A Flexible Resource Management Architecture for the Blue Gene/P
Supercomputer

Sam Miller, Mark Megerian, Paul Allen, Tom Budnik
IBM Systems and Technology Group, Rochester, MN
Email: {samjmill, megerian, pvallen, tbudnik } @us.ibm.com

Abstract

Blue Gene®/P is a massively parallel supercomputer in-
tended as the successor to Blue Gene/L. It leverages much of
the existing architecture of its predecessor to provide scal-
ability up to a petaflop of peak computing power. The re-
source management software for such a large parallel sys-
tem faces several challenges, including system fragmenta-
tion due to partitioning, presenting resource usage infor-
mation using a polling or event driven model, and acting as
a barrier between external resource management systems
and the Blue Gene/P core.

This paper describes how the Blue Gene/P resource
management architecture is extremely flexible by providing
multiple methodologies for obtaining resource usage infor-
mation to make scheduling decisions. Three distinctly sepa-
rate resource management services will be described. First,
the Bridge API, a full-featured API suitable for fine tuning
scheduling and allocation decisions. Second, a light-weight
Allocator API for allocating resources without substantial
development costs. And lastly, configuring the system into
static partitions. Job scheduling strategies utilizing each of
the methods will be discussed.

1 Introduction

Blue Gene/P (BG/P) is a petaflop scale system, and
the successor to Blue Gene/L. (BG/L), which is described
in detail in [6]. The main engine of this system is the
compute node, where the envisioned petaflop system will
contain 73,728 compute nodes. These nodes are inter-
connected via several networks, most notably a three-
dimensional (72x32x32 node) torus. Each compute node
runs a lightweight kernel and executes in either SMP or vir-
tual node mode. A user’s job runs on a group of compute
nodes called a partition. While running a job against the full

1-4244-0910-1/07/$20.00 (©2007 IEEE.

machine is possible, and certainly desirable for certain types
of applications, the real strength of the machine is that it can
be subdivided, or “partitioned” into many smaller blocks of
nodes.

The resource management architecture is responsible for
presenting the BG/P usage information to external job man-
agement systems, which use the information to allocate par-
titions and schedule jobs to optimally utilize the machine’s
resources. Such an architecture faces several challenges due
to the large machine size. Foremost, due to its toroidal in-
terconnect, the system cannot be viewed as a simple fully-
connected set of nodes like a traditional cluster. This im-
poses certain restrictions on the job management software.
Most notably, a BG/P system is restricted to partitioning
its resources into groups of three-dimensional rectangular
sets of contiguous nodes. Other supercomputers utilizing a
toroidal interconnection have experienced significant frag-
mentation due to such restrictions, often resulting in low
system utilization and lengthy job queues [3].

Another problem faced by the resource management ar-
chitecture is supporting a polling or event driven model
for providing the usage information mentioned previously.
A polling model requires users of the API to periodically
obtain a snapshot of the BG/P system state, then make
scheduling decisions based on what has changed since the
last polling event. In an event driven, or real-time model,
users register a handler to be called when an event occurs,
such as a partition changing state, or a job completing.
These models are discussed in detail in Section 3.1.

The improved resource management architecture is just
one of the many new features in BG/P compared to BG/L.
The remainder of the changes are outside the scope of this
paper, and will be described in detail in the future.

The rest of this paper is organized as follows. Section
2 explains resource management in the context of a BG/P
system. Section 3 further explains partition management,
and Section 4 explains job management. Section 5 presents
various scheduling and job management strategies using the
resource management architecture. Section 6 presents some
related works, especially those discussing resource manage-

ment in BG/L. Lastly, Section 7 concludes this paper.

2 Resource Management

Resource management on BG/P is a broad term. It en-
compasses managing entities such as jobs, compute nodes,
partitions, and network switches. Many of these concepts
have remained unchanged from BG/L, while some have
new features such as the addition of smaller partition sizes
shown in Table 1. Partitions containing more than 512
nodes, and configuring their switches are not particularly
interesting for the scope of this paper since they remain
largely unchanged from BG/L. They have also been exten-
sively described in previous works [2].

