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Abstract— Frequent failure occurrences are becoming a serious
concern to the community of high-end computing, especially
when the applications and the underlying systems rapidly grow
in size and complexity. In order to better understand the failure
behavior of such systems and further develop effective fault-
tolerant strategies, we have collected detailed event logs from
IBM Blue Gene/L, which has as many as 128K processors, and is
currently the fastest supercomputer in the world. Due to the scale
of such machines and the granularity of the logging mechanisms,
the logs can get voluminous and usually contain records which
may not all be distinct. Consequently, it is crucial to filter these
logs towards isolating the specific failures, which can then be use-
ful for subsequent analysis. However, existing filtering methods
either require too much domain expertise, or produce erroneous
results. This paper thus fills this crucial void by designing and
developing an Adaptive Semantic Filtering (ASF) method, which
is accurate, light-weight, and more importantly, easy to automate.
Specifically, ASF exploits the semantic correlation between two
events, and dynamically adapts the correlation threshold based
on the temporal gap between the events. We have validated the
ASF method using the failure logs collected from Blue Gene/L
over a period of 98 days. Our experimental results show that
ASF can effectively remove redundant entries in the logs, and
the filtering results can serve as a good base for future failure
analysis studies.

I. INTRODUCTION

Meta-scale scientific and engineering applications have been
playing a critical role in many aspects of the society, such
as economies of countries, health development, and mili-
tary/security. The large processing and storage demands of
these applications have led to the development and deploy-
ment of IBM Blue Gene/L, the fastest supercomputer on the
TOP500 supercomputer list [2]. Blue Gene/L is currently de-
ployed at Lawrence Livermore National Laboratory (LLNL),
hosting applications that span severa thousand processors, in
the domains such as hydrodynamics, molecular dynamics, and
climate modeling.

As applications and the underlying platforms scale to this
level, failure occurrences have become a norm, rather than
an exception [21], [19], [20], [24], [10], [7], [17], [12], [11],
[25], [18]. Failures can be broadly categorized into two classes:
software failures and hardware failures. Software failures can
be further categorized into application software failures such as
bugs in application development, and system software failures
such as bugs in the kernel domain and system configuration
errors. Hardware failures are often observed in memory, stor-
age and network subsystems, but more recently they are also
found in combinational units [14], [15]. Both system software
failures and hardware failures can have severe impact on the
system performance and operational costs. For instance, fail-
ures can make nodes unavailable, thereby lowering system uti-
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lization. Furthermore, failures can cause applications executing
on the nodes (probably having run for a long time) to abort,
thus wasting the effort already expended. Additionally, failures
can also greatly increase the system management costs. The
system administrator may need to detect failures, diagnose
the problem, and figure out the best remedia actions. On
the hardware end, this may entail resetting a node, changing
the motherboard/disk, etc., and on the software end it may
require migrating the application, restarting the application, re-
initializing/rejuvenating [23] a software module, etc. Indeed,
the resulting personnel involvement will increase the Tota
Cost of Operation (TCO), which is becoming a serious concern
in numerous production environments [8], [1].

Understanding the failure behavior in large scale parallel
systems is crucia towards aleviating the above problems.
This requires continual online monitoring and analysis of
events/failures on these systems over long periods of time.
The failure logs obtained from such analysis can be useful in
several ways. First, the failure logs can be used by hardware
and system software designers during early stages of machine
deployment in order to get feedback about system failures
and performance. It can aso help system administrators for
maintenance, diagnosis, and enhancing the overall health (up-
time). Finaly, it can be useful in fine-tuning the runtime
system for checkpointing (e.g. modulating the frequency of
checkpointing based on error rates), job scheduling (e..
alocating nodes which are less failure prone), network stack
optimizations (e.g. employing different protocols and routes
based on error conditions), etc.

While failure logs have the above-mentioned potential uses,
the raw logs cannot be directly used. Instead, redundant and/or
unimportant information must be first removed. There are
several reasons for doing so. First, there are many recorded
warnings that do not necessarily lead to a falure. Such
warnings need to be removed (note that a sequence of warnings
which do lead to a failure should remain). Second, the same
error could get registered multiple times in the log, or could
get flagged in different ways (e.g. network busy and message
delivery error). For instance, we have noticed that a single
EDRAM error on Blue Gene/L is record in 20 successive
entries, each with a different fatal error code. Consequently,
it becomes imperative to filter this evolving data and isolate
the specific events that are needed for subsequent analysis.
Without such filtering, the analysis can possibly lead to
wrong conclusions. For instance, the same software error can
materialize on all nodes that an application is running on, and
can unduely reduce the Mean Time Between Failures (MTBF)
than what is really the case.

