
Automatic Path Migration over InfiniBand: Early Experiences ∗

Abhinav Vishnu Amith R. Mamidala Sundeep Narravula Dhabaleswar K. Panda
Network Based Computing Lab

Department of Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{vishnu, mamidala, narravul, panda}@cse.ohio-state.edu

Abstract

High computational power of commodity PCs com-

bined with the emergence of low latency and high band-

width interconnects has escalated the trends of clus-

ter computing. Clusters with InfiniBand are being de-

ployed, as reflected in the TOP 500 Supercomputer

rankings. However, increasing scale of these clusters

has reduced the Mean Time Between Failures (MTBF)

of components. Network component is one such com-

ponent of clusters, where failure of Network Interface

Cards (NICs), cables and/or switches breaks existing

path(s) of communication. InfiniBand provides a hard-

ware mechanism, Automatic Path Migration (APM),

which allows user transparent detection and recovery

from network fault(s), without application restart. In

this paper, we design a set of modules; which work to-

gether for providing network fault tolerance for user

level applications leveraging the APM feature. Our

performance evaluation at the MPI Layer shows that

APM incurs negligible overhead in the absence of faults

in the system. In the presence of network faults, APM

incurs negligible overhead for reasonably long running

applications.

Keywords: InfiniBand, APM, MTBF, MPI, Verbs

1 Introduction

Introduction of high speed RDMA-enabled in-

terconnects like InfiniBand [9], Myrinet, Quadrics,

∗This research is supported in part by DOE grants #DE-

FC02-06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-
0403342 and #CNS-0509452; grants from Intel, Mellanox, Cisco

systems, Linux Networx and Sun Microsystems; and equipment do-

nations from Intel, Mellanox, AMD, Apple, Appro, Dell, Microway,

PathScale, IBM, SilverStorm and Sun Microsystems.
0

1-4244-0910-1/07/$20.00 c©2007 IEEE.

RDMA-enabled Ethernet has escalated the trends of

cluster computing. InfiniBand in particular is being

widely accepted as the next generation interconnect due

to its open standard and high performance. As a result,

clusters based on InfiniBand are becoming increasingly

popular, as shown by the TOP 500 [3] Supercomputer

rankings. However, increasing scale of these clusters

has reduced the Mean Time Between Failures (MTBF)

of components. Network component is one such com-

ponent of clusters, where failures of network interface

cards (NICs), cables or switches breaks the existing

path(s) of communication. InfiniBand provides a hard-

ware mechanism, Automatic Path Migration (APM),

which allows user transparent detection and recovery

from network fault(s). However, the current InfiniBand

literature lacks the understanding of APM intricacies,

associated design tradeoffs and performance analysis.

In this paper, we address these challenges. We de-

sign a set of modules; alternate path specification mod-

ule, path loading request module and path migration

module, which work together for providing network

fault tolerance for user level applications. We eval-

uate these modules with simple micro-benchmarks at

the Verbs Layer, the user access layer for InfiniBand,

and study the impact of different state transitions asso-

ciated with APM. We also integrate these modules at

the MPI (Message Passing Interface) layer to provide

network fault tolerance for MPI applications. Our per-

formance evaluation at the MPI Layer shows that APM

incurs negligible overhead in the absence of faults in the

system. In the presence of network faults, APM incurs

negligible overhead for reasonably long running appli-

cations. For Class B FT and LU NAS Parallel Bench-

marks [5] with 8 processes, the degradation is around

5-7% in the presence of network faults. To the best

of our knowledge, this is the first study of APM over

InfiniBand and its performance analysis at the MPI ap-

plication level.

The rest of the paper is organized as follows. In

section 2, we provide the background of our work. In

section 3, we present the design of the network fault

tolerance modules; alternate path specification mod-

ule, path loading request module and path migration

module, which constitute the core of our APM based

solution. We also present the integration of these mod-

ules at the Verbs layer and the MPI Layer. In section

4, we present the performance evaluation at the Verbs

layer followed by performance evaluation for MPI ap-

plications. In section 5, we present the related work.

In section 6, we conclude and present our future direc-

tions.

2 Background

In this section, we provide the background informa-

tion for our work. First, we provide a brief introduction

of InfiniBand. This is followed by a detailed discussion

on the APM feature in InfiniBand. We begin with the

discussion on InfiniBand.