Table 1. Partition size support

] Size | Compute Nodes | Dimensions |
Midplane? 512 8x8x8
Half midplane' 256 8x4x8
Quadrant® 128 4x4x8
Two node cards' 64 4x4x4
Node Card’ 32 4x4x2
Half node card’ 16 4x2x2

Resource Managers (Cobalt, LoadLeveler, etc.)

mpirun Allocator API

Bridge API
Real-time API

Database Abstraction Layer

Figure 1. Resource Management API layers

Partition management consists of carving up the entire
BG/P machine into smaller chunks of rectangular and con-
tiguous sets of compute nodes. Creating a partition is a nec-
essary step which must be done before a job can run. Figure
1 shows the various layers of the resource management ar-
chitecture, each of which is explained in detail in Sections
3 and 4.

A brief description of common BG/P entities is included
in the Appendix at the end of this paper.

I'New in BG/P
2Supported on both BG/L and BG/P

3 Partition Management

A partition is the central resource entity when dealing
with the BG/P resource management system. A partition is
a group of nodes allocated to a job. Partitions are physically
(electronically) isolated from each other (i.e., messages can-
not flow outside an allocated partition). A partition can have
the topology of a mesh or a torus. Partitions that are a torus
will necessarily be a combination of one or more midplanes.
Partitions that are a mesh can be groups of midplanes, but
can also be smaller than a midplane (sub-midplane). The
term “block” is sometimes used for partition, and the two
terms are synonyms within the context of this paper.

3.1 Bridge API

The Bridge APIs provide extensive information regard-
ing the configuration and status of the physical components
(midplanes, node cards, wires, switches, etc.) of BG/P.
The Bridge APIs also includes a set of functions that al-
low adding, removing, modifying, or retrieving information
about transient entities, such as jobs and partitions. The ac-
tual configuration and status data is stored in a database and
the Bridge APIs provide the abstract layer that masks the
low-level database implementation.

The Bridge APIs can be further subsetted into the fol-
lowing categories:

Resource Manager APIs

The Resource Manager APIs includes a “get” function to
retrieve the latest snapshot of the entire BG/P system. This
function supplies all the required configuration and status
information to allow partition allocation. The information is
represented by three lists: a list of midplanes, a list of wires,
and a list of switches. A list of node cards can be obtained as
well with a “get” node cards function. The set of Resource
Manager APIs is rounded out with additional functions for
adding, removing, changing and retrieving both job and par-
tition entities.

Job Manager APIs

The Job Manager APIs provide the capability to load,
start, signal or cancel a job. Interfaces are provided for
debuggers to attach to a job as well. Some of the APIs
provided such as starting, signaling or canceling a job are
asynchronous and a job scheduler will have to poll a job to
determine the current state information.

Partition Manager APIs

The Partition Manager APIs provide the mechanism to
boot and free a partition. These APIs are asynchronous and

a job scheduler will have to poll a partition to determine the
current state information.

3.2 Real-time Notification APIs

On BG/P, hardware (midplanes, switches, or node cards),
jobs, and partitions can go through state transitions. These
transitions are shown in the following figures. Figure 2
shows state transitions for hardware, Figure 3 shows state
transitions for jobs, Figure 4 shows state transitions for par-

titions.
Available .

Figure 2. Hardware state transitions

Add job Start job
Queued
|
v L
v
Terminated |&--------

fffffffff » Changed by control system
———» Changed by implicit call

Service
Action

i
Error

7 Cancel job
Termination

Figure 3. Job state transitions

With BG/L the only way to obtain that latest configura-
tion and status for the machine is to continuously poll for
information using the somewhat heavyweight “get” BG/L
function that returns the system snapshot. Typically re-
source managers will do polling every few minutes to see
if any hardware has transitioned states (for example from
“available” to “error”) . Also when waiting for a partition
to boot or job to end the only way to determine the status
is by constant polling using a Bridge API that returns the
latest state information. For example once mpirun starts a
job it will poll the job status every 5 seconds to determine if
the job has ended.

