
A General Purpose Partially Reconfigurable Processor Simulator (PReProS)

Alisson V. Brito1,2, Matthias Kuehnle2, Elmar U. K. Melcher1,

Juergen Becker2

1 Federal University of Campina Grande
Department of Electrical Engineering
Campina Grande, 58.109-970 Brazil

{alisson,elmar}@dee.ufcg.edu.br

2 Universitaet Karlsruhe (TH)
Inst. für Technik der Informationsverarbeitung

Karlsruhe, D-76128 Germany

{brito,kuehnle,becker}@itiv.uni-karlsruhe.de

Abstract

An innovative technique to model and simulate partial

and dynamic reconfigurable processors is presented in

this paper. The basis for development is a SystemC kernel

modified for dynamic reconfiguration. The presented

approach can either be used at transaction-level, which

allows the modeling and simulation of higher-level

hardware and embedded software, or at register transfer

level (RTL), if the dynamic system behavior is desired to

be observed at signal level. The reconfigurable processor

can be easily set to model the desired architecture in a

behavioral but reasonable way. An example is presented

where a XPP processor is implemented and simulated,

executing typical applications. The resulting statistics

assist either in the choice of the best cost/benefit

configuration area that should be available on chip, or in

the choice of the target architecture itself.

1. Introduction

Nowadays the dynamic and partial run-time

reconfiguration is a reality [1, 2]. It is offered by a great
number of vendors such as at fine- (like FPGAs [5, 6, 7])
as well as at coarse-grained (like XPP [3] and KressArray
[4]) architecture level.

By using this feature less configuration memory is
necessary since not actually used modules in a system do
not allocate configuration memory. Thus it is possible to
reduce the necessary configuration area and develop
lower-cost and more power efficient systems. However,
the timing and power consumption necessary to perform
consecutive configurations should be considered. Power
dissipation by run-time reconfiguration has been
investigated in [8].

For each system design, in order to evaluate the
positive aspects of the dynamic and partial run-time
reconfiguration, and to decrease the negative impacts of
the known trade-offs, it is necessary to know them as
soon as possible in the design flow. Normally, the relation
between the configuration time and the necessary chip
area is not known before the system has been
programmed on chip during the testing phase. This is at
least the case for complex systems.

This paper uses a simulation technique (described
before in [17]) to implement a general purpose simulator
for processors, whereas this technique supports run-time
reconfiguration. Such a technique uses high-level
representations to model and simulate the reconfiguration,
giving the opportunity to designers to foresee the dynamic
behavior of your system before the hardware is going to
be implemented for the target architecture, or even before
the system specification in HDL, if desired.

An important aspect is the integration of such modeling
and simulation techniques into the design flow. It should
be as general as possible in order to avoid re-working and
time spending on using different formalisms to
implement, model and simulate the system. To provide
this light-weight integration, our technique uses the
SystemC [9] description language, to model as well as to
simulate the partial and dynamic reconfigurations. These
capabilities are presented by an easy to use, well defined
API. Any system described with SystemC can have the
dynamic and partial reconfiguration capabilities added to
its behavior and can be simulated. On the other hand, the
system can easily be parameterized to reach its previous
behavior again.

There are other efforts to provide these or similar
functionalities. The Adriatic project [10] presents a
system-level modeling technique for dynamically
reconfigurable systems. It concerns on selecting
candidates for dynamic reconfiguration. It is used
specifically for a hardware architecture formed by a 1-4244-0910-1/07/$20.00 ©2007 IEEE

Dynamically Programmable Gate Arrays (DPGA [11])
and a co-processor responsible for reconfigurations
management. The modeling and simulation processes are
implemented using SystemC, but it is not able to simulate
the dynamic behaviors of the modeled systems. The
OSSS+R project [12] aims at using the Object-Oriented
concepts as inheritance and polymorphism in order to
simulate dynamic reconfiguration. It implements an
extension to SystemC, adding commands, to be able to
dynamically switch modules during simulation. It enables
the switching operation among elements descendent from
the same base class, using the concept of inheritance.
Modules with identical interfaces can be dynamically
switched, but not disabled or removed from the system
without them being replaced by other equivalent modules.
Our approach attacks the dynamic and partial behavior in
a more general way. Any module can be removed, added
or switched at simulation-time.

