
Base Operating System Provisioning and Bringup for a Commercial
Supercomputer

David Daly, Jong Hyuk Choi, José E. Moreira, and Amos Waterland
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10958, U.S.A.
{dmdaly, jongchoi, jmoreira, apw}@us.ibm.com

Abstract

Commercial Scale-Out is a new research project at IBM
Research. Its main goal is to investigate and develop tech-
nologies for the use of large scale parallelism in commer-
cial applications, eventually leading to a commercial su-
percomputer. The project leverages and explores the fea-
tures of IBM’s BladeCenter family of products. A signif-
icant challenge in using a large cluster of servers is the
installation and provisioning of the base operating system
in those servers. Compounding this problem is the issue of
maintenance of the software image in each server after its
provisioning. This paper describes the system we developed
to manage the installation, provisioning, and maintenance
process for a cluster of blades, providing a base level of
functionality to be used by higher level management tools.
The system leverages the management facilitation features
of BladeCenter, and exploits the network and storage archi-
tecture of the Commercial Scale-Out prototype cluster. It
uses a single shared root filesystem image to reduce man-
agement complexity, and completely automates the process
of bringing a new blade into the cluster upon its insertion
into a BladeCenter chassis.

1 Introduction

As individual servers continue to get less expensive, the
number of (physical and virtual) servers used in a partic-
ular environment has grown. The result is more physical
and virtual machines to set up, install and maintain. This is
taken to an extreme in IBM Research’s Commercial Scale-
Out (CSO) project. The project focuses on efficiently and
effectively deploying hundreds of blade servers to be used
as a commercial supercomputer.

A naı̈ve approach to provisioning a scale-out system

1-4244-0910-1/07/$20.00 c©2007 IEEE.

leads to management cost that is at least linear in the number
of servers. The cost can be made much worse than linear if
each server has its own configuration. Operating system in-
stallation and configuration for a single physical server cur-
rently takes hours to complete if done manually. A number
of tools exist to simplify this process, either by automating
the installation process or by cloning a good install. Never-
theless, in standard practice the time to install and configure
a server remains at least linear in the number of servers.

Examples of automating the install process include the
PXE protocol [3] developed by Intel to remotely install and
run computers, Red Hat’s network install process [2], or
IBM Director’s Remote Deployment Manager [1]. Simi-
larly, a known good image can be cloned, using tools such
as Norton Ghost. Both simplify the installation of a blade,
but still require the entire image be installed on the local
storage. As a result, each server has its own boot image,
which has to be patched and updated separately, or rein-
stalled. Additionally, the individual images may diverge as
users change settings on the servers.

There are also tools for managing the provisioning of
nodes in supercomputers, such as the system management
tools for Blue Gene [4], the tools packages [12] developed
by national labs for large Linux clusters, the OSCAR cluster
installer, and the single disk design [8] at Los Alamos.

Although configuring and booting a cluster is not a new
problem and has been solved many different ways, none of
the above tools met the needs of our cluster topology, hard-
ware specifications, network layout, and hypervisor-based
approach with a shared read/only root filesystem. We would
have preferred to extend an existing solution, but did not
find any that were generic enough. However, much of the
work we did for this project either is or will be separated
into a scheme in which the logical operations, such as a
new machine joining the cluster, are abstracted from the
specifics of the hardware control mechanisms, such as ini-
tializing a specific blade model via the BladeCenter telnet
interface.

One of our goals in the Commercial Scale-Out project

was to develop “lights out” provisioning of physical servers
with assurance that the configuration of all the servers re-
mained homogeneous. As such, we developed a completely
automated system to provision blades with a stock boot im-
age and bring them into the cluster. Combined with the vir-
tual server provisioning for the workload specific system
images, the physical server provisioning technology devel-
oped in the CSO project improves the scalability and RAS
of the scale out computing infrastructure.

The rest of this paper is organized as follows. Section 2
gives a quick overview of our CSO cluster configuration.
Section 3 describes our solution for provisioning physical
machines in that cluster. Section 4 presents some measure-
ments of provisioning time and Section 5 discusses future
work. Finally, Section 6 presents our conclusions.