With BG/P an alternative to polling status for hardware,
jobs and partitions will be available. The new real-time
notification APIs will allow job schedulers to track state

Add partition "
Create partition

Configuring
Remove partition

Destroy partition Btzol error "

| '
H L 1
'

!
Boot process
taking place

I
i
Cleanup process
taking place

v

Ready
Destroy partition

fffffffff » Changed by control system
Changed by implicit call

Figure 4. Partition state transitions

changes as they occur. The real-time APIs can be used
in conjunction with the existing Bridge APIs to provide an
efficient lightweight resource management system. A job
scheduler will be able to obtain a hardware snapshot of the
BG/P machine using the Bridge APIs and then register with
the real-time notification APIs to receive callbacks when a
state change occurs for hardware as well as when a parti-
tion or job is added, deleted or changes state. The real-time
APIs will allow the caller to filter on the callbacks they want
to receive as well as filter the partition or job they want no-
tifications on. For example a resource manager could reg-
ister to receive notifications only when a specific partition
changes state. The concept of a sequence id is provided in
both the Bridge and Real-time APIs. The sequence id can
be used to compare which state is the most recent. For ex-
ample when getting a full system snapshot the sequence id
for midplane RO0O-MO might be 925. If a hardware failure
occurred on the midplane after the snapshot was taken then
the real-time callback sequence id might be 952 indicating
that the 952 event is more recent.

The combination of Bridge API described in Section 3.1
and the Real-time API provides an extensive set of APIs
for tracking and managing BG/P resources and provides
extreme flexibility with both a polling and an event driven
model for handling state transitions.

3.3 Allocator API

The Bridge APIs provide a full featured interface for re-
source management. The Allocator API provides a simpler
interface for creating partitions. It was developed as a solu-
tion for the resource management developer community for
those who do not want to program to the Bridge APL

The Allocator API attempts to find a set of available re-
sources to match the request for a partition of a given shape
and/or size.

For partitions that are one or more midplanes in size, the

Allocator API for the BG/P system provides the same level
of function and allocation strategy as in the BG/L system.

For sub-midplane sized partitions, the Allocator API for
the BG/P system has an enhanced allocation strategy as
compared to the BG/L system. In the BG/L system, the allo-
cation strategy used by the Allocator API for sub-midplane
partitions is a simple first fit approach. In the BG/P system
this strategy is improved upon to use a best fit, or optimal
strategy. Resource managers requiring a more sophisticated
algorithm are free to use the Bridge API described previ-
ously.

3.3.1 First-fit Allocation of Small Partitions

BG/L allowed sizes for sub-midplane partitions of 128 com-
pute nodes (one quadrant of a midplane) and 32 compute
nodes (a single node card). The allocation strategy used
by the Allocator API in BG/L is a first fit approach. This
approach allows for the possibility of fragmenting the com-
pute nodes to a point where a request for 128 compute nodes
might not be satisfied even though there may be up to 384
available compute nodes.

For example, given a midplane that is completely avail-
able, consider the following requests to allocate resources:

e Allocate 128 compute node partition A
e Allocate 128 compute node partition B
e Allocate 128 compute node partition C
e Allocate 32 compute node partition D

At this point, all but the last three node cards have been
allocated as shown in Figure 5.

NO8

“G” NO9

“G’, N10
NOO “A” 1

G N11
NO1| #A” fl

“C N12
NO2| “A” f

“D N13
NO3| “A” gg

R N14
No4| “B” EE

FR N15
NO5 “Bu E

R
NOG “B!’
NO7 “B"

Figure 5. Node card state after allocating par-
titions A, B, C, and D.

Now consider the next set of requests to free and allocate
resources.

e Free partition C

Allocate 32 compute node partition E
Free partition B
Allocate 32 compute node partition F
Free partition A
Allocate 32 compute node partition G

No08

“6,, NO9
(37
Noo| “G” FRgﬁ Mo
FF N11
No1| FREE ¢E
FR N12
No2. FREE ‘pn
no3| FREE ‘ T
[1] =ti] FR N14
No4| “F Rgﬁ
Nos| FREE s £ M
RE
Nos| FREE F
No7| FREE

Figure 6. Node card state after deallocating
partitions C, B, and A, and allocating parti-
tions E, F, and G using “first fit” allocation.

At this point, only four node cards (a total of 128 com-
pute nodes) are allocated. However, all four quadrants of
the midplane are now partially busy.

A subsequent request for a partition of 128 compute
nodes cannot be satisfied. Even though there are 384 com-
pute nodes (12 node cards) that are free, the midplane has
been fragmented to the point where it cannot satisfy a re-
quest for 128 compute nodes.