This paper is organized into different sections. Section
2 presents the technique that made modeling and
simulation of run-time reconfigurable systems possible. It
also shows a simple example about how these features
can be used. Section 3 presents the concept of the
Partially Reconfigurable Processor Simulator, named
PReProS. A usage scenario is presented in section 4,
where the simulator is configured and tested. The
simulation results are presented in section 5. Section 6
presents the final considerations and gives an outline
about further works.

2. Simulation of dynamic reconfiguration

In order to simulate dynamic and partially

reconfigurable systems, the simulator must perform some
specialized operations. A partially reconfiguration
simulator should perform basic operations such insertion
and removal of modules into and from running systems.
These operations are the basis for all possible operations
to perform dynamic and partial reconfiguration.

The idea is to provide these two basic operations for
SystemC in the form of two different routines, named
dr_sc_turn_on and dr_sc_turn_off. They were
implemented by applying some modifications to the
SystemC kernel.

Each SystemC module can have one or more processes,
which executes the module’s algorithms. During each
simulation cycle, the execution table is checked by the
simulator and all requested processes are executed. The
routine crunch from sc_simulation_context class is
responsible for executing every process.

A linked list named configList was implemented to
store the name of the modules that should not be
executed. At each simulation cycle, before executing the
processes, the module name is searched on the linked list,

if it is there, its execution is avoided and the simulation
keeps normally working. From the entire system point of
view, the avoided processes are like non-existing
processes.

The routines dr_sc_turn_on and dr_sc_turn_off
respectively add and remove modules names from
configList. Once dr_sc_turn_off routine is called during
simulation referencing a module name, processes from
this module will not be executed until a call to routine
dr_sc_turn_on is executed.

2.1. Proof of concept

A simple example was implemented in order to explain
how to use the simulation routines dr_sc_turn_on and
dr_sc_turn_off. It contains two modules (moduleA and
moduleB), which generate two different waveforms (see
Figure 1). The modules produce square waveforms. While
moduleA produces a waveform with a period of 1ns,
moduleB’s output shows a period of 3ns. These two
modules are connected to the same signal, which is
traced. This signal presents a mixed behavior, where the
two modules sending data at the same time. Using the
routines dr_sc_turn_on and dr_sc_turn_off, the modules
will work always at different moments, avoiding the
overlapping of their signals. This way, two scenarios are
formed, one with just moduleA configured to work, and
the other with the contrary situation, where just moduleB
is configured, hence in use. In the simulation’s context,
just one module is working at each moment.

Figure 2 presents the waveforms, generated from this
simulation. It shows the signals of moduleA and
moduleB, being executed separately without partial
reconfiguration in order to show their behavior only. The
output signal produced during partial reconfiguration is
named reconf and it aggregates the behavior of moduleA
until 30ns, and the behavior of moduleB during remaining
simulation time. This waveform illustrates that the system
really changed its behavior during simulation time.

Figure 1. Two scenarios switched dynamically
at simulation time. At each scenario just one
module is configured.

Figure 2. Waveforms from the example. The
reconfiguration moments are pointed.

3. The Partially Reconfigurable Processor

Simulator (PReProS)

Considering the simulation of dynamic and partially

reconfigurable systems, a couple of steps should be done,
like the target architecture specification, the definition of
necessary hardware resources and the designing of the
applications. The presented approach aims at writing a
reusable parametrizable SystemC program able to model
and simulate real target processor architectures. For
example, coarse-grained, like XPP [15], which consists of
configurable ALUs communicating via a packet oriented,
automatically synchronized communication network.
Also like PiCoGA, a reconfigurable architecture based on
a very long instruction word RISC processor featuring an
embedded programmable hardware unit that implements a
pipelined, run-time configurable data path and
KressArrays. Further, fine-grained architectures, like
standalone FPGAs and embedded FPGAs (e.g. FlexEOS
from M2000), which have the well known FPGA
behavior, or any other, running any kind of application.

The goal is to parameterize the individual processor’s
characteristics in such a general way that all kind of
processing element can be fully described using this set of
parameters. The main features that have to be considered
here are the clock frequency, properties of the data and
configuration ports, and the number of chip area available
on chip. In the same way, the applications’ properties can
be set by the frequency, needed ports, data width and
number of configured area units.

When using this simulator, the designer should just
have to set the parameters and implement its own blocks
to configure the applications and exchange data with the
PReProS, as shown on Figure 3.