2.1 Overview of InfiniBand and QP Transition
States

The InfiniBand Architecture (IBA) [9] defines a

switched network fabric for interconnecting processing

nodes and I/O nodes. An InfiniBand network consists

of switches, adapters (called Host Channel Adapters or

HCAs) and links for communication. For communi-

cation, InfiniBand supports different classes of trans-

port services (Reliable Connection, Unreliable Connec-

tion, Reliable Datagram and Unreliable Datagram). In

this paper, we focus on the reliable connection model.

In this model, each process-pair creates a unique en-

tity for communication, called queue pair. Each queue

pair consists of two queues; send queue and receive

queue. Figure 1 shows the communication state tran-

sition sequence for a QP. Each QP has a combination

of communication state and path migration state. Fig-

ure 1 shows the communication state of the QP. Fig-

ure 2 shows a combination of communication and path

migration state for the QP. In this section, we focus only

on the communication state. In the next section, we dis-

cuss the combinations of these states.

At the point of QP creation, its communication state

is RESET. At this point, it is assigned a unique num-

ber called qpnum. From this state it is brought to the

INIT state by invoking modify qp function. The mod-

ify qp function is provided by the access layer of Infini-

Band for different transition states provided by Infini-

Band specification [9]. During the RESET-INIT tran-

sition, the QP is specified with the HCA port to use in

addition to the atomic flags. Once in the INIT state, the

QP is specified with the destination LID DLID and

RESET

ERROR INIT

QP Creation

Modify QP

Error in Transmission

Modify QP

Ready−to−send
(RTS) (RTR)

Recv from Dest. QPReady−to−ReceiveModify QP

Modify QP

Send Data to Dest. QP

Recv from Dest. QP

Figure 1. QP Communication State Diagram

the destination QP from which it will receive the mes-

sages. A modify qp call brings it to READY-TO-RCV

(RTR) state. At this point, the QP is ready to receive

the data from the destination QP. Finally, QP is brought

to READY-TO-SEND (RTS) state by specifying asso-

ciated parameters and making the modify qp call. At

this point, the QP is ready to send and receive data from

its destination QP. Should any error(s) occur on the QP,

the QP goes to the ERROR state automatically by the

hardware. At this state, the QP is broken and cannot

communicate with its destination QP. In order to re-use

this QP, it needs to be brought back to the RESET state

and the above-mentioned transition sequence (RESET-

RTS) needs to be executed.

2.2 Overview of Automatic Path Migration

Automatic Path Migration (APM) is a feature pro-

vided by InfiniBand which enables transparent recovery

from network fault(s) by using the alternate path spec-

ified by the user. Automatic path migration is avail-

able for Reliable Connected (RC) and Unreliable Con-

nected (UC) QP Service Type. In this paper, we have

used the RC QP service type. For this feature, Infini-

Band specifies Path Migration States associated with a

QP. A valid combination of communication and path

migration states are possible. This is shown further in

Figure 2. In the figure, the path migration state of the

QP is shown using oval shape. The possible commu-

nication states of the QP are shown using curly brack-

ets. At any point of time, only one of the communi-

cation states is applicable to a QP. Once the QP is cre-

ated, the initial path migration state for a QP is set to

MIGRATED. At this point, the QP can be in RESET,

INIT or RTS communication state. Once the transi-

tion sequence (RESET-RTS) is complete, the QP’s path

migration state goes back to MIGRATED. Hence, this

state is valid for QPs having their communication state

as RTS. APM defines a concept of alternate path, which

is used as an escape route should an error occur on the

2

Alternate Path
Specified

Modify QP

Create QP

Ready for
Migration

Modify QP

{RTR, RTS}

{RTR, RTS}

ARMED

MIGRATED

REARM

on occurence of network fault
HCA casues transtion

{RESET, INIT, RTS}

HCA loads alternate path on
on local and remote nodes

Figure 2. QP Path Migration State Diagram

primary path of communication. The alternate path is

specified by the user. This specification of the alternate

path can be done at any point, beginning the INIT-RTR

transition of the QP. Once this has been specified, the

HCA can be requested to begin loading this path. This

is done by specifying the QP’s path migration state to

REARM. Once the path has been loaded, the path mi-

gration state of a QP is ARMED. During this state, the

alternate path can be switched over to function as a pri-

mary path. This can be done by HCA automatically,

should an error occur on the primary path of communi-

cation. This is shown with dotted line in Figure 2. As

an alternative, a user can manually request the alternate

path to be used as the primary path of communication.