3.3.2 Optimal Allocation of Small Partitions

The BG/P Allocator API is enhanced to analyze the current
state of a midplane and find the most optimal set of compute
nodes to allocate. The goal of this analysis is to minimize
the fragmentation of the available compute nodes.

Consider again a midplane in the state shown in Figure
5. Using the optimal allocation strategy employed by BG/P,
the subsequent requests to free C, B, and A and allocate
E, F, and G will result in a state shown in Figure 7. In this
case the midplane is less fragmented than the result from the
“first fit” strategy shown in Figure 6. The midplane is still
able to satisfy allocation requests for any of the supported
small partition sizes.

The Allocator API calculates the “optimality” for all sets
of available compute nodes of a given size. The optimality
is a numeric ranking representing how large a set of free
compute nodes must be subdivided in order to allocate a set

NO8
R
.
Noo| FREE A2
Not| FREE Fﬁﬁg N1t
noz| FREE b |
s FREE o
nos| FREE 7.
nos| FREE 7
nos| FREE
nv7| FREE

Figure 7. Node card state after deallocating
partitions C, B, and A, and allocating parti-
tions E, F, and G using “optimal” allocation.

of compute nodes. An optimality of one (1), indicating the
most optimal allocation, is assigned when an allocation re-
quest does not require subdividing a larger set of compute
nodes. An optimality of two (2) is assigned when an allo-
cation request requires subdividing a set of compute nodes
that is twice the size of the allocation request, and so forth.

Table 2 shows the calculated optimality for the possible
small partition allocation scenarios.

Table 2. Optimality of allocation request
based on the humber of free hodes that must
be subdivided to satisfy the request

Nodes to || Free Nodes Subdivided by Allocation
Allocate || 512 | 256 | 128 | 64 | 32 | None
16 6 5 4 3] 2 1
32 5 4 3 2 | - 1
64 4 3 2 - - 1
128 3 2 - - - 1
256 2 - - - - 1

The BG/P system allows five different small partition
sizes instead of the two sizes supported by BG/L. In sys-
tem environments with a high usage of dynamically al-
located small partitions, the “first fit” allocation strategy
would more quickly fragment the compute node resources.
The optimal allocation strategy will reduce such fragmenta-
tion on the BG/P system.

3.4 Block Builder

The Blue Gene Navigator is a very powerful graphical
interface that allows BG/P system administrators to man-
age the machine using a web browser based console. One
of the many features of the Blue Gene Navigator is a “Block
Builder” function for creating static partitions. The admin-
istrator can see a picture of their hardware (racks and mid-
planes) and click on the hardware that will be contained
in the partition. They can provide the partition name, the
ratio of compute nodes to I/O nodes, and the configura-
tion of either torus or mesh. The block builder then de-
fines the partition in the database, after going through an
extensive validation procedure. It validates that cables ex-
ist to form the selected hardware into a valid rectangle.
For a torus, it validates that there is a complete wrapped
torus in all three dimensions. It even allows the notion of
a “passthrough” midplane whereby the partition will pass
through the switch of a midplane but not use the node on
that midplane. Passthrough is a useful concept that allows
many more partitioning options and can mitigate the effect
of fragmentation. If a midplane along a dimension is in use,
a partition can use the other midplanes along that same line,
passing through the occupied midplane, and still achieve a
torus.

The block builder feature for BG/P also supports the cre-
ation of sub-midplane partitions. The administrator can se-
lect the midplane, then choose the number of nodes within
that midplane from among the supported sizes of 16, 32, 64,
128, and 256. They indicate the partition name, the ratio of
compute nodes to I/O nodes, and the node cards that should
be used.

In both cases of sub-midplane partitions, and partitions
constructed of one or more complete midplanes, the block
builder ensures that there are adequate available I/O nodes
to fulfill the request for I/O node ratio. If, for instance, the
request is for a 1:32 ratio of I/O nodes to compute nodes, but
the machine is populated with an I/O node on every other
node card (1:64 ratio) then the creation of the partition will
fail.

3.5 MMCS

MMCS also makes available several console commands
that can be used to define partitions. One advantage of using
the console commands over the Block Builder GUI is that
they can easily be scripted. This way, an administrator can
build up a set of standard partitions, and at any time they
could clean out any existing partitions, rerun the script, and
they will back to a known state, in terms of defined parti-
tions.