We have obtained event logs containing al the RAS (reli-



ability, availability, and serviceability) data from 08/02/05 to
11/18/05 from IBM Blue Gene/L, with atotal of 1,318,137 en-
tries. Filtering raw event logs from large-scale parallel systems
such as Blue Gene/L is a chalenging task, mainly due to the
large volume of the data, the complexity of the systems, and
the nature of paralel applications. While the spatio-temporal
filtering (STF, in short) method that was proposed in [12] has
been shown to have the potential to filter out many redundant
fatal events, it has the following obvious problems. First, it
requires extensive domain knowledge in the organization of the
hardware platform, as well as the logging procedure. Second,
it involves a considerable amount of manual effort from these
domain experts. Third, it imposes challenges in the area of
software engineering because STF involves several passes, and
after each pass, we need to manually manipulate the partial
results for the next usage. Due to these drawbacks, STF is not
suitable for online filtering, which isimportant for many future
applications of failure data. Therefore, there is an urgent need
to develop some alternative methods to meet these challenges.

To this end, we propose an Adaptive Semantic Filtering
(ASF) method. The key idea behind ASF is to use semantic
context of event descriptions to determine whether two events
are redundant. In light of this, ASF involves three steps.
Firstly, it extracts all the keywords from event descriptions
and builds a keyword dictionary. Secondly, it converts every
event description into a binary vector, with each element rep-
resenting whether the description contains the corresponding
keyword. Using these vectors, we can compute the correlation
between any two events. Thirdly, it determines whether two
events are redundant based on their correlation as well as the
tempora gap between them. Specifically, the choice of the
correlation threshold is not uniform, but varies according to
the time window between two events. For example, two events
that are temporally close are considered redundant even with
low correlation, but two far-away events are only considered
redundant when their correlation is very high. Compared to
STF and other existing filtering tools, ASF considers both
semantic correlation and temporal information, and therefore,
the filtering results more accurately capture the real-world sit-
uations. More importantly, ASF does not require much human
intervention, and can thus be easily automated. Consequently,
ASF is one big step forward towards self-managing online
monitoring/analysis for large-scale systems.

In this study, we have applied ASF on the failure logs
from IBM Blue Gene/L. Our experimental results show that
ASF is more accurate than STF in filtering fatal events due
to its consideration of semantic correlation between events.
Also, due to its low overhead, we can use ASF to filter non-
fatal events as well. We find that ASF is quite effective for
al the severity levels, with the resulting compression ratio
aways below 3%, and often below 1%. After merging filtering
results for al severity levels, we find that events naturally
form “clusters’, with each clustering having non-fatal events
first, and then one or more fatal events. These clusters can
help visualize how events evolve with increasing severity.
Indeed, this can serve as a good basis for further analysis
and investigations.

Overview: The rest of this paper is organized as follows.
Section |l summarizes the event data logs we have collected
from Blue Gene/L. Both the STF and ASF methods are
presented in Section I11, and the filtering results are discussed
in Section IV. Following these discussion, Section V includes
the related work in filtering event logs. Finally, section VI con-
cludes with a summary of the results and identifies directions
for future work.

Il. AN OVERVIEW OF IBM BLUE GENE/L RAS EVENT
LoGs

IBM Blue Gene/L has 128K PowerPC 440 700MHz pro-
cessors, which are organized into 64 racks. Each rack consists
of 2 midplanes, and a midplane (with 1024 processors) is the
granularity of job allocation. A midplane contains 16 node
cards (which houses the computing chips), 4 1/0 cards (which
houses the 1/O chips), and 24 midplane switches (through
which different midplanes connect). RAS events are logged
through the Central Monitoring and Control System (CMCS),
and finally stored in a DB2 database. The logging granularity
is less than 1 millisecond. More detailed descriptions of the
Blue Gene/L hardware and the logging mechanism can be
found in our earlier paper [12].

We have been collecting RAS event logs from Blue Gene/L
since August 2, 2005. Up to the date of November 18,
2005, we have totaly 1,318,137 entries. These entries are
records of all the RAS related events that occur within various
components of the machine. Information about scheduled
maintenances, reboots, and repairsis not included. Each record
of the logs has a number of attributes. The relevant attributes
are described as follows.