This is shown with solid line in Figure 2.

3 Overall Design

In this section, we present the overall design of net-

work fault tolerance modules, their interactions with a

user-level application and the communication layer of

a user-level application. The interaction is shown in

Figure 3. For simplicity, we have assumed that the in-

terface between the access layer and the user-level ap-

plication consists of a communication layer with the

modules; Initialization Module, Communication Mod-

ule, Progress Engine and Finalization Module. For dif-

ferent user-level applications, some of the modules may

have more functionality than the others. Nevertheless,

the modules are portable for different user-level appli-

cations (MPI, File-Systems etc). In this paper, we have

used MPI as one of the candidate user-level application

for integration with the network fault tolerance mod-

ules.

Figure 3 also shows the order in which the network

fault tolerant modules can be called by the communi-

cations layer modules. The alternate path specifica-

tion module (PSM) can be called at any point during

the execution of the program. The path loading request

Progress Engine

FinalizationInitialization

Communication

Communications Layer

Alt. P.S.M.

Path L.R.M.

Path M. M.

Network Fault Tolerance Layer

User−Level Application (MPI, File−System)

InfiniBand Access Layer

Notification

Figure 3. Overall Design of Network Fault Tolerance

Modules and Interaction with User Applications

module (LRM) can be called in conjunction with the al-

ternate path specification module. It can also be called

separately during the execution of the application. The

path migration module (PMM) can be called only if the

QP(s) for which the request is made are in the ARMED

state. The notifications for different transition states of

the APM are handled by the network fault tolerance

modules.

3.1 Design of Network Fault Tolerance Mod
ules

In this section, we present the modules which form

the core in providing network fault tolerance for our de-

sign. The PSM is responsible for deciding the alternate

path to be used in the presence of network fault(s). The

LRM is responsible for requesting the alternate path to

be loaded in the path migration state machine. The

PMM is responsible for transition of alternate path to

the primary path of communication. We decouple these

modules with each other to make them more generic

and portable for different user-level applications.

3.1.1 Alternate Path Specification Module

This module is responsible for specifying an alternate

path to be used by a queue pair. The request for alter-

nate path to be used can be done manually, or automati-

cally by the HCA, should an error occur on the primary

path of communication.

In our design, the alternate path can be specified by

the user or chosen automatically by the module. Speci-

fication of the alternate path requires providing a couple

of parameters: altDLID (the destination LID of the al-

ternate path), altPORT (the HCA port for the alternate

path), altSRC−PATH−BITS (the LMC value to be used

for the alternate path). A primary benefit of using APM

3

is that the connection remains established during the

movement of path. This is achieved by keeping qpnum

(the QP number) to be the same for the alternate path.

3.1.2 Path Loading Request Module

This module is responsible for initiating the loading of

the alternate path for a QP. The module accepts a pa-

rameter for the list of the processes, for which this step

needs to be done. This module can be invoked dur-

ing anytime of the program execution after the RESET-

INIT transition sequence has been completed for the

QP(s). The completion of the request can be done using

asynchronous events or polling mechanism. We discuss

the tradeoffs of these approaches as follows.

Completion of Path Loading Request: The com-

pletion of the request for alternate path can be done

using notification mechanism. Alternatively, the Verbs

API provides a query − qp function call to check the

path migration state of a QP. Using the queryqp mecha-

nism, we can ascertain the path migration state of a QP

(path migration state should be ARMED to call path

migration module, should be migrated to call the path

loading request module). We have noticed that the cost

of querying a QP is higher than the overhead gener-

ated with the asynchronous notification. Hence, we use

an asynchronous thread based notification handling of

these events. The completion of the request(s) is noti-

fied by asynchronous event(s), which we refer to as the

eventARMED in this paper.