The following five commands are used to create various
partition sizes:

genblock generates a single partition over a single mid-
plane

genblocks generates a partition for each midplane on the
machine

genBPblock generates a partition over a set of midplanes

genfullblock generates a single partition that encompasses
the entire machine

gensmallblock generates a sub-midplane partition

There is no MMCS command that handles the unique
passthrough case. Block Builder, the Bridge APIs, or the
Allocator API must be used to create a partition that handles
passthrough.

4 Job Management

For the scope of this paper, a BG/P job consists of a sin-
gle executable running on each compute node in a partition.
The act of managing jobs is similar to the Linux process
model where each job has a unique identifier used to send
signals. Each job also has standard input, output, and error
associated with it, and returns an exit status upon its com-
pletion. Managing jobs consists of starting, signaling, and
stopping them. Typically these steps take place between
booting and destroying a partition, though it does not have
to since a job will not start until its partition has booted.
Thus a job can be started immediately after its partition is
booted, even though booting of a partition is not an instan-
taneous process. Since each job requires a partition, man-
aging jobs is much easier than managing partitions. Once a
job is started using one of the interfaces described below, it
will run until completion, or until signaled or cancelled.

4.1 mpirun

Mpirun is a utility designed to launch jobs on BG/P. It
can be used in a stand alone fashion by users to launch jobs,
or in a batch mode to launch jobs from a scheduler. Lit-
tle has changed in the external appearance of mpirun from
BG/L. As described in [1], it acts as a proxy, or shadow
of the job executing on the BG/P core. This means when
input is sent to mpirun by the user, it is routed to the job
executing on the BG/P core appropriately. Similarly, stan-
dard output and error generated from the job is routed back
to mpirun. Mpriun has the capability to allocate and boot
partitions when supplied with the appropriate size or shape
arguments, as well as to use existing partitions with or with-
out booting or freeing them. These features allow it to be
used in a variety of scheduling strategies and environments,
which are described in detail in Section 5.

4.2 MMCS

MMCS has the ability to run jobs directly against booted
partitions. Generally, users will go through a scheduler or
some coordinated job submission, and use mpirun within
that framework, but for an ad hoc jobs, or for doing testing,
the MMCS console can be used for job submission. Once a
partition is in the Initialized state, the following commands
can be used from an MMCS console:

associatejob associate a job with a partition, when create-
job was used to create the job entry, but the partition id
was omitted

createjob create a job, providing an executable, a working
directory, and optionally, a partition id, but don’t start
the job

getjobinfo get information about a job that is either run-
ning or queued

killjob kill a running job

setjobargs set arguments and environment variables for a
job that has been created but not yet started

startjob start a job that was created

submitjob create and start a job in one step

5 Scheduling Strategies

Using combinations of the resource management inter-
faces presented in Section 2, 3, and 4, several strategies
exist to effectively schedule jobs on BG/P. The resource
management architecture described previously does not ex-
ecute inside the BG/P core, instead it executes solely on the
front-end and service nodes. Due to this feature, the cen-
tral scheduling logic of many resource management sys-
tems can be retained without modifications. From a high
level view, the logic used by these systems can be placed
into two distinctly separate categories: static partitioning
and dynamic partitioning. Static partitioning schemes are
easier to implement since they consist of a system adminis-
trator setting up predefined partition sizes, and the scheduler
matching incoming job requirements to the partition sizes as
they are available. Dynamic partition schemes start with a
BG/P system that is completely available. Partitions are cre-
ated on demand as incoming jobs arrive, and destroyed as
the jobs end. Such a scheme requires more work since the
scheduling system will need to use either the Bridge API or
the Allocator API to create partitions.

In either partitioning scheme, mpirun or the Bridge API
can be used to start and stop jobs, thereby forming a
scheduling strategy. Each strategy has benefits such as ease
of implementation, and drawbacks such as fragmentation.
Each strategy is described in detail below.