« RECID is the sequence number of an error entry, which
is incremented upon each new entry being appended to
the logs.

o EVENT_TYPE specifies the mechanism through which the
event is recorded, with most of them being through RAS
[5].

o SEVERITY can be one of the following levels - INFO,
WARNING, SEVERE, ERROR, FATAL, or FAILURE -
which also denotes the increasing order of severity.

o FACILITY denotes the component where the event is
flagged, which is one of the following: LINKCARD,
APP, KERNEL, HARDWARE, DISCOVERY, CMCS,
BGLMASTER, SERV_NET or MONITOR.

o EVENT_TIME is the time stamp associated with that
event.

« JOBLID denotes the job that detects this event. This field
is only valid for those events reported by computing/|O
chips.

o LOCATION of an event (i.e., which chip/service-card/
node-card/link-card experiences the error), can be spec-
ified in two ways. It can either be specified as (i) a
combination of job ID, processor, node, and block, or
(if) through a separate location field. We mainly use the
latter approach (location attribute) to determine where an
error takes place.

o ENTRY_DATA gives a description of the event.



Il. FILTERING METHODS

In this section, we present two event filtering methods.
First, we briefly introduce the Spatio-Temporal Filtering (STF)
method that was proposed in [12]. Then, we propose an
Adaptive Semantic Filtering (ASF) method, which exploits the
semantic correlations between events, and can help automate
the filtering process for large systems such as IBM Blue
GenelL.

A. A Spatio-temporal Filtering Method

In our previous work [12], we have developed a Spatio-
Tempora Filtering (STF) method for parsing Blue Gene/L
event logs and filtering out redundant/unimportant event
records. STF involves three steps. (1) extracting and cat-
egorizing falure events, (2) performing tempora filtering
to compress events from the same chip locations, and (3)
performing spatial filtering to coalesce records of the same
event across different locations.

First, the raw logs have to be preprocessed, such as re-
formatting the entries and handling missing attributes. After
the preprocessing step, the next step is to extract al the
events with FATAL severity. As pointed out in Section I,
an event can be associated with six levels of severity, and
STF is designed to focus on filtering events with severity
level FATAL because these events can terminate job exe-
cutions and thus have the most severe impact on system
performance. Once al the FATAL events are extracted, based
on the involved hardware components, they are categorized
into the following six groups. memory related failures (mem),
network related failures (net), midplane switch related failures
(mps), application 1/0 related failures (aio), node card related
failures (nc), and unknown failures. The unknown category
includes those FATAL events that do not have self-explanatory
entry-data fields. In order to correctly categorize an event,
we have to examine its entry data field carefully, and often

a domain expert is needed. After the categorization step, a

temporal filtering is conducted at every chip location, with
failures that are from the same job and are close to each
other coalesced into one record, and the filtering results from
different locations are merged in the temporal order using
the sort-merge method. The temporal filtering is a simple
threshold-based scheme, and the threshold is chosen with
the help of domain knowledge. Finally, due to the paralléel
nature of these systems and applications, an event may be
reported by multiple locations at the same time. Therefore,
we adopt a spatial filtering after the tempora filtering phase,
which removes redundant records from different locations.
Like the temporal filtering step, spatia filtering also employs
a threshold, which is again determined by domain experts.

B. An Adaptive Semantic Filtering Method

While STF can effectively compress Blue Gene/L data logs,
as shown in [12], it has the following drawbacks. First, it
requires extensive domain knowledge, both when categorizing
fatal events and when adopting suitable threshold values.
Second, it requires manual operations. For example, upon the

addition of a new event entry, a human operator is needed to
categorize it into different types. As another example, after
each step, manual operations are needed to process the partial
results to enable operations in the next step. Third, STF only
employs simple thresholding-techniques, which cannot handle
many tricky situations, and may lead to incorrect results.

To address these challenges, in this paper, we propose an
Adaptive Semantic Filtering (ASF) method, which exploits
the semantic context of the event descriptions for the filtering
process. ASF involves the following three steps: (1) building a
dictionary containing all the keywords that appear in event de-
scriptions, (2) translating every event description into a binary
vector where each element of the vector represents whether
the corresponding keyword appears in the description or not,
and (3) filtering events using adaptive semantic correlation
thresholds.