3.1.3 Path Migration Module

This module is invoked when a user wants to use the

alternate path to be used as a primary path of commu-

nication, in the absence of a network fault. This func-

tionality is useful in providing load balancing with the

available paths. Alternatively, if an error occurs dur-

ing transmission, the HCA requests the alternate path to

be loaded as the primary path of communication, with-

out intervention from the user application. This mod-

ule assumes that the path loading request module has

successfully loaded the alternate path, and the alternate

path is in a healthy state. The completion of this se-

quence is notified with the help of asynchronous events,

which are referred as eventMIGRATED in this paper.

The asynchronous thread discussed in the previous sec-

tion is enhanced to handle these events. In the perfor-

mance evaluation section, the invoking of this module

is referred by Armed-Migrated legend.

3.2 Interaction of Communication Threads
and Network Fault Tolerance Modules

In this section, we present the interactions of Main

Execution Thread and the Asynchronous Thread with

the Network Fault Tolerance Modules. Figure 4 shows

the possible interactions. The interactions from the

main execution thread are shown with solid lines,

the interactions with asynchronous thread are shown

with dotted lines. Although, both threads can in-

teract with the network fault tolerance modules, the

main execution thread can execute the modules at any

stage of the application execution. The asynchronous

thread can call the path migration module on the oc-

currence of eventARMED. On the occurrence of

eventMIGRATED, the asynchronous thread can call al-

ternate path specification module and path loading re-

quest module or the alternate path specification mod-

ule only. We limit the asynchronous thread to execute

the modules only at the occurrence of events, since the

thread is active only on the occurrence of events.

Main Execution Thread (MPI/Verbs) Asynchronous Thread

T
im

e

Request Module
Path LoadingPath Migration

Module

Alternate Path
Specification Module

event

event
MIGRATED

ARMED

Figure 4. Interaction of Network Fault Tolerance

Modules with Main Execution Thread and Asyn

chronous Thread

3.3 Integration of Network Fault Tolerance
Modules at Verbs and MPI Layer

We implement our network fault tolerance modules,

so that various user level applications can leverage them

without any changes to the modules specific to the

application. For the micro-benchmarks at the Verbs

Layer, we extend the micro-benchmark suite discussed

in our previous work [10, 11].

For integration at the MPI layer, we use MVAPICH1,

1MVAPICH/MVAPICH2 [12] are currently used by more than

445 organizations worldwide. It has enabled several large InfiniBand

clusters to obtain top 500 ranking. A version is also available in an

integrated manner with OpenFabrics Enterprise Distriburion (OFED)

4

a popular MPI over InfiniBand. We implement an asyn-

chronous thread, and add data structures to reflect the

path migration state of a QP. The solution will be avail-

able in an open-source manner in our upcoming release

of MVAPICH.

4 Performance Evaluation

In this section, we evaluate the performance of our

Network Fault Tolerance modules over InfiniBand. At

the Verbs layer, we design a ping-pong latency test and

a computation test. We study the impact on perfor-

mance for different transition states in APM, when they

are requested at different points during the execution of

the test. This is followed by the study with the MPI

applications and the impact of these state transitions on

the execution time, in the absence and the presence of

faults. We begin with a brief overview of our experi-

mental testbed.

4.1 Experimental Testbed

Our Experimental Testbed consists of a set of Intel

Xeon nodes each having a 133 MHz PCI-X slot. Each

node has two Intel Xeon CPUs running at 2.4 GHz ,

512 KB L2 cache and 1 GB of main memory. This clus-

ter uses 2nd Generation MT23218 4X Dual Port HCAs

from Mellanox [1]. We used the Linux 2.6.9-15.EL

kernel version [2] and Verbs API (VAPI) from Mel-

lanox provided with the InfiniBand Gold CD (IBGD).

The HCA firmware version used is 3.3.2. The nodes

are connected with a 144-port Single Data Rate (SDR)

switch. The switch uses OpenSM; a popular subnet

manager provided with IBGD. Since each HCA has two

ports, we connect both ports to the switch, and use first

port as the primary path and second port as the alternate

port for communication.

4.2 Evaluation of the Network Fault Tolerance
Modules at the Verbs Layer

In this section, we evaluate the performance of the

network fault tolerance modules at the Verbs layer. To

study this performance, we use a ping-pong latency

test. To understand the impact on a large scale cluster,

we create multiple QPs between these processes. These

QPs are used in a round-robin fashion for communica-

tion. The legend corresponding to original is the case

when none of the network fault tolerance modules are

invoked and one QP is used.