5.1 Dynamic partitioning using Allocator
API and mpirun

The Allocator API, described in Section 3.3, offers an
easy to implement system for allocating various sizes and
shapes of partitions without the extensive development ef-
fort required to implement and utilize all the features pro-
vided by the Bridge API. In this scheme, a resource man-
ager would use the Allocator API to first create and boot
the partition, then call mpirun to run the job, and lastly free
and remove the partition once the job completes.

5.2 Static partitioning using Bridge API
and mpirun

In a static partitioned environment, the customer will
predefine partitions to be used by the central resource man-
ager. Typically these are overlapping partitions. For ex-
ample, a two rack BG/P system could have static partitions
defined for the entire system (4 midplanes), half the system
(2 midplanes), each midplane, and sub-midplanes. In this
scheme, a resource manager would first match job require-
ments to an available predefined partition size. Next it boots
the partition, then calls mpirun to run the job. Once the job
has completed, the resource manager could deallocate the
partition depending on the scheduling algorithm. In some
cases, a customer may prefer to leave partitions in a con-
stantly booted state, and simply match incoming jobs to the
available partition sizes.

5.3 Dynamic partitioning using Bridge
API and mpirun

This scheme provides the most efficient and flexible en-
vironment as a scheduling strategy for optimal system uti-
lization. However, it requires a great deal of effort to fully
implement the features provided by the Bridge API to prop-
erly allocate multi-midplane partitions. In such a scheme,
the resource manager uses the Bridge APIs to determine
available resources based on job requirements using its own
specialized allocation algorithm (best fit, first fit, backfill,
migration, etc). Next, the resource manager creates and al-
locates a partition, then uses mpirun to run the job. Once
the job completes, the partition is deallocated. With this
scheme, switches can be utilized in a passthrough environ-
ment to mitigate fragmentation.

5.4 Static partitioning and mpirun

Allocating partitions directly using MMCS or block
builder is another scheduling strategy that can be utilized
in certain specialized environments. In this situation, a cen-
tralized resource manager is not utilized. Such a system is

known as a first come first serve, or honor system, since
nothing prevents users from attempting to access the same
resources concurrently. While this scheme is not strictly a
scheduling policy, but rather a lack of scheduling policy, it
exemplifies how the BG/P resource management architec-
ture is flexible enough to allow a scheme with almost no
restrictions present.

6 Related Works

The authors of [1] describe the job management archi-
tecture of BG/L in detail, concluding that it is capable of
supporting job management systems developed internally
at IBM such as LoadLeveler, as well as third party systems
such as SLURM [4]. They define three openness charac-
teristics. First, the job management system runs outside
the BG/L core. Secondly, the job management logic can
be retained without modification. Lastly, multiple schedul-
ing models are supported by presenting raw resources using
the Bridge API. These three characteristics allow resource
management systems to be easily ported to the BG/L envi-
ronment.

In [5] the authors describe various job scheduling algo-
rithms for BG/L. Including a first come first serve (FCFS),
a FCFS with backfill, a FCFS with migration, and lastly
a FCFS with backfill and migration. They concluded that
while scheduling algorithms with migration strategies re-
sulted in lower system fragmentation under a workload of
small jobs, they require more overhead than backfilling
strategies.

7 Conclusion

This paper presented the resource management architec-
ture for the BG/P supercomputer and showed how it is flex-
ible enough to support a wide variety of resource manage-
ment systems and their scheduling strategies. Both static
and dynamic partition allocation strategies can be combined
with job management strategies using the Bridge API or
mpirun to form a unique scheduling strategy suitable for al-
most any environment. The BG/P resource management ar-
chitecture features a number of improvements over its BG/L
counterpart. Most notably, the addition of a Real-Time API,
as well as an improved Allocator API to reduce system frag-
mentation during small partition allocation.

Blue Gene/P Glossary

The BG/P machine is composed of the following entities:
compute nodes, I/O nodes, node cards, service node, front
end nodes, base partitions, switches, and MMCS. Each en-
tity is briefly summarized below.

Compute Node A compute node is also referred to as a
c-node. This is a system-on-chip node that supports
two execution modes, virtual node mode and SMP
mode. All the c-nodes are interconnected in a three-
dimensional toroidal pattern. Each c-node has a unique
address and location in the three-dimensional toroidal
space. Compute nodes execute the jobs’ tasks while
running a minimal custom operating system called a
compute node kernel (CNK) to provide very small
overhead.