1) Keyword Dictionary: The keyword dictionary is the
base for developing the ASF method. The keywords in the
dictionary should capture the semantic context of all the
events. Building the dictionary is an iterative process. In each
iteration, we examine an event entry, identify its keywords, and
append new keywords into the dictionary. In order to identify
the keywords of an event description, we have adopted the
following removal/replacement rules:

1) Remove punctuation, equal signs, single quotes, double

guotes, parentheses (including the content in the paren-

theses). " _ _ .
2) Remove indefinite articles a, an, and definite article

the.
3) Remove words such as be, being, been, is, are,

was, were, has, have, having, do or done.
4) Remove prepositions such as of, at, in, on, upon,

as, such, after, with, from, to, etC.
5) Replace an alphabetic-numeric representation of a rack,

a midplane, alink card, or a node card by the keyword

LOCATION. . .
6) Replace an eight-digit hexade0|ma| address by the key-

word 8DigitHex Ad
7) Replace ac‘ihreeudlg—t hexademmal address by the key-

word 3DigitHex Add
8) Replace an eight-digit hexademmal value by the key-

WOKiBDl%NtHeX

9) Replace atwo-digit hexadecimal value by the keyword
2D1g1tHex
10) Replace a numeric number by the k ord NUMBER.
BinaryBits.

11) Replace binary digits by the
12 gBace areg)llsterg egerO r%w etc.,

REGISTER., . .
13) Replace a file directory or an image directory by the

keyword DIRECTORY.
Réplace uppercase letters by the corresponding lower-

case letters. . -
Replace present participles and past participles of verbs

by their smple forms, eg. Failing, Failed being

replaced by Fail. S
Réplace aplural noun by its single form, e.g. errors

bemg replaced by erro
17) Replace week days and months by the keyword DATE.

After processing al 1,318,137 entries in the raw logs from
August 8, 2005 to November 18, 2005, we have identified
667 keywords. One of the advantages of this method is that
upon the arrival of new data, we only need to process the new
entries as described above, without affecting the earlier data

by the keyword

14)
15)

16)



in any way.

2) Correlation Computation: Following the construction of
the keyword dictionary, we next convert each event description
into a binary vector for the purpose of semantic correlation
calculation. Suppose there are N keywords. Then the vector
will have N elements, with each element corresponding to one
keyword. In this way, assigning vectors to event descriptions
becomes straightforward: 1 denoting the description includes
the associated keyword, and O denoting otherwise. In order to
make this step more automatic, we can choose a reasonably
large value for N so that adding new logs will not require
re-doing the trandlations for earlier logs, even when these new
logs may introduce new keywords. This approach is further
supported by the observation that the number of raw events
may be huge, but the number of keywords stays more or less
constant after it reaches a certain level.

After generating a binary vector for event record, we can
then compute the correlation between any two events using
the ¢ correlation coefficient [16], the computation form of
Pearson’s Correlation Coefficient for binary variables.

B
0 1 Row Total
A 0 P(oo) P Pey
1 Puo) Pay Pas
Column Total Pwo) Py N

Fig. 1. A two-way table of item A and item B.

For a 2 x 2 two-way table as shown in Figure 1, the
calculation of the ¢ correlation coefficient reduces to
Prooy P11y — Proy Paoy
v Po Py Pioy P

where P;;y denotes the number of samples that are classified
in the i-th row and j-th column of the table. Furthermore,
we let ;1) denote the total number of samples classified in
the ith row, and P ;) the total number of samples classified
in the jth column. Thus, we have Py, = 3, P; and
Piijy = Yi_oPuj)- In the two-way table, N is the total
number of samples.

3) Adaptive Semantic Filtering: ASF tells whether arecord
is redundant or not based on its semantic context. An intu-
itive semantic correlation based approach would regard two
records with a high correlation between their descriptions as
redundant. A closer look at the logs, however, reveals that in
addition to the correlation coefficient, the interval between two
records also plays an important role in determining whether
these two records are redundant. For example, if two events
are very close to each other, even though their correlation
may be low, they may still be triggered by the same failure.
On the other hand, two records that are far away from each
other, though their descriptions may be exactly the same,
are more likely to report unique failures. As a result, it is
insufficient to adopt a simple thresholding technique solely
based on the correlation coefficients between events. Instead,
we propose to adopt an adaptive semantic filtering mechanism,
which takes into consideration both semantic correlation and
temporal information between events to locate unique events.
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Fig. 2. Choosing appropriate values of t;;, and s for STF.
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with different s;;, values

We thus believe that, by doing so, we can combine the
advantage of STF and the advantage of a simple semantic
filtering technique. The principle of the adaptive semantic
filtering is that as the time gap between records increases,
two records must have a higher correlation coefficient to be
considered redundant, and after the time gap reaches a certain
level, even two records with a perfect correlation coefficient
will be considered unique.