2 Commercial Scale-Out

The CSO cluster is our reference implementation of a
scale out architecture. It is based on the IBM BladeCen-
ter [7] family of products. The basic building block of the
cluster is a BladeCenter-H (BC-H) chassis. We couple each
BC-H chassis with one DS4100 storage controller with a
2-Gbit/s Fiber Channel. The chassis themselves are inter-
connected through two nearest-neighbor networks. One of
the networks is a 4-Gbit/s Fiber Channel network and the
other is a 1-Gbit/s Ethernet network. The chassis intercon-
nections are shown in Figure 1.

The CSO cluster has a modular architecture consisting of
eight BladeCenter-H chassis, each containing fourteen JS21
blades for 112 blades in total, and eight DS4100 storage
subsystems. Each DS4100 consists of dual redundant RAID
controllers and 14 SATA drives of 400GB each.

Work is executed on the Commercial Scale-Out clus-
ter by scheduling virtual machines on blades in the clus-
ter. An application may require several virtual machines
spread across the cluster. A number of tools exist and are
being developed to handle the complete life-cycle of vir-
tual machines in the cluster, including: creation, destruc-
tion, scheduling, migration, fail-over. However, those tools
require that a certain software stack exist on the the phys-
ical machines. In our CSO cluster, that stack includes the
Xen hypervisor [5] plus a supervisory Linux Dom0 virtual
machine image. The Dom0 image must support the creation
and management of other virtual machines, as well as basic
system services.

3 The Provisioning Solution for CSO

In the Commercial Scale Out project, we developed an
automated approach to provisioning our physical servers
with the necessary software stack. This approach is based

on three design points: (1) make virtualization pervasive on
the blades (2) share a single read-only root filesystem across
each Dom0 (3) exploit the remote control features of Blade-
Center.

This section describes the solution we implemented for
provisioning physical blades in the CSO cluster. We dis-
cuss the firmware we flash on the blades, and describe the
approach we took to provide a single root file system image
to all the blades, thus guaranteeing homogeneity. We also
discuss how we used features of the BladeCenter manage-
ment module to exercise blade control. We then describe
the process we follow to boot a blade. We explain how we
put all the components together in order to completely au-
tomate an installation of a new blade, and we also discuss
how we handle error conditions.

For conciseness and brevity we discuss only the pro-
cedure for the JS21 Power based blades. However, our
tool can detect the architecture of a blade and act appro-
priately based on that information. The tool also supports
x86 blades using PXE boot instead of netboot.

3.1 Pervasive Virtualization

One of the key elements of our automation strategy is
to ensure that each blade has a virtualization stack on it.
Because we are provisioning blades that may have just had
their shrinkwrap removed, our provisioning process must be
able to remove the default hypervisor that ships on the JS21
blades and replace it with the combination of a lightweight
firmware called SLOF and the PowerPC port of the Xen
hypervisor.

Slimline Open Firmware, or SLOF, is boot firmware for
PowerPC machines that implements the IEEE-1275 (Open
Firmware) standard. It provides a machine-independent
BIOS that is sufficient to allow Xen or Linux to boot and
take over a machine.

JS21 blades ship with a dedicated hypervisor that imple-
ments a subset of the PAPR standard sufficient to allow AIX
to run in supervisor mode. Because we want a full hyper-
visor, we need to remove this default firmware and allow
Xen to run with the machine in hypervisor mode. Because
we need to do this in an automated and reactive fashion, we
developed a procedure that netboots a custom Linux kernel
on a blade in response to a new blade being inserted or upon
detection of a revert from SLOF in the temporary firmware
bank to the failsafe hypervisor in the permanent firmware
bank. This custom Linux flashes SLOF into the temporary
bank, marks the temporary bank as active, and reboots the
machine. Upon reboot, SLOF will run and will netboot a
Xen image, at which point the machine will be running with
a full hypervisor.

