
Competitive Analysis of Partitioned Scheduling on Uniform Multiprocessors

Björn Andersson1 and Eduardo Tovar1

1 IPP Hurray Research Group
Polytechnic Institute of Porto, Portugal
{bandersson,emt}@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of sporadically
arriving tasks on a uniform multiprocessor with the goal of
meeting deadlines. A processor p has the speed Sp. Tasks
can be preempted but they cannot migrate between proces-
sors. We propose an algorithm which can schedule all task
sets that any other possible algorithm can schedule assum-
ing that our algorithm is given processors that are three
times faster.

1. Introduction

Consider the problem of preemptive scheduling of a set
τ of n sporadically arriving tasks on m processors. A task is
given a unique index within the range 1..n and a processor
is given a unique index within the range 1..m. The speed of
processor p is denoted by Sp with the interpretation that if a
task executes L time units on processor p, it performs L ·Sp

units of execution.
A task τi generates a (potentially infinite) sequence of

jobs. The time when these jobs arrive cannot be controlled
by the scheduling algorithm and the time of a job arrival is
unknown to the scheduling algorithm before the job arrives.
It is assumed that the time between two consecutive arrivals
of jobs from the same task τi is at least Ti. We say that a job
generated by τi finishes execution at the time when it has
performed Ci units of execution. If a job finishes execution
at most Ti time units after its arrival then we say that the
job meets its deadline; otherwise it misses its deadline. It is
assumed that 0 < Ci and 0 < Ti, and that Ti and Ci are real
numbers. Note that we permit Ti < Ci.

The scheduling algorithm is allowed to preempt the exe-
cution of a job and there is no cost associated with preemp-
tion. Migration is not permitted; when a job resumes exe-
cution after being preempted, the job must execute on the

1-4244-0910-1/07/$20.00 c©2007 IEEE.

same processor as it executed on before it was preempted.
Also, if any two jobs are generated by the same task then
these two jobs must execute on the same processor. It is
assumed that a processor can execute at most one job at a
time, and a job cannot execute on two or more processors
simultaneously. It is also assumed that Ti and Ci of all tasks
are known to the scheduling algorithm.

Our goal is to design an algorithm that schedules tasks to
meet the deadlines of all jobs. Unfortunately, the problem
of deciding if a set of tasks can be partitioned such that all
tasks on each processor meet deadlines is NP-complete [2].
Consequently, the problem of assigning tasks to processors
is intractable. For this reason, we will allow an algorithm
to fail to assign tasks to processors even when it would be
possible to assign tasks to processors such that deadlines
would be met. For such scheduling algorithms, it is com-
mon to characterize the performance with the notion of a
utilization bound [12]. This notion has the additional ad-
vantage of allowing designers to find out if a specific task
set will meet deadlines before run-time; this is often called
schedulability analysis. Unfortunately, the standard defini-
tion of a utilization bound used in uniprocessor scheduling
[12] and on multiprocessors with identical processors [1]
cannot be applied on uniform processors. For this reason,
we will instead use another performance metric: the speed
competitive ratio.

The speed competitive ratio of an algorithm A is denoted
CPTA. It is a number such that for every task set τ and for
every uniform multiprocessor system Π′, characterized by
its speeds S′

1,S′
2,. . .,S′

m it holds that if it is possible (using
migration if necessary) to meets all deadlines of τ on Π′

then algorithm A meets all deadlines of τ on Π, where Π is
a uniform multiprocessor system where each processor has
a speed CPTA greater than the corresponding processor in
Π′.

A low speed competitive ratio indicates high perfor-
mance. A speed competitive ratio of 1 is the best achiev-
able. And a speed competitive ratio of 2 is (as we will see)
the best achievable for scheduling algorithms that do not al-

low migration. If a scheduling algorithm has a finite speed
competitive ratio then one can solve every problem instance
using processors that are sufficiently fast. If no finite speed
competitive ratio has been proven for a scheduling problem
then one cannot know if faster processors will ever help.
Unfortunately, with the current state of art in partitioned
scheduling on uniform multiprocessor, there is no algorithm
with a proven finite speed competitive ratio.

Therefore, in this paper we propose a partitioned
scheduling algorithm for uniform multiprocessors; it allows
preemption and it uses Earliest-Deadline-First (EDF) [12]
on each processor. We prove its speed competitive ratio: it
is at most three.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses design issues for uniform multiprocessors.
Section 3 discusses the problem of deciding whether it is
possible to schedule a task set on a uniform multiproces-
sor assuming that the scheduling algorithm is permitted to
migrate tasks. Section 4 presents our new algorithm which
does not migrate tasks. We also prove its speed competi-
tive ratio. This proof uses results in Section 3 on scheduling
where migration is permitted. Section 5 discusses the ability
of previous work to solve the addressed problem. Section 6
gives conclusions.