The Adaptive Semantic Filtering (ASF) algorithm first sorts
the log entries in time sequence and stores them into the jobl D
symbolic reference table as shown in Line 2 and Line 3. Then,
for each anchor event in the jobID table, if the timestamp
of the current anchor event is greater than the largest time
threshold, the ASF algorithm deletes this anchor event from
the jobID table; otherwise, in line 8, the algorithm computes
the semantic correlation between the current event and the
anchor event. Line 9 obtains the temporal gap between the
current event and the anchor event. If either the temporal or
the correlation criteria is satisfied, the current record is filtered
out as indicated in Line 12. The above process is iterated for
every event record.

IV. EXPERIMENTAL RESULTS

In this study, we have applied the proposed adaptive se-
mantic filtering technique to the raw RAS event logs collected
from the Blue Gene/L machine. We report the detailed filtering
results in this section.

A. ASF Versus STF

First, we would like to compare the effectiveness of the
new semantic filter ASF, and the earlier non-semantic filter
STF. Please note that STF is expected to accurately extract
unique events from voluminous raw logs because it has
involved extensive domain knowledge in the organization of
the hardware platform, as well as the logging procedure, and
because it has involved a considerable amount of manual effort
from these domain experts.

Due to the space limit, instead of presenting the filtering
results for al types of events, we only present the results for
FATAL events here. For the sake of fairness, we first need to
carefully tune the parameters of both algorithms to reach their
optimal operating ranges. The main parameters involved in



STF include the threshold in the temporal filtering phase ¢,
and the threshold in the spatial filtering phase sy;,. Figure 2(a)
plots the number of remaining FATAL events after applying
different tempora values t;,. We take the viewpoint that a
job is likely to encounter only one fatal event of the same
type. Hence, a threshold that is too small will result in severa
fatal events from the same type for a job. On the other hand,
since the log has a large portion of entries that do not have
a vaid JoblD field, then a large threshold may filter away
failures encountered by different jobs. Both factors considered,
we have chosen t;;, = 20 minutes, and this threshold yields
145371 fatal events. Of course, after choosing this threshold,
we have validated our choice by examining both the original
log and the resulting log manually.

Compared to the tempora threshold, the spatial threshold
is easier to set. Similarly, Figure 2(b) gives the number of
remaining fatal events after applying different spatial filtering
threshold values s;;,. We have two main observations from this
figure. First, applying spatial filtering is very important. Even
a zero-second spatia filtering threshold can bring down the
number of FATAL events from 145371 to 1746. The second
observation is that, the impact of different spatial threshold
values is not as pronounced as that of the temporal filtering
threshold. This is because the fact that spatial filtering is
adopted dominates the filtering effect. As a result, we choose
20-minute as the value for s;,.

Using the chosen threshold values, STF can bring down the
number of FATAL records from 281462 to 998, which only
congtitutes 0.3546% of the raw log.

Now, let us switch our attention to the proposed adaptive
semantic filter (ASF). As presented in Section 111, ASF adopts
different correlation coefficient threshold values according to
the intervals between subsequent event records. Specifically,
we take the viewpoint that two records that are temporaly
close to each other are likely to be correlated, and therefore,
should be coalesced into one event. As a result, we adopt
a lower correlation threshold for shorter intervals between
subsequent records. On the other hand, two records that are
far apart from each other should only be considered correlated
when the semantic correlation between them is high, which
suggests that we should adopt a higher threshold for events
with larger intervals from their preceding events.

In order to develop suitable threshold values, we have
partitioned the data sets into two halves, the first half being
training data while the second half being test data. On the
training data, we have applied different correlation coefficient
and interval pairs, and chosen the following values which have
produced similar results as those from STF:

1 if T e [20, c0)
0.9 dseif T € [10, 20)

) 08 dseif T €[5, 10)
Con=9 07 dsifTe[l5 @)

0.0 eseif T € [05, 1)

—1.0 dseif T € [0, 0.5)

where T denotes the interval between the current record and
the previous record, and the time unit is a minute. Equation 2
specifies correlation coefficient threshold values for different

intervals. For example, if the gap between the current record
and the previous record, 7', is greater than or equa to 20
minutes, then the current record will be kept in the result
log if the semantic correlation between it and its previous
record is less than or equa to 1.0. (Of course, since 1.0 is
the maximum correlation coefficient, al the events that occur
within a window longer than 20 minutes after their preceding
events will be kept.) As another example, Equation 2 specifies
that if 7" is less than 30 seconds, then the current event will
be filtered out if the semantic correlation between itself and
its previous event is less than -1.0. In another word, all the
events that occur within 30 seconds after their previous events
will be filtered out.