2

Fiber Channel

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

Fiber Channel

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

FC-SW

FC-SW

FC-SW

FC-SW

1 GE

1 GE

1 GE

1 GE

2G
DS4100

2G

2G

2G

BC-H chassis

4G

1G

Ethernet

1G

Figure 1. CSO Network and Storage Configuration

3.2 Single Root File System Image

The cluster management tools for the virtual machines
require a certain software stack on the physical machines.
Other than the tools for managing the virtual machines,
we run very little software on the Dom0. The stack in-
cludes only a small set of utilities that need to be run on
the Dom0, allowing us greater control of the system image.
In order to keep all the blades identical, we operate with a
single root file system image maintained on a logical disk
(LUN), accessible to the blades through a storage area net-
work (SAN). All of the blades mount the same LUN as their
read-only root device, and use ramfs devices for directories
that must be writable for correct operation, as shown in Fig-
ure 2. With this design, all the blades tend to behave identi-
cally, and when a blade is rebooted it is virtually guaranteed
to come up in a known good state. The directory hierarchy
is shown in Figure 2.

Note that the SAN obviates many of the scaling problems
associated with conventional approaches of shared NFS
root filesystems. We can also replicate the LUN as many
times as necessary to achieve good scaling as we aproach
extreme scale.

However, some data needs to be persistent across re-
boots, and we use the GPFS network file system [11], a
scalable network filesystem, for this. GPFS uses SAN stor-
age and allows all blades in a cluster to directly communi-
cate with the logical drives on the SAN. We take advantage
of recent modifications to GPFS that enable stateless oper-

ation. At boot time, the blade connects to the primary node
of the cluster and determines if it is already in the cluster. If
it is not in the cluster, it adds itself. The blade then gets its
configuration data from the primary node and starts up the
GPFS filesystem.

We use the filesystem for cluster wide data, as well as
blade-specific data when needed. For instance, all blades
have a unique /opt directory. This directory exists on the
GPFS filesystem, identified by hostname. At boot time,
the blade remounts the appropriate directory at /opt. If
the appropriate directory does not exist, a golden version is
copied. In this way we can also refresh a blade by deleting
its blade specific directory and rebooting.

3.3 Blade Control

The BladeCenter chassis comes with a management
module (MM) [6] to control the blades. The management
module is normally accessed through a web interface, and
can be used to detect installed blades, power the blades on or
off, and provide a remote console. The management mod-
ule also has two other interfaces: the MMcli [10], and the
MPcli [9]. The MMcli is a telnet interface to the manage-
ment module and the MPcli is a program that can directly
communicate with the MM’s service processor, and through
it to the service processor on all the blades. We exploit the

3

/ --> Read Only Root FS
bin/
etc/
gpfs1xen/ --> Shared GPFS network storage

home/
blade_opt_dirs/

home/ --> /gpfs1xen/home
...
mnt/ --> RAMFS (for the creation of

specific mount points)
opt/ --> /gpfs1xen/blade_opt_dirs/hostname

(blade specific)
opt2 (non-blade specific version of /opt)
tmp/ --> RAMFS
var/

adm/
ras/

mmfs/ --> RAMFS
lib/ --> RAMFS
lock/ --> RAMFS
log/ --> RAMFS
mmfs/ --> RAMFS
run/ --> RAMFS
tmp/ --> RAMFS

Figure 2. Directory Structure for the Shared
Read-Only Root FS.

functionality of the MMcli and the MPcli for the following:

• Power control: Power on, power off, power cycle a
blade

• Determine the current power state of a blade

• Detect the architecture of a blade (PowerPC or x86)

• Read and change the boot device order for the blade

• Read the MAC addresses of the network adapters

The BladeCenter management module also supports
SNMP in addition to the MMcli and MPcli access. Specif-
ically, it supports sending SNMP traps on certain events,
such as a change in the power state of a blade, or the in-
sertion of a blade. The management module can be con-
figured to send SNMP traps to any remote servers, and we
configured the chassis to send the traps to our management
software in order to initiate the provisioning process auto-
matically upon blade insertion.

Additionally, we can control other aspects of the blade’s
behavior from the network infrastructure, through DHCP
and TFTP, as well as directly through SSH access. If a blade
is up and operational, we can ssh into the blade and execute
commands. We use this to check that a blade is functioning
properly, as well as to safely power the blade off.