4.2.1 Impact of PSM and LRM on QP Transitions
In Figures 5 and 6, we present the time consumed

in Migrated-Armed and Armed-Migrated transition se-

quences with the increasing number of QPs between

the processes. To calculate the timings for Migrated-

Armed transition, the alternate path specification mod-

ule is invoked during INIT-RTR phase and time is cal-

culated till eventARMED for all QPs is received by the

asynchronous thread. For calculating the time for the

Armed-Migrated transition, path migration module is

invoked for all QPs. Once the asynchronous thread

receives eventMIGRATED for all QPs, the shared

data structures between the main thread and the asyn-

chronous thread are updated. A linear trend is ob-

served with the increasing number of QPs in these tran-

sitions. For small number of QPs, Armed-Migrated

transition takes around 30% more time than Migrated-

Armed transition. For larger number of QPs, the time

reduces to around 16%. The main purpose of the above

tests is to calculate the maximum penalty observed by

a user-level application. However, since these requests

are non-blocking, it remains to be seen, how these tran-

sitions impact the ongoing communication.

4.2.2 Impact of Network Fault Tolerance Modules

on Latency

Figure 7 compares the performance of the original case

with different transition sequences using the ping-pong

latency test. We slightly modify the test to report the la-

tency observed at every iteration to clearly understand

the impact of different transitions on the latency. In

our evaluation, we note that the latency observed in-

creases, till all the events corresponding to a transition

sequence are received. For those latency values, we cal-

culate the average and report them in the figure. We

have also observed that the number of iterations in the

test, which have impact on latency is very close to the

number of QPs for which the transition is requested. As

a result, we almost see a flat curve for the average la-

tency. The results show that both Migrated-Armed and

Armed-Migrated requests add significant overhead to

the ongoing communication. However, this overhead

remains constant with the increase in the message size.

We now show the results for our acid test, the im-

pact of performance on latency, when a network fault

occurs. After the alternate path is loaded, we disable

the primary path of communication by un-plugging the

cable corresponding to the primary path of commu-

nication on the sender side. The HCA automatically

moves the alternate path as a primary path of commu-

nication for the currently used QP. Since QPs are used

in a round robin fashion, this step is executed for all

QPs. We measure the average latency observed till the

eventMIGRATED for all QPs has been generated. This

test helps us understand the impact on latency for small

messages on large scale clusters, when each process

pair uses one QP for communication. Figure 8 shows

5

 0

 2000

 4000

 6000

 8000

 10000

 1 2 4 8 16 32

T
im

e
(u

s)

Number of Queue Pairs

Migrated-Armed
Armed-Migrated

Figure 5. Timings for different transition states in APM,

Small Number of QPs

 0

 100

 200

 300

 400

 500

 600

1K25664

T
im

e
(m

s)

Number of Queue Pairs

Migrated-Armed
Armed-Migrated

Figure 6. Timings for different transition states in APM,

Large Number of QPs

the impact on latency for small messages, when 512

QPs are used for communication. We notice that the

amount of overhead remains almost same with increas-

ing message size. Hence, the overhead paid per QP

remains the same independent of the message size.

4.3 Evaluation of the Network Fault Tolerance
Modules at the MPI Layer

In this section, we present the performance for NAS

parallel benchmarks [5], when different APM sequence

transitions are requested. The impact on performance

in the presence of network faults is also studied. A

4x2 configuration (4 nodes and 2 processes per node)

is used for executing the applications. The applica-

tions are profiled to make sure that network fault tol-

erance modules are invoked during the critical execu-

tion phase of the application. The primary communi-

cation path is broken by unplugging the cable at differ-

ent points in the application execution for sixteen runs.

The average performance observed is presented. At this

point, we do not have a very systematic methodology

for network fault injection. In future, we plan to design

software based fault injection mechanism. Figures 9

and 10 show the results with different transitions se-

quences in APM using Integer Sort kernel, with Class

A and Class B problem size. The results in the pres-

ence of network faults are also presented. In the ab-

sence of network faults, different APM transition se-

quences incur some overhead for Class A. In the pres-

ence of network fault, a very significant amount of over-

head is observed. Since the results reflect an average

case, they show a healthy mixture of the cases, when

the application was busy computing, busy in communi-

cation and their combinations. Increasing the number

of QPs to emulate a large scale cluster also shows an

interesting trend. In the presence of a network fault,

all QPs used in the round robin fashion observe a tran-

sition of alternate path to the primary path. Figure 10

shows the results for Class B problem size. The execu-

tion time is longer for the problem size. The impact of

different APM transition sequences is lesser as a result.