Figure 3. Usage example of the Dynamically
Reconfigurable Processor.

After the simulation, statistic files are generated that

illustrate e.g. chip performance and the area consumption.
The chip area usage and the configuration delay impact
are by default generated by the SystemC kernel, when
using the above mentioned approach for dynamic
reconfiguration simulation.

3.1. Simulator Specification and

Implementation

To get a deeper understanding of the functionality of

the system, a detailed description of the architecture is
given in this section. This will not only show the
programmed modules but it will also demonstrate the
user-friendliness of the simulator.

Therefore, the approach is divided into different steps.
One is the physical architecture of the processor that has
to be set and simulated. The second step takes care of the
programming model and the data exchange. Figure 4
shows the parametrizable, implemented architecture. The
processor can be set through its property parameters,
while the other elements should be implemented outside,
as SystemC module, and connected to the simulator (see
Figure 3).

 Let us consider physical constraints only in the
following paragraph. As mentioned above, the number of
ports, their bit width, the processor’s frequency and the
area are parametrizable. The area units are arranged as an
array, where column and line size can be set individually.
The area units have to be chosen in a way to reflect the
smallest programmable processing element of the
complete processor. Taking a FPGA as example, the
processing element could be a Slice. If greater resolution
is desired, also the single LUTs can be defined to be the
smallest area units. However, considering a coarse
grained array, a complex ALU can be mirrored by a basic
area unit. The processing power can then be adapted by
setting the frequency respectively. This generic approach
allows the emulation of any kind of reconfigurable
processing element, any parallelism and every processing
power.

Although the user is intended to deal with an
architectural model as shown in Figure 4, which mirrors a
high level view of the processor’s physical architecture,
the implementation is different. This was done
intentionally to be able to better handle, first of all
movement of application data, but also the
reconfiguration mechanism. Using this approach, a
geometry independent implementation is possible. Figure

5 illustrates that no processing elements are observed but
rather slots, where the maximum number of slots equals
the number of physical ports. By contrast, from the
application point of view, more than one port can be used
by one configuration.

Figure 4. Parameterizable Dynamic Reconf.

Processor Architecture

The data ports in Figure 5 are bidirectional, where the

transfer protocol of the data driver can send and receive
data from all ports in parallel. Finally, since we are not
dealing with the physical location of each area unit, it
remains unnecessary to take care of the geometrical
relation of the connected port to the configured area units.
The same holds for the area units, configured for one
application, among each other. It is assumed that a well
defined floorplan protects from unforeseen arising
problems concerning the area constraints. Therefore, the
configuration driver’s task is merely to check the
availability of the area and the desired port, whereas it
isn’t necessary to check, if the chosen area and the port
are compatible in terms of their geometrical location on
chip.

Referring to Figure 3, it can be seen that these tasks are
executed by the drivers. The whole simulation is triggered
by the configuration management. User defined
configuration requests are processed in a serial order
where the actual configuration bit stream is loaded right at
the request time or just after demanded ports and area are
available.

Figure 5. Processor’s Application view

This request time has to be specified before the

simulation. It is intended to emulate any kind of user
interaction, interrupts or any unpredictable requested
service routine. Dependent on the bit stream size and the
bandwidth, calculated from bit width and the frequency of
the configuration port, the configuration driver can
exactly maintain real configuration timing. All important
time stamps are logged and can later contribute to a
statistical performance analysis.

Once parameterized, the user can implement its own
algorithms for configuration and data exchange. The
simulator can than be used not just to simulate different
architectures, but mainly to model and simulate the
dynamic and partial reconfiguration of applications,
running in real systems, all of this in a fast and practical
way. All data about chip area usage, reconfiguration
delaying and data exchanging performance are generated
automatically, making the analysis phases shorter as
usual.

4. Use Case

For testing purposes, different processors have been
examined and case studies have been implemented on the
simulator. The selection was decided on top of available
information for the examined reconfigurable processor. It
was not only necessary to having collected information
about the physical constraints of the processor, but also
information about performance and timing of already
mapped configurations and data processing were
important. In the following, without loss of generality a
coarse grained array, which is called the eXtreme
Processing Platform (XPP) architecture [16] is chosen and
examined in greater detail. This processor consists of
configurable ALUs that communicate via a packet
oriented, automatically synchronized communication
network. Table 1 shows some parameters from the XPP II
array that are implemented in the simulator model. All of
the parameters are set in the processor model before
system simulation startup.