3.4 DHCP and Boot Image Control

Once a blade has been set to network boot (either net-
boot or pxeboot), the blade will interact with the DHCP and
TFTP servers to get an image to boot. The blade will send a
request to the DHCP server, which will return an IP address
for the blade, and a file to download from the TFTP server.
The blade will download the file and attempt to run it.

The DHCP server is controlled through the
/etc/dhcpd.conf file on the server. The file specifies
how to assign IP addresses when requests come in. Two
pieces of functionality are particularly useful to us: the
ability to identify hosts by MAC address, and the ability to
specify a boot file for the host to use. A host entry can be
created for a particular host, identified by its MAC address,
and assigned a location specific IP address. The host entry
can then specify the IP address, the TFTP server, the file
to download from the TFTP server, and the hostname the
blade should use.

We developed a set of tools to automate inserting and
updating host entries in the dhcpd.conf file. The tools
parse the existing dhcpd.conf file, update or add the spe-
cific information, write it back out, and restart the server.

The dhcpd.conf file specifies the file that should be
used as the boot image for each host. However, we would
prefer to avoid rewriting the dhcpd.conf file and restarting
the dhcpd server when possible. Therefore, instead of di-
rectly storing the boot file name in the dhcpd.conf file, we
instead store a host specific filename, and make that a sym-
bolic link to the boot image. In this scheme, to change the
boot image for a blade we only need to rewrite the symbolic
link. The symbolic link is easily changed, and we have de-
veloped tools to automatically do that.

Our tools, developed to provide all of the functionality
discussed in this section, are implemented as a set of Python
scripts. The scripts provide a seamless mechanism for ex-
ploiting the functionality and implementing more compli-
cated use cases that exploit multiple resources.

3.5 Bring Up – Putting It All Together

In the previous section we described a set of functional-
ity we have exposed to control the blades in the BladeCen-
ter chassis. We now describe how to combine the use of
those tools to completely automate the installation of a new
blade, and to very easily reboot and update a large number
of blades.

When a blade is added to the cluster it needs to be iden-
tified and provisioned with the appropriate firmware and
booted with Xen and a Linux Dom0. Once a blade has been
booted into Xen with access to the same shared storage as
other blades, higher-level management software can provi-
sion and deploy the worker domains (called DomU’s in Xen

4

nomenclature) across the cluster. In order to provision and
boot the blade we need to:

• Add the blade to the DHCP server

• Update the firmware on the blade to SLOF

• Boot the blade into Xen

We accomplish each of those tasks using the control tools
described in the previous section.

The first step is to add the blade to dhcpd.conf so that
it has a proper IP address, hostname, and boot file name.
We use our tools that exploit the MPcli interface to query
the BladeCenter MM for the MAC addresses for the blade.
Once we have the MAC address of each of the two network
adapters on a JS21, the tool creates two new host entries for
the blades (one for each subnet) using the MAC address and
specifying the IP address, hostname, and boot file for the
host, updates /etc/dhcpd.conf, and restarts the dhcpd
server.

With the blade having an appropriate host entry in
dhcpd.conf, we next need to update the firmware on
the blade to SLOF. We do this by netbooting the blade to
a Linux image that runs the firmware update program and
reboots or powers itself off. The blade has a host entry in
dhcpd.conf that specifies a boot file. We create a symbolic
link with the name of the boot file. The symbolic link points
to the Linux image that updates the firmware. We then use
the MPcli tools to make sure the blade is set to netboot as its
first boot option, and set it to be the first option if it is not.
The tools then power on the blade. When the blade powers
up, it will download the firmware update Linux image and
run it. When it is done, the blade will power itself off. The
tools will detect that the blade has been powered off, and
will know that the firmware has been flashed.

The last step in bringing up a new blade, is to boot it into
Xen with a Linux Dom0. All that is needed is to update the
symbolic link for the blade to point to the Xen boot image,
and power on the blade. However, when the blade boots,
it will want to join a GPFS cluster and mount host specific
directories, even though the host is not part of any cluster,
and the host specific directories do not exist. At boot time,
the startup scripts check for these conditions and address
them. The first time a blade is booted, it will detect that it
is not part of the GPFS cluster. It will use ssh to connect to
the primary node of the cluster, and add itself to the cluster.
The blade will also detect that the blade specific directories
do not exist. It will make a copy of golden directories for
its own use.