2. Design issues

Recall that task migration is not permitted. We assume
that when a job resumes execution after being preempted,
the job must execute on the same processor as it executed
on before it was preempted. We also assume that if any two
jobs are generated by the same task, then these two jobs
must execute on the same processor. This type of schedul-
ing is called partitioned multiprocessor scheduling because
it is equivalent to partitioning the set of tasks such that all
tasks in a partition are assigned to its dedicated processor
and then a uniprocessor scheduling algorithm is used at run-
time. The run-time scheduling is trivial. It is well-known
that preemptive Earliest-Deadline-First (EDF) is optimal on
a uniprocessor with our task model; that is, it meets dead-
lines if there is any uniprocessor scheduling algorithm that
meets deadlines. For this reason, we will, in the remainder
of the paper, assume that preemptive EDF is used on each
processor. For convenience we will refer to EDF with the
meaning of preemptive EDF.

The problem of partitioning the task set is however non-
trivial. It is important that the task assignment algorithm is
aware of the scheduling algorithm used on a uniprocessor
and it must use a uniprocessor schedulability test to know
this. For EDF it is known [12] that:

Theorem 1. Let p be a processor of speed Sp = 1. If∑n
i=1

Ci

Ti
≤ 1 and tasks are scheduled with EDF on p then

all deadlines are met.

We can easily remove the restriction Sp = 1 from Theo-
rem 1.

Theorem 2. Let p be a processor of speed Sp. If
∑n

i=1
Ci

Ti≤ Sp and tasks are scheduled with EDF on p then all dead-
lines are met.

When assigning tasks to processors, the speed of a
processor clearly is used in the schedulability test, for ex-
ample the one in Theorem 2. But it is also important that
processors are considered in the right order, in order to
achieve a finite speed competitive ratio. Example 1 illus-
trates this.

Example 1. Let k be an arbitrary integer such that k ≥ 2.
Consider n=k3+1 tasks to be scheduled on m=k3 proces-
sors. All tasks have Ti = 1. Tasks with i ∈ 1..m, have Ci =
1 and the task m+1 has Cm+1 = k+1. Processor 1 has the
speed S1 = k+2 and the processors with index 2..m have
the speed Sp = 1.

Observe Figure 1. It can be seen (from Figure 1a) that
this task set can be scheduled by assigning τm+1 to proces-
sor 1 and one of the other tasks to processor 1, and the
other tasks given one dedicated processor each. However,
consider Figure 1b. If the task assignment scheme consid-
ers tasks and processors in order of their index and uses a
normal bin-packing algorithm, then a deadline is missed. A
deadline is still missed even if processors are k times faster.
We can see this as follows. Processor 1 will have the speed
S1 = k2+2k and processors 2,3,4,. . .,m will have speed Sp

= k. The speed of processor 1 is not enough to host all the
tasks 1, 2, 3,. . ., m because their cumulative utilization is
k3 and this exceeds the speed of processor 1, which is S1

= k2+2k (it is true that k3 ≥ k2+2k since k ≥ 2). Conse-
quently, task τm+1 will not be assigned to processor 1 and
hence τm+1 must be assigned to one of the processors with
index 2,3,. . .,m. But τm+1 cannot be assigned to a proces-
sor with index 2,3,. . .,m because the utilization of τm+1 is
k+1 and the speed of each of the processors is k.

We have seen that algorithms using bin-packing can fail
if the speed of the processors is not considered in the assign-
ment algorithm. This can happen although these algorithms
are given processors that are k times faster. We can do this
reasoning for any k ≥ 2. By letting k → ∞ we obtain that
the speed competitive ratio is infinite for these bin-packing
schemes that do not take the speed of each processor into
consideration. This stresses the importance of taking the
speed of processors into account when the task assignment
algorithm makes decisions.

We saw in Example 1 that it is important to take the speed
of processors into account when assigning tasks to proces-
sors. In particular, if a task can be assigned to a processor
such that this task occupies a large fraction of the process-
ing capacity of that processor, then it is beneficial to assign

Figure 1. It is important to exploit knowledge of the speed of the processors when assigning tasks
to processors. Otherwise, the speed competitive ratio can approach infinity.

the task to that processor. Considering that we will use the
speed competitive ratio as a performance metric, it is inter-
esting to find out how good performance can be achieved.
Clearly, we want as low speed competitive ratio as possible,
and clearly a speed competitive ratio less than 1 is impos-
sible. But since we study scheduling with no migration, a
speed competitive ratio of two is the best achievable, as it
will be shown in Example 2.