I/0 Node An I/O node is a special node that connects the
compute nodes to the outside world. I/O nodes allow
processes that are executing in the compute nodes to
perform I/O operations (e.g., accessing files) and to
communicate with the job management system. Each
I/O node serves anywhere from 16 to 128 c-nodes. An
I/O node and its associated c-nodes are called a p-set.
I/O nodes run Linux.

Node Card A node card contains 32 compute nodes and
up to 2 I/O nodes, for a 1:16 ratio of I/O nodes to com-
pute nodes. Sixteen node cards form a midplane, and
2 midplanes form a BG/P rack.

Service Node (SN) A service node is dedicated hardware
that runs software to control and manage the system.
The Service node runs management software compo-
nents including the job management system. Persis-
tent storage of hardware information and state is main-
tained on the service node in a DB2 database.

Front End Node (FEN) Front end nodes are machines
from which users and administrators interact with
BG/P. Applications are compiled on and submitted for
execution in the BG/P core from FEN. User interac-
tions with applications, including debugging, are also
performed from the FEN.

Base Partition (BP) A base partition (midplane) is a group
of c-nodes connected in a 3D mesh or torus pattern
and their controlling I/O nodes. A base partition is
the minimal allocation unit for which a torus can be
achieved. For BG/P, the base partition is a midplane
(512 nodes). BPs can be combined together to form
larger partitions, and in most cases still achieve a torus.
Sub-midplane partitions are supported, but these will
always be a mesh, meaning that not all nodes have 6
neighbors.

Switches A base partition (midplane) has switches that
complete the connections between the nodes and the
data cables. This is contained within the link chip
hardware on each midplane. To some extent, the con-
trol system software has abstracted the link chips on a

midplane to single X, Y, and Z switches for each mid-
plane. A switch can wrap back to the midplane when
the dimension is one, or the switch can connect to data
cables (wires) when the dimension contains more than
one midplane.

Partition A partition is a group of nodes allocated to a job.
A partition is created on demand to execute a job and is
normally destroyed when the job is terminated. Parti-
tions are physically (electronically) isolated from each
other (i.e., messages cannot flow outside an allocated
partition). A partition can have the topology of a mesh
or a torus. Partitions that are a torus will necessar-
ily be a combination of one or more base partitions.
Partitions that are a mesh can be groups of base par-
titions, but can also be smaller than a base partition
(sub-midplane). The term “block” is sometimes used
for partition, and the two terms are synonyms.

MMCS The Midplane Monitoring and Control System
(MMCS), is the main control system component that
serves as the interface to the BG/P machine. It contains
persistent storage with information (configuration and
status) on the entire machine. It also provides various
services to perform actions on the BG/P (e.g., to launch
a job)

References

[1] Y. Aridor, T. Domany, O. Goldshmidt, Y. Kliteynik,
E. Shmueli, and J. E. Moreira. Open job management archi-
tecture for the BlueGene/L supercomputer. In Job Scheduling
Strategies for Parallel Processing, 11th International Work-
shop, pages 91-107, Cambridge, Massachusetts, June 2005.

[2] Y. Aridor, T. Domany, O. Goldshmidt, J. E. Moreira, and
E. Shmueli. Resource allocation and utilization in the Blue-
Gene/L supercomputer. IBM Journal of Research and Devel-
opment, 49(2/3):425-436, 2005.

[3] D. G. Feitelson and M. A. Jette. Improved utilization and
responsiveness with gang scheduling. In Job Scheduling
Strategies for Parallel Processing, 3rd International Work-
shop, pages 238-261, Geneva, Switzerland, Apr. 1997.

[4] M. A. Jette, A. B. Yoo, and M. Grondona. SLURM: Simple
linux utility for resource management. Job Scheduling Strate-
gies for Parallel Processing, 9:37-51, 2003.

[5] E. Krevat, J. Castafios, and J. E. Moreira. Job scheduling
for the BlueGene/L system. In Job Scheduling Strategies for
Parallel Processing, 8th International Workshop, pages 38—
54, Edinburgh, Scotland, UK, July 2002.

[6] N.R. Adiga et al. An overview of the BlueGene/L supercom-
puter. In Supercomputing, pages 1-22, Baltimore, Maryland,
Nov. 2002.

