DRE systems to dynamically manage system 
resources. Although only three levels of 
abstraction are considered here for the DRE and 
control systems, our design is easily scaled to 
any number of control levels where low level 
controllers take fast, limited actions and high 
level controllers take slow, more invasive 
actions. 
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