Example 2. Observe Figure 2. Consider m+1 tasks to be
scheduled on m processors. All tasks have Ti = 1, Ci =
m/(m+1). All processors have speed Sp = 1. It can be seen
that these tasks can be scheduled to meet deadlines with an
algorithm that allows task migration because

∑n
i=1

Ci

Ti
≤

m and all processors are identical. Figure 2a shows this.
Let us now try to schedule these tasks without migration
on processors of speed Sp = 2m/(m+1)-ε, where ε > 0.

It is necessary that two or more tasks are assigned to the
same processor. On that processor, the utilization exceeds
the speed of the processor and hence a deadline is missed.
We can do this reasoning for any m ≥ 1 and for any ε > 0.
Letting m → ∞ and ε → 0 yields that a deadline is missed
although the speed is arbitrarily close to two. Hence, it is
impossible to achieve a speed competitive ratio less than 2
for partitioned scheduling.

3. Optimal Scheduling With Migration

We will now discuss feasibility testing of scheduling
with migration; that is, we will state conditions such that
if and only if these conditions are true for a task set then
it is possible to schedule the task set. We will state those
conditions for a heterogeneous multiprocessor platform (in

Figure 2. The speed competitive ratio of every partitioned scheduling algorithm is at least 2.

Section 3.1) and then we will state them (in Section 3.2) for
uniform platforms. The latter is useful for proving the speed
competitive ratio of the new algorithm in Section 4.

3.1 Heterogeneous Multiprocessor Plat-
forms

The problem of feasibility testing on a heterogeneous
multiprocessor platform has been studied previously [3].
We define ri,p as follows: on a heterogeneous multiproces-
sor platform, a task τi executing on processor p for L time
units, performs ri,p · L units of work. Let xi,p denote the
fraction of time that task τi spends on processor p. It holds
that a task set is feasible on a heterogeneous multiprocessor
platform if and only if l ≤ 1 for the following optimization
problem.

minimize l

subject to:

∀i ∈ {1, 2, . . . , n} :
m∑

p=1

xi,p · ri,p =
Ci

Ti

∀i ∈ {1, 2, . . . , n} :
m∑

p=1

xi,p ≤ l

∀p ∈ {1, 2, . . . ,m} :
n∑

i=1

xi,p ≤ l

3.2 Uniform Multiprocessor Platforms

We can specialize the feasibility analysis in Section 3.1
to uniform multiprocessors. We have ∀p: r1,p = r2,p = r3,p

= . . . = rn,p = Sp, where Sp is the speed of processor p and
ri,p is the parameter from Section 3.1.

Let us substitute xi,p · Sp with ui,p. Then, the feasibility
test can then be reformulated as follows: A task set is feasi-
ble on a uniform multiprocessor platform if and only if l ≤
1 for the following optimization problem.

minimize l
subject to:

∀i ∈ {1, 2, . . . , n} :
m∑

p=1

ui,p =
Ci

Ti
(1)

∀i ∈ {1, 2, . . . , n} :
m∑

p=1

ui,p

Sp
≤ l (2)

∀p ∈ {1, 2, . . . ,m} :
n∑

i=1

ui,p

Sp
≤ l (3)

From (1), (2) and (3) we obtain Lemma 1.

Lemma 1. If it holds that:

m∑

p=1

Sp <

n∑

i=1

Ci

Ti

then no scheduling algorithm can meet all deadlines.

Proof. We know from the assumption of the lemma that
there is a task set τ and a uniform multiprocessor Π such
that:

m∑

p=1

Sp <
n∑

i=1

Ci

Ti

Applying (1) yields:

m∑

p=1

Sp <
n∑

i=1

m∑

p=1

ui,p

and swapping the summation order yields:

m∑

p=1

Sp <
m∑

p=1

n∑

i=1

ui,p

This requires that there is a p such that:

Sp <

n∑

i=1

ui,p

Dividing by Sp yields:

1 <
n∑

i=1

ui,p

Sp

Hence it is impossible to satisfy (3) and l ≤ 1.
Consequently, a deadline will be missed. This proves the

lemma.