After we extract the parameters in Equation 2 from the
training data, we have applied them to the test data to examine
whether they are only specific to the training data or they can
be used to the test data as well. Fortunately, we find that these
values are effective for al the data after careful inspection.

Using the chosen parameters, ASF can condense the fatal
failures from 281462 records to 835 records, while STF pro-
duces 998 records after filtering. Though these two numbers
are rather close, we have observed three typical scenarios
in which these two filters yield different results, and that
among these three, two cases demonstrate ASF produces better
filtering results than STF. These four scenarios are listed below
(each record contains the timestamp, job ID, location, and
entry data fields):

o Advantage |I: ASF can efficiently filter out semantically-
correlated records whose descriptions do not exactly
match each other. Records that are semanticaly
correlated should be filtered out (if they are reasonably
close to each other), even though they do not have
identical descriptions. ASF can easily achieve this
because it considers semantic correlation between
events. STF, on the other hand, compares event
descriptions word by word, which can be problematic
because many highly-correlated records do not have
identical descriptions. For example, STF has produced
the following records in its result:

[ST1]2005-11-15-12.07.42.786006 R54-M0-N4-1:J18-U11 ciod:
LOGIN chdir(/xxx/xxx) failed: No such file or directory
[ST2]2005-11-15-12.07.42.858706 R64-M1-N8-1:J18-U11 ciod:
LOGIN chdir(/xxx/xxxx/xx) failed: No such file or directory
[ST3]2005-11-15-12.07.42.779642 R74-M0-NC-1:J18-U11 ciod:

LOGIN chdir(/xxx/xxxx/xxx) failed: No such file or directory

In this example, al three events occur at the same time,
but at different locations, and they correspond to the same
fatal failure that affects al three locations. However, in
the gpatial filtering phase, STF only filters out records if
their descriptions are the same. As aresult, it has kept al
three entries. This problem, however, can be avoided by
ASF because ASF considers semantic correlation instead
of exact word-by-word match. Hence, the result from
ASF only contains one entry:

[AS1]2005-11-15-12.07.42.786006 R54-M0-N4-1:J18-U11
LOGIN chdir(/xxx/xxx) failed: No such file or directory

ciod:



This example emphasizes the importance of semantic
correlations in filtering error logs.

Advantage IlI: ASF can prevent non-correlated events
from being filtered out. The previous example shows that
ASF can filter out semantically correlated events even
when their descriptions are not identical. Similarly, ASF
can aso prevent non-correlated events from being blindly
filtered out just because they are close to each other. This
is because STF, in its temporal filtering phase, simply
treats all the events that are more than 20 minutes apart as
unique while all the events that are less than 20 minutes
apart as redundant. Compared to STF, ASF employs a
much more sophisticated mechanism, which not only
exploits correlation coefficient between two events, and
the threshold for the correlation coefficient also adapts
to the gap between the events. As a result, if the gap
between two events (from the same location) is less than
20 minutes, STF will filter out the second event, but ASF
will only do so if their correlation coefficient is above a
ceratin level.

As an example, ASF has produced the following se-
guence:

[AS1]2005-09-06-08.45.57.171235 R62-MO0-NC-:J18-U11
LOGIN chdir(/home/xxx/xx/run) failed: Permission denied

[AS2] 2005-09-06-08.49.34.442856 R62-M0-NC-1:J18-U11
ciod: Error loading “/home/XxxxX/Xxx/Xxxx/xxxx": program image too big,
1663615088 > 532152320

ciod:

In the above sequence, ASF chooses to keep both records
because the semantic correlation between them is less
than 0.0, and according to parameters in Equation 2, they
are unique events. On the other hand, STF condenses the
same example scenario to the only entry because the gap
between these two events is 4 minutes:

[ST1]2005-09-06-08.45.57.171235 R62-M0-NC-1:J18-U11
LOGIN chdir(/home/xxx/xx/run) failed: Permission denied

ciod:

Comparing the results produced by both filters, we can
easily tell that both entries need to be kept because each
corresponds to a different problem in the system.
Disadvantage: ASF may filter out unique events that
occur with 30 seconds from each other. According to
Equation 2, ASF filters out events when they occur within
30 seconds of each other. Though in most cases, events
that are so close to each other are highly correlated, there
are some rare cases where different types events may
take place at the same time, e.g. a memory failure and a
network failure occurring at the sametime. STF can avoid
such problems by categorizing failures before filtering.
For example, STF has produced the following sequence
of records:

[ST1]2005-08-05-09.11.35.447278
chine check interrupt

[ST2]2005-08-05-09.11.59.393092 R54-M1-N8-1:J18-U01
Error reading message prefix after LOAD_MESSAGE on CioStream socket to

XXX XX XX XXX XXXXX: Link has been severed

R33-M1-NC-C:J13-U11 ma-

ciod:

Info Warning Severe

before filtering 1,367,531 17,121 15,749
after filtering 11,044 343 148
compression ratio 0.008 0.02 0.009
Error Failure Fatal

before filtering 109,048 1,708 281,441
after filtering 146 53 1,147
compression ratio 0.001 0.03 0.004

TABLE |

THE NUMBER OF EVENTS AT ALL SEVERITY LEVELS BEFORE AND AFTER
FILTERING BY ASF.