3.6 Error Detection

There are many steps in the provisioning and booting of
a new blade. Sometimes an error occurs, and the process

does not go to completion. In a large cluster of servers,
the probability of having a blade fail to boot increases and
can become significant. Therefore, it is important to detect
when an error occurs, and take appropriate action.

When a blade is booted, the management software tries
to access the blade using ssh. If, after some period of time,
the management software is unable to log into the blade, the
blade is considered to have failed. Additionally, if the man-
agement software is able to log into the blade, it can perform
tests to verify that GPFS and Xen are operating correctly.
We have not developed a test for Xen yet, but it should be
straightforward to develop. If the management software de-
tects a failed boot, it first logs the failure. It then tries to
reinstall the blade. It will re-update dhcpd.conf, re-burn
the firmware, and reboot into Xen again. The software can
be configured to attempt the re-installation multiple times.
This process should handle the majority of soft errors in the
system. However, sometimes there will be hard errors with
a blade. In that case the software logs a critical failure, and
will make appropriate notifications for human intervention.

Once a blade has successfully booted and started work,
our tool does not monitor the blade to detect errors during
normal operation, since the application software we are run-
ning has its own fault isolation logic. However, once an er-
ror has been detected, the higher level management can use
our tool to reprovision the blade.

4 Benchmarking

Our server provisioning system dramatically simplifies
the installation and management of servers in our cluster.
This simplification results in decreased total time to pro-
vision a blade, and decreased management time. This can
be shown through two of the more common use cases: the
re-provisioning of a large set of servers, and the first time
installation of a server.

4.1 Re-provisioning a set of servers

In normal use, all the blades in the cluster will be running
Xen with a Linux Dom0. However, sometimes the servers
will be used to run only Linux, or some other use, possi-
bly booting from the local disk. Therefore, it is desirable
to quickly and easily switch a large set of servers to the
desired Xen with Linux Dom0 environment. Additionally,
on occasion the boot image or root filesystem will need to
be updated, and we will want to reboot all the servers after
making the change to make sure they are running the most
current images.

We have automated this scenario to allow the rebooting
of large numbers of servers at the same time, and verifying
that they are all configured properly. Given a list of servers,
our tool will perform all the required steps automatically.

5

For 45 blade servers installed in 5 BladeCenter chassis, we
only required 5 minutes to re-provision all 45 blade servers,
with the dominant portion of the time being the time for
the kernel to boot. For comparison, it takes 3 minutes to
re-provision 1 blade server.

4.2 Automatic provisioning of a new
server

The other common use case mentioned above, is the ini-
tial provisioning of a server. Normally this would require
installing the blade, and a number of manual steps to update
the firmware and install the hypervisor and stock operating
system.

With our tool, the provisioning of a new server is com-
pletely automated, requiring no human intervention beyond
inserting the new blade server into the chassis. Once the
blade is inserted into the chassis, the chassis notifies the pro-
visioning software, and the provisioning process begins. In
our lab, after inserting a new blade into the chassis, 6 min-
utes later the blade had been configured and booted in the
correct environment, ready to accept work from the higher
level management tools.

5 Continuing Work

This work is part of an ongoing project at IBM Research.
As such, we are continuing to add features and abilities to
the system. There are a number of things that we intend to
do in the coming year:

• Currently, the root filesystem is maintained on the
SAN for performance reasons. However, we are at-
tempting to shrink the root filesystem as much as pos-
sible. If we can get it acceptably small, we will run the
entire root filesystem from an initial ramfs root mount.

• Redirect all logging to the management server. This
will allow us to have in depth logging information
across reboots of blades, without having persistent
storage on the blades.

• Support x86 blades and PPC blades in the same sys-
tem. We can detect the architecture of the blade, and
determine the proper course of action based on that
state.