Algorithm 1 EDF-DU-IS-FF, a task assignment algorithm
for a uniform multiprocessor.

1: sort processors such that S1 ≤ S2 ≤ . . . ≤ Sm

2: sort tasks such that C1/T1 ≥ C2/T2 ≥ . . .≥ Cn/Tn

3: for all p in 1..m do
4: U[p] := 0
5: end for
6: i := 1
7: while (i<=n) do
8: p := 1
9: allocated := FALSE

10: while (p<=m) and (allocated=FALSE) do
11: if U[p]+ Ci/Ti <=Sp then
12: assign task i to processor p
13: U[p] := U[p]+ Ci/Ti

14: allocated := TRUE
15: i := i + 1
16: else
17: p := p + 1
18: end if
19: end while
20: if (allocated=FALSE) then
21: declare FAILURE
22: end if
23: end while
24: declare SUCCESS

4. The new algorithm

The new algorithm is described in Algorithm 1. It is
called EDF-DU-IS-FF because it uses EDF on each proces-
sor, it sorts tasks in order of Decreasing-Utilization, it sorts
processors in order of Increasing-Speed and it uses First-Fit
bin-packing.

Line 11 is the schedulability test from Theorem 2. It is
straightforward to see that the algorithm has the time com-
plexity O(n · m+n log n+m log m). The performance of
EDF-DU-IS-FF is given by Theorem 3.

Theorem 3. CPTEDF−DU−IS−FF ≤ 3

Proof. We can prove it using contradiction. We will do so
and show that a failed task set must request more than 50%
of the processing capacity of a subset of processors. We will
then consider this task set to be scheduled using a schedul-
ing algorithm where migration is allowed and a computing
platform with lower speed is used. It will turn out that every
such migrative algorithm must utilize more than the sum of
the computing capacity of the subset of processors. This
will contradict Lemma 1 and it proves the theorem. Let us
elaborate this reasoning.

If the theorem was false then there exists a task set
TF such that EDF-DU-IS-FF declares FAILURE on multi-

processor platform Π. But if TF is to be scheduled on Π′

then it is possible to meet all deadlines. It must be that on
Π′ a processor has a speed which is 1/x of the speed of its
corresponding processor in Π and x >3.

Consider the situation when EDF-DU-IS-FF was given
TF as input and EDF-DU-IS-FF declared FAILURE. There
must have been a task τfailure that was considered when
EDF-DU-IS-FF declared FAILURE. We can delete all tasks
with index greater than τfailure and we still would have a
task set such that the theorem was false. We let τ denote
this task set. Clearly we have:

Applying τon Π using EDF − DU − IS − FF
declares FAILURE (4)

and

It is possible to schedule τon Π′ to meet deadlines (5)

It was task τn that declared failure in (4). Let k denote
the number of processors such that Sp < Cn/Tn. Due to the
sorting performed on line 1 and line 2 we obtain that:

For every (p, i) such that p ∈ 1, 2, . . . , k and for
every i ∈ 1, 2, . . . , n it holds that : Sp < Ci/Ti. (6)

From (6) it follows that:

When EDF − DU − IS − FF is run, no tasks are
assigned to processor p with p ∈ 1, 2, .., k. (7)

Let us now consider τn, the task that caused failure for
EDF-DU-IS-FF. We know that:

For p ∈ k + 1, 2, . . . ,m, it holds that
U [p] + Cn/Tn > Sp (8)

Observe from (8) that τn could not be assigned to any of
the processors k+1,k+2,. . .,m, despite the fact that Cn/Tn

≤ Sp for those processors. Hence we have that:

When EDF − DU − IS − FF declares FAILURE ,

for each processor p ∈ k + 1, k + 2, ..,m

it holds that : there is at least one task
assigned to processor p. (9)

We have that Fact 1 is true.

Fact 1. When EDF-DU-IS-FF declares failure, it holds for
p ∈ k+1,k+2,. . .,m: U[p] > 0.50 · Sp.

Proof. If Fact 1 was false then there must exist a processor
p with U[p] ≤ 0.50 · Sp. We know from (9) that there is
at least one task assigned to processor p. Hence there is a
task with Ci/Ti ≤ 0.50 · Sp assigned to processor p. Due
to the sorting of tasks we have that Cn/Tn ≤ Ci/Ti and it
leads to Cn/Tn ≤ 0.50 · Sp. But then it would be possible
for τn to be assigned to processor p and we know that it
cannot happen since EDF-DU-IS-FF declared failure. This
is a contradiction and it proves the fact.