The time for QP transitions in the absence of faults and

presence of faults largely remains independent of the

message size as shown during the performance evalu-

ation with the tests at the Verbs layer. The number of

events generated are also largely dependent upon the

number of QPs used. Hence as the execution time of

an application increases, the relative overhead shown

due to APM in both the absence and the presence of

faults decreases. Figures 11 and 12 show the results for

NAS FT Class B and LU Class B, respectively. Since

the overhead incurred per QP almost remains same,

when a network fault occurs, we notice that the percent-

age of performance degradation is much lesser in these

cases. Even with increasing the number of QPs/process

to 64, we only notice around 5-6% degradation in per-

formance. For LU class B in particular, the execution

time is around 256 seconds, and hence the overhead

of state transitions is amortized with the long running

application. Hence for applications running for reason-

ably long time, APM incurs almost negligible overhead

in the overall execution time.

5 Related Work

A couple of researchers have focused on designing

MPI for providing network fault tolerance. Recently,

we have designed a software based solution for net-

works supporting uDAPL interface [14]. The error

detection and re-transmission is done at the software

layer. However, APM provides user-transparent error

detection and recovery by using an alternate route. LA-

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 16 64 256 1024

T
im

e
(u

s)

Number of Queue Pairs

Armed-Migrated, Requested
Migrated-Armed, Requested

Network Fault Occured
Original

Figure 7. Impact on Latency for 128 Byte Message with

Increasing Number of QPs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 16 64 256 1024

T
im

e
(u

s)

Message Size(Bytes)

Armed-Migrated, Requested
Migrated-Armed, Requested

Network Fault Occured
Original

Figure 8. Impact on Latency for Small Messages using

512 QPs

Original
 Migrated−Armed only
 Migration−Armed−Migrated
 With Network Fault

 0

 1

 2

 3

 4

 5

 6

64QPs/Process32QPs/Process16QPs/Process8QPs/Process

T
im

e
(S

e
c
o

n
d

s
)

Figure 9. Performance Evaluation on IS, Class A, 4x2

Configuration

Original
 Migrated−Armed only
 Migration−Armed−Migrated
 With Network Fault

 0

 2

 4

 6

 8

 10

64QPs/Process32QPs/Process16QPs/Process8QPs/Process

T
im

e
(S

e
c
o

n
d

s
)

Figure 10. Performance Evaluation on IS, Class B, 4x2

Configuration

Original
 Migrated−Armed only
 Migration−Armed−Migrated
 With Network Fault

 0

 20

 40

 60

 80

 100

64QPs/Process32QPs/Process16QPs/Process8QPs/Process

T
im

e
(S

e
c
o

n
d

s
)

Figure 11. Performance Evaluation on FT, Class B, 4x2

Configuration

Original
 Migrated−Armed only
 Migration−Armed−Migrated
 With Network Fault

 0

 50

 100

 150

 200

 250

 300

 350

64QPs/Process32QPs/Process16QPs/Process8QPs/Process

T
im

e
(S

e
c
o

n
d

s
)

Figure 12. Performance Evaluation on LU, Class B, 4x2

Configuration

7

MPI [8] is an MPI implementation developed at Los

Alamos National Labs. LA-MPI was designed with the

ability to stripe message across several network paths

and supports network fault tolerance at the software

layer. OpenMPI [6] also provides striping across mul-

tiple interconnects. Recently, support for network fault

tolerance has been proposed for OpenMPI [4]. Net-

work Fault tolerance with Quadrics is implemented in

the hardware [13] and Myrinet uses dispersive routing

for implementing network fault tolerance [7].

However, none of the above works have focused on

utilizing the hardware mechanism, APM for network

fault tolerance over InfiniBand. In this paper, we have

used this mechanism for network fault tolerance design

at the Verbs and the MPI layer.