Since these two failures, one being memory failure and
the other application /O failure, occur within 24 seconds
from each other, ASF compresses them into one entry:

[ST1]2005-08-05-09.11.35.447278 R33-M1-NC-C:J13-U11 ma-

chine check interrupt

Fortunately, this problem of ASF does not affect the
filtering results much because the likelihood of having
two failures within 30 seconds is very low. In fact, we
have checked the log carefully, and found that the above
example is the only case where two distinct events occur
so close to each other. Even in such cases, the problem
will be further aleviated by the fact that the production
Blue Gene/L usualy runs one job at a time, which spans
all the processors of that machine. As aresult, the adverse
effect of compressing failures that occur at the same time
is negligible because they hit the same job anyway.

B. The Blue Gene/L RAS Event Analysis

In addition to filtering fatal events, it is also equally impor-
tant to filter other non-fatal events, since such information can
depict a global picture about how warnings evolve into fatal
failures, or about how a fatal failure is captured by different
levels of logging mechanisms. STF, however, cannot be used
to filter non-fatal events due to its complexity, especialy
when the number of non-fatal events (1,172,766 in our case)
is substantially larger than that of fatal events (281,462).
Fortunately, this void can be filled by the introduction of ASF,
which involves much less overhead and can thus yield an
automatic execution.

Table | summarizes the filtering results for events at all
severity levels. These numbers show that ASF is quite effective
in filtering al types of events, achieving compression ratios
below 3% (many compression ratios are below 1%). After
filtering events of all severity levels, we can next merge them
in the temporal order, and study how lower-severity events
evolve to a FAILURE or FATAL event, which can terminate
job executions and cause machine reboots. We would note
that, the investigation of detailed rules about what non-fatal
events will lead to fatal failures, and in what fashion, is well
beyond the scope of this paper. In this paper, we argue that
such studies are made possible by the introduction of ASF.

After merging events with different severity levels, we
observe that they form natural “clusters’ consisting of mutiple
non-fatal events and one or more fatal events following them.
These clusters clearly show that how events evolve in their



facility severity timestamp location entry data

CMCS INFO 2005-11-07-08.40.12.867033 - Starting SystemController UNKNOWN_LOCATION

HARDWARE  WARNING  2005-11-07-08.40.48.975133  R63-MO EndServiceAction is restarting the NodeCards in midplane R63-MO as part
of Service Action 541

DISCOVERY  WARNING  2005-11-07-08.42.07.610916 = R63-M0-N6  Node card is not fully functional

DISCOVERY  SEVERE 2005-11-07-08.42.07.769056 R63-M0-N6  Can not get assembly information for node card

DISCOVERY  ERROR 2005-11-07-08.42.07.797900  R63-MO-N6  Node card status: no ALERTs are active. Clock Mode is Low. Clock
Select is Midplane. Phy JTAG Reset is asserted. ASIC JTAG Reset is
asserted. Temperature Mask is not active. No temperature error. Temperature
Limit Error Latch is clear. PGOOD IS NOT ASSERTED. PGOOD ERROR
LATCH IS ACTIVE. MPGOOD IS NOT OK. MPGOOD ERROR LATCH
IS ACTIVE. The 2.5 volt rail is OK. The 1.5 volt rail is OK.