From Fact 1 we obtain that when EDF-DU-IS-FF de-
clares failure it holds that:

m∑

p=k+1

0.5 · Sp <
m∑

p=k+1

U [p] (10)

Since τ1, τ2, . . ., τn−1 were assigned, we obtain from
(10) that:

m∑

p=k+1

0.5 · Sp <

n−1∑

i=1

Ci

Ti
(11)

Let us consider two cases.
Case 1. k = 0.
We have S′

p ≤ Sp/x, where S′
p is the speed of processor

p in Π′. We also have x > 3. Combining this with (11)
yields:

m∑

p=1

0.5 · 3 · S′
p <

n−1∑

i=1

Ci

Ti

Simplifying the left-hand side, relaxing it and adding the
utilization of τn to the right-hand side yields:

m∑

p=1

S′
p <

n∑

i=1

Ci

Ti
(12)

From (12) and Lemma 1, it follows that no algorithm can
schedule the task set on Π′ even if migration is permitted.
This contradicts (5). (End of Case 1)

Case 2. k ≥ 1.
Let us study a migrative scheduling algorithm that meets

all deadlines of τ on Π′. Hence the optimization (1)-(3) has
a solution with l ≤ 1. Fact 2 and Fact 3 reason about this
solution.

Fact 2. For any i, it holds that

k∑

p=1

ui,p ≤ S′
k

Proof. From (2) we obtain that in a migrative schedule
where deadlines are met, it holds that:

m∑

p=1

ui,p

S′
p

≤ 1

Taking the sum over only a subset yields:

k∑

p=1

ui,p

S′
p

≤ 1

Using the fact that the speeds of processors are sorted in
ascending order yields:

k∑

p=1

ui,p

S′
k

≤ 1

By a simple rewriting this gives us Fact 2.

Fact 3. For any i, it holds that

Ci

Ti
≤ x

x − 1
·

m∑

p=k+1

ui,p

Proof. From (6) we obtain:

Sp <
Ci

Ti
(13)

Based on (13) and (1) we have:

Sk <

m∑

p=1

ui,p (14)

From the assumption on Π and Π′ we obtain:

S′
k <

Sk

x
(15)

Combining Fact 2 and (15) yields:

k∑

p=1

ui,p ≤ Sk

x
(16)

From (16) we obtain:
m∑

p=1

ui,p ≤ Sk

x
+

m∑

p=k+1

ui,p (17)

Combining (14) and (17) yields:
m∑

p=1

ui,p ≤
∑m

p=1 ui,p

x
+

m∑

p=k+1

ui,p (18)

Rewriting (18) and using (1) yields:

Ci

Ti
≤ x

x − 1
·

m∑

p=k+1

ui,p

Recall from (11) that when we used partitioning we had:

m∑

p=k+1

0.5 · Sp <

n−1∑

i=1

Ci

Ti

Applying Fact 3 yields:

m∑

p=k+1

0.5 · Sp <
x

x − 1
·

n−1∑

i=1

m∑

p=k+1

ui,p

We have S′
p ≤ Sp/x, where S′

p is the speed of processor p
in Π′. Applying this yields:

m∑

p=k+1

0.5 · x · S′
p <

x

x − 1
·

n−1∑

i=1

m∑

p=k+1

ui,p

Rewriting yields (and using the knowledge that x is posi-
tive) yields:

m∑

p=k+1

S′
p <

2
x − 1

·
n−1∑

i=1

m∑

p=k+1

ui,p

Since x > 3 we obtain that 2/(x-1) < 1. Using it yields:

m∑

p=k+1

S′
p <

n−1∑

i=1

m∑

p=k+1

ui,p

Swapping the order of the indices of the summation on
the right-hand side yields:

m∑

p=k+1

S′
p <

m∑

p=k+1

n−1∑

i=1

ui,p

This requires that there is a p such that:

S′
p <

n−1∑

i=1

ui,p

Dividing by S′
p yields:

1 <

n−1∑

i=1

ui,p

S′
p

And hence it is impossible to satisfy (3) and l ≤ 1. Con-
sequently, a deadline will be missed on Π′. But this contra-
dicts (5). (End of Case 2)

We can see that regardless of the case, we obtain a con-
tradiction and hence Theorem 3 is true.

5. Previous work

Algorithms in operations research have been proposed
for scheduling jobs with no real-time requirements assum-
ing that all jobs arrive at the same time and the goal is to
minimize the time when all jobs have been finished. (See for
example [10].) A solution to this problem can be used for
scheduling periodically arriving tasks with deadlines [2].
But unfortunately, that algorithm [2] allows task migration
and hence it cannot solve our problem.