6 Conclusions and Future Work

In this paper, we have designed a set of modules; al-

ternate path specification module, path loading request

module and path migration module, which work to-

gether for providing network fault tolerance with APM

for user level applications. We have integrated these

modules for simple micro-benchmarks at the Verbs

Layer; the user access layer for InfiniBand, and studied

the impact of different state transitions associated with

APM. We have also integrated these modules with the

MPI layer to provide network fault tolerance for MPI

Applications. Our performance evaluation has shown

that APM incurs negligible overhead in the absence of

faults in the system. For MPI applications executing

for reasonably long time, APM causes negligible over-

head in the presence of network faults. For Class B FT

and LU NAS Parallel Benchmarks with 8 processes, the

degradation is around 5-7% in the presence of network

faults. To the best of our knowledge, this is the first

study of APM over InfiniBand and its detailed study

with the MPI applications.

In future, we plan to study the impact of our design

for large scale clusters at the application level. We plan

to design software based error injection mechanism and

study the impact. One of the limitations of APM is

the requirement of the alternate path to be in healthy

state. We plan to design solutions which overcome this

limitation. We plan to provide a combination of hard-

ware and software based solution for network fault tol-

erance.

References

[1] Mellanox Technologies. http://www.mellanox.com.

[2] The Linux Kernel Archives. http://www.kernel.org/.
[3] TOP 500 Supercomputer Sites. http://www.top500.org.

[4] T. Angskun, G. E. Fagg, G. Bosilca, J. Pjesivac-

Grbovic, and J. J. Dongarra. Self-Healing Network

for Scalable Fault Tolerant Runtime Environments. In

Proceedings of 6th Austrian-Hungarian workshop on

distributed and parallel systems, Innsbruck, Austria,

September 2006. Springer-Verlag.
[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,

R. L. Carter, D. Dagum, R. A. Fatoohi, P. O. Freder-

ickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. The NAS

Parallel Benchmarks. Number 3, pages 63–73, Fall

1991.
[6] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. Don-

garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,

A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Gra-

ham, and T. S. Woodall. Open MPI: Goals, Concept,

and Design of a Next Generation MPI Implementation.

In EuroPVM/MPI, pages 97–104, 2004.
[7] P. Geoffray. Myrinet eXpress (MX): Is Your Intercon-

nect Smart? In HPCASIA ’04: Proceedings of the

High Performance Computing and Grid in Asia Pacific

Region, Seventh International Conference on (HPCA-

sia’04), pages 452–452, Washington, DC, USA, 2004.

IEEE Computer Society.
[8] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,

R. G. Minnich, C. E. Rasmussen, L. D. Risinger, and

M. W. Sukalski. A Network-Failure-Tolerant Message-

Passing System for Terascale Clusters. volume 31,

pages 285–303, Norwell, MA, USA, 2003. Kluwer

Academic Publishers.
[9] InfiniBand Trade Association. InfiniBand Architecture

Specification, Release 1.2, October 2004.
[10] J. Liu and B. Chandrasekaran and W. Yu and J. Wu and

D. Buntinas, S. P. Kinis, P. Wyckoff, and D. K. Pand.

Micro-Benchmark Level Performance Comparison of

High-Speed Cl uster Interconnects. In Hot Interconnect

11, August 2003.
[11] J. Liu, A. Mamidala, A. Vishnu, and D. K. Panda. Per-

formance Evaluation of InfiniBand with PCI Express.

In Hot Interconnect 12 (HOTI 04), August 2004.
[12] Network-Based Computing Laboratory. MVA-

PICH/MVAPICH2: MPI-1/MPI-2 for InfiniBand

on VAPI/Gen2 Layer. http://nowlab.cse.ohio-

state.edu/projects/mpi-iba/index.html.
[13] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and

E. Frachtenberg. The Quadrics Network: High-

Performance Clustering Technology. volume 22, pages

46–57, Los Alamitos, CA, USA, 2002. IEEE Computer

Society Press.
[14] A. Vishnu, P. Gupta, A. Mamidala, and D. K. Panda. A

Software Based Approach for Providing Network Fault

Tolerance in Clusters Using the uDAPL Interface: MPI

Level Design and Performance Evaluation. In Proceed-

ings of SuperComputing, November 2006.

8