HARDWARE  SEVERE 2005-11-07-12.28.05.800333  R63-M0-L2  LinkCard power module U58 is not accessible

MONITOR FAILURE 2005-11-07-14.11.44.893548  R63-M0-L2 No power module U58 found found on link card

HARDWARE  SEVERE 2005-11-07-14.38.38.623219 R63-MO0-L2 LinkCard power module U58 is not accessible

TABLE Il

AN EXAMPLE EVENT SEQUENCE THAT REVEALS HOW INFO EVENTS EVOLVE INTO FAILURE EVENTS.

severity. An example cluster is shown in Table Il. This
sequence starts with an INFO event that informs the system
controller was starting. Thirty seconds later, al the node cards
on midplane R63-MO were restarted, as suggested in the
following WARNING event, and another two minutes later,
another WARNING message points out that one of the node
cards on that midplane, R63-M0-N6, was not fully functional.
At amost the same time, a SEVERE event and an ERROR
event were recorded, which give more detailed information
about the node card malfunction. The SEVERE event reports
that the assembly information could not be obtained for the
same node card, and the ERROR event reports several major
status parameters of the node card, such as “PGOOD is not
asserted”, “MPGOOD is not OK”, etc. About 4 hours later,
a SEVERE event reports that one of the link cards' power
module U58 was not accessible from the same midplane, and
about 2 hours later, the power module U58 was reported totally
un-found by a FAILURE event. After the FAILURE event, the
midplane needs to be repaired by a system administrator before
it can be used again.

The ability to locate such sequences is important for
studying failure behavior and predicting failures. This was
impossible without a good filtering tool. In our example above,
there are only 8 records, but they correspond to a much longer
sequence in the raw logs, with 572 records. We would note
that, it is very difficult, if not at all impossible, to keep track
of event occurrences from a 572-entry sequence.

V. RELATED WORK

Collection and filtering of failure logs has been examined
in the context of small-scale systems. For example, Lin and
Siewiorek [13] found that error logs usually consist of more
than one failure process, making it imperative to collect these
logs over extended periods of time. In [3], Buckley et a.
made recommendations about how to monitor events and
create logs by using one of the largest data sets at that time,
comprising 2.35 million events from a VAX/VMS system
with 193 processors. They pointed out that data sets with
poor quality are not very helpful, and can lead to wrong
conclusions. Their findings reiterated several important issues
in this area, namely, lack of information in the logs (e.g.
power outages), errors in the monitoring system (e.g. in the
timestamps), and the difficulty of parsing and collecting useful

patterns. It has also been recognized [4], [6], [9], [22] that
it is critical to coaesce related events since faults propagate
in the time and error detection domain. The tupling concept
developed by Tsao [22] groups closely related events, and
is a method of organizing the information in the log into a
hierarchical structure to possibly compress failure logs [4].

Filtering raw logs becomes more important for larger par-
allel and distributed systems. In our previous study [17], we
studied the failure behavior for a large-scale heterogeneous
AIX cluster involving 400 nodes over a 1.5 year period. In
that study, we used a simple threshol ding technique to filter out
redundant entries, and the threshold was 5 minutes. In another
previous study [12], we developed a spatio-tempora tool
(STF) to filter logs collected from a Blue Gene/L prototype
consisting of 8192 processors. STF was the first filtering tool
that could deal with large failure data sets, and is used as the
baseline technique in this exercise.

V1. CONCLUSIONS AND FUTURE WORK

Parallel system event/failure logging in production envi-
ronments has widespread applicability. It can be used to
obtain valuable information from the field on hardware and
software failures, which can help designers make hardware and
software revisions. It can be used by system administrators for
diagnosing problems in the machine, scheduling maintenance
and down-times. Finally, it can be used to enhance fault
resilience and tolerance abilities of the runtime system for
tuning checkpointing frequencies and locations, parallel job
scheduling, etc. With fine-grain event logging, the volume of
data that is accumulated can become unwieldy over extended
periods of time (months/years), and across thousands of nodes.
Further, the idiosyncracies of logging mechanisms can lead to
multiple records of the same events, and these need to be
cleaned up in order to be accurate for subsequent analysis.

In this paper, we have presented an Adaptive Semantic
Filtering (ASF) method, which exploits the semantic corre-
lation as well as the temporal information between events
to determine whether they are redundant. The ASF method
involves three steps: first building a keyword dictionary, then
computing the correlation between events, and finally choosing
appropriate correlation thresholds based on the temporal gap
between events. Compared to existing filtering tools, the
proposed filter (1) produces more accurate results, (2) incurs



less overhead, and (3) avoids frequent human intervention.
We have validated the design of the filter using the failure
logs collected from Blue Gene/L, which consists of 128K
processors, and is the fastest supercomputer on the Top 500
Supercomputers List, over a period of 98 days.

Fault-tolerance for large-scale systems requires long-term
efforts from the entire community, and this study only serves
as a starting point towards this goal. There are several in-
teresting possihilities for future work, and we are particularly
interested in investigating online statistical analysis of this data
for predictability. Also, we are planning to use thisinformation
for enhancing the runtime fault-tolerance mechanisms such as
checkpointing and job scheduling.
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