The problem of partitioning a task set on a uniform mul-
tiprocessor has been considered previously [8, 7]. This is
the same problem as we addressed in this paper. We find
two drawbacks with those algorithms and analysis though.
First, the algorithms are analyzed by extending the utiliza-
tion bound from identical multiprocessors. But their uti-
lization bound is not a single number; it is a function of the
maximum Ci/Ti of tasks. This causes a large amount of
pessimism when (i) the difference in speeds of processors
is very large and (ii) the maximum Ci/Ti is large. This pes-
simism is neither a consequence of the algorithm, nor the
analysis techniques but it is a consequence of the definition
of the utilization bound in uniform multiprocessors. The
second drawback of the above mentioned previous work
[8, 7] is that their speed competitive ratio is infinite. The
algorithms use First-Fit or Any-Fit; this is a good design.
However, the algorithms sort processors in increasing order
of speed; this makes it possible for the behavior of Exam-
ple 1 to occur and it causes the speed competitive ratio to be
infinite.

The problem we address can be solved using task assign-
ment algorithms for heterogeneous multiprocessors [5, 4].
The algorithm in [5] uses exhaustive enumeration of ”heavy
tasks” and this leads to a time complexity of O(mm). The
other algorithm [4] has polynomial time-complexity but it
is high; it requires that a linear program is solved. Neither
of them proves a speed competitive ratio.

A speed competitive ratio has already been proven for
scheduling real-time tasks on uniform multiprocessors [9,
6]; one of the algorithms has a speed competitive ratio of
two [9]. In addition it has the advantage of being proven
not just for the sporadic task model but for the more generic
model of aperiodic jobs where the scheduling algorithm has
no knowledge of jobs arriving in the future. Unfortunately,
it requires that tasks can migrate.

We have studied uniform multiprocessors and we stud-
ied how much extra processing power must be given to our
algorithm to ensure that our algorithm meets deadlines for
every task set which an optimal algorithm meets deadlines.
This type of analysis was originally proposed in [11, 13] but
for a uniprocessor [11] and a multiprocessor with where all
processors have the same speed [13].

6. Conclusions

We have presented an algorithm to schedule sporadically
arriving tasks on a uniform multiprocessor and we have
proven its speed competitive ratio. It is at most three. This
is a significant result because it is the first proven speed
competitive ratio in real-time scheduling on uniform mul-
tiprocessors where migration is not allowed.

Acknowledgements

This work was partially funded by Fundação para
Ciência e Tecnologia (FCT).

References

[1] B. Andersson, S. K. Baruah, and J. Jonsson. Static-priority
scheduling on multiprocessors. In IEEE Real-Time Systems
Symposium, 2001.

[2] S. K. Baruah. Scheduling periodic tasks on uniform mul-
tiprocessors. In 12th Euromicro Conference on Real-Time
Systems, 2000.

[3] S. K. Baruah. Feasibility analysis of preemptive real-time
systems upon heterogeneous multiprocessor platforms. In
25th IEEE International Real-Time Systems Symposium,
2004.

[4] S. K. Baruah. Partitioning real-time tasks among heteroge-
neous multiprocessors. In International Conference on Par-
allel Processing, 2004.

[5] S. K. Baruah. Task partitioning upon heterogeneous multi-
processor platforms. In 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2004.

[6] S. K. Baruah and J. Goossens. Rate-monotonic schedul-
ing on uniform multiprocessors. IEEE Trans. Computers,
52:966–970, 2003.

[7] V. Darera and L. Jenkins. Utilization bounds for rm schedul-
ing on uniform multiprocessors. In 12th IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, 2006.

[8] S. Funk and S. K. Baruah. Task assignment on uniform het-
erogeneous multiprocessors. In 17th Euromicro Conference
on Real-Time Systems, 2005.

[9] S. Funk, J. Goossens, and S. K. Baruah. On-line schedul-
ing on uniform multiprocessors. In IEEE Real-Time Systems
Symposium, 2001.

[10] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform
processor systems. Journal of the ACM, 25, 1978.

[11] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. In IEEE Symposium on Foundations of Com-
puter Science, 1995.

[12] C. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of
the Association for Computing Machinery, 20:46–61, 1973.

[13] C. A. Phillips, C. Stein, E. Tornh, and J. Wein. Optimal
time-critical scheduling via resource augmentation. ACM
Symposium on Theory of Computing, 1997.