• Better integrate with higher level management tools.
The higher level tools need to know when a blade is
available. The blade should automatically announce
itself to the higher level tools once it is installed. Also,
the higher level management tools need to be able
make provisioning and management decisions such as
reboot, update, and migration based on such event no-
tifications through this work.

• Automatically configure the fiber channel settings for
the blade.

These will take us even further towards our goal of “lights
out” management and operation.

6 Conclusions

Scale out computing (i.e., clusters of relatively sim-
ple machines) is an attractive approach to deploying large
amounts of computing power at a low cost. In the Commer-
cial Scale Out project, we are investigating technologies to
make scale out particularly attractive to commercial com-
puting. One of the big challenges in adoption of scale out
computing is the difficulty in managing clusters of ever in-
creasing size.

For that purpose, we have developed a provisioning in-
frastructure that can quickly add servers to an existing clus-
ter, as well as restart the operation of those servers already
in the cluster. The approach is based on two premises: (1)
all servers use the same root file system in their controlling
(Dom0) partition and (2) BladeCenter provides a manage-
ment module function.

Using the same root file system in all servers guarantees
homogeneity, which greatly simplifies management and op-
eration. Since the same root is shared by all servers, it is
kept read-only. Blade private and modifiable data is stored
either in a RAM file system (ramfs) or in a GPFS file sys-
tem. We can easily “clean up” a blade an return it to a pris-
tine condition with a reboot.

The management module of BladeCenter allows us to
perform remote control of the servers. It is easy to detect
when a new blade is inserted, and through the management
module we can perform the various steps required to provi-
sion that blade and bring it to the cluster of active servers.

We have verified that our approach is scalable, as the
difference in time between restarting 1 blade and restarting
45 blades is only from 3 minutes to 5 minutes. Also, it only
takes 6 minutes to install a new blade.

We will continue this work, implementing more func-
tionality until we can achieve a true “lights out” operation
and management of a large farm of blades. We believe this
is an important step in achieving thorough acceptance of
scale out solutions for commercial computing.

References

[1] IBM Director: Extensions: Remote
deployment manager. http://www-
03.ibm.com/systems/management/director/extensions/rdm.html.

[2] Red Hat installation program (Anaconda).
http://fedora.redhat.com/About/Projects/anaconda-
installer/.

6

[3] Preboot Execution Environment (PXE) Specification, 2.1
edition, September 1999.

[4] G. Almasi, L. Bachega, R. Bellofatto, J. Brunheroto, C. Cas-
caval, J. Castanos, P. Crumley, C. Erway, J. Gagliano,
D. Lieber, P. Mindlin, J. Moreira, R. Sahoo, A. Sanomiya,
E. Schenfeld, R. Swetz, M. Bae, G. Laib, K. Ran-
ganathan, Y. Aridor, T. Domany, Y. Gal, O. Goldshmidt, and
E. Shmueli. System management in the BlueGene/L super-
computer. In Parallel and Distributed Processing Sympo-
sium, 2003, April 8 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebar, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In ACM Symposium on Operating Sys-
tems Principles (SOSP), 2003, October 2003.

[6] D. M. Desai, T. M. Bradicich, D. Champion, W. G. Hol-
land, and B. M. Kruez. BladeCenter chassis management.
IBM Journal of Research and Development, 49(6):941–961,
November 2005.

[7] D. M. Desai, T. M. Bradicich, D. Champion, W. G. Holland,
and B. M. Kruez. BladeCenter system overview. IBM Jour-
nal of Research and Development, 49(6):809 – 822, Novem-
ber 2005.

[8] E. Hendriks and R. Minnich. How to build a fast and reli-
able 1024 node cluster with only one disk. The Journal of
Supercomputing, pages 171–181, May 2006.

[9] IBM. Management Processor Command Line Interface
(MPCLI) version 5.10 - IBM Servers.

[10] IBM. Reference Guide - IBM BladeCenter Management
Module Command-Line Interface.

[11] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In Proc. of the First Conference
on File and Storage Technologies (FAST), pages 231–244,
Jan. 2002.

[12] A. Wachsmann. A general purpose high performance Linux
installation infrastructure. Technical report, SLAC, Novem-
ber 2002. SLAC-PUB-9193.

7