To be able to validate the simulation results, existing
tables of already mapped applications were taken. Table 2
shows the algorithms and their parameters. They have
been implemented in the configuration driver in the order
as shown by the application index.

frequency 200 MHz

number of ALUs

(coarse grained elements)

8*8= 64

ports 4 IOs of 2*16 bit

 total configuration bitstream 16kbyte

configuration bitstream for one

area unit

0,25kbyte per ALU

configuration bitwidth 42

Table 1. Processor parameter of the XPP array

Right after simulation startup, the configuration driver
is checking the user requests that are implemented in a
configuration list. If the user request time is equal to the
actual time stamp, the configuring procedure will start
where the duration is dependent on the earlier defined
parameters of the processor and the size of the bit stream.

app.

index

application configuration

time

used

area

free

area

1 Fir filtering 4000 cycles 64 0

2 IIR filtering 4000 cycles 64 0

3 Multichannel
viterbi

1340 cycles 22 42

4 Fourier
transform

1250 cycles 20 44

5 Adapt
beamforming

1625 cycles 26 38

app.

index

number of

configurations

Performance

(ops per

cycle)

used

ports

1 1 128 4

2 1 128 2

3 2 43 1

4 3 40 1

5 2 52 1

Table 2. Parameter of the application/
algorithms for 8x8 XPP

Just after a single configuration is finished, the

configuration driver triggers the data driver to notify the
readiness of the configuration. The data driver is now able
to start sending data to the proper ports. These ports are
locked until being released again by the end of transfer
signal of the data driver. After the notification of the
configuration driver, the configured area will be released
again. For any further configuration requests, feedback
from the processor is demanded by the configuration
driver. Feedback can be: occupied area or ports. This way,
the consistency of the configured parts of the chip is
assured. The simulation will be finished, when no more
configuration requests are located in the request queue
and no more data is being processed. Finally, with the
help of the generated statistics, area occupation and
timing analysis can be performed easily. Just to give an
example: the multiplication of the frequency with the
configuration time in clock cycles. This results in the real
configuration time for each application as given in Table

2.
Finally, these values can be compared with the statistics

that are generated by the simulator after the simulation.

5. Results

Some performance results were generated automatically
by the PReProS, without the user writing any additional
command. The results are presented below. Table 3
presents the performance referring to the data ports of the
simulated system based on the XPP architecture.

application #ports sending

data rate

(MB/sec.)

receiving

data rate

(MB/sec.)

Fir filtering 4 3200 3200

IIR filtering 2 1600 1600

Multichannel
viterbi

1 800 800

Fourier
transform

1 800 800

Adapt
beamforming

1 800 800

application data

sent

(bytes)

data

received

(bytes)

total data

rate

(MB/sec.)

Fir filtering 6400 6400 6400

IIR filtering 1600 1600 3200

Multichannel
viterbi

400 400 1600

Fourier
transform

400 400 1600

Adapt
beamforming

1600 1600 1600

Table 3. Data ports performance of the XPP
processor

These results present a reasonable accuracy when

compared to other related works, which made these
measurements on chip [16].

The configuration performance can be seen on Table 4.
This table shows the time stamp of request (cfg_request),
configuration (config), start, and end of execution for
each application. With this information the configuration
and the response time for each application can be
clarified. It depends directly on configuration bitstream
size and on the chip usage of the specific moment. The
FIR algorithm, for example, having 16Kbytes of
configuration bitstream, took 1.9ms from its request until
its configuration on chip. On the other hand, the Fourier
transform algorithm, with a configuration bitstream of
5Kbits, needed only 0.6ms for the configuration.

application t (cfg_request) t (config) t (start)

Fir filtering 10 ns 1915 ns 2020 ns

IIR filtering 1925 ns 3830 ns 3930 ns

Multichannel
viterbi

3840 ns 4495 ns 4595 ns

Fourier
transform

4505 ns 5105 ns 5205 ns

Adapt
beamforming

5115 ns 5890 ns 5995 ns

application t (end) config

bitstream

(bits)

config

rate

(MB/sec.)

Fir filtering 4020 ns 16000 8400

IIR filtering 4930 ns 16000 8400

Multichannel
viterbi

5095 ns 5500 8400

Fourier
transform

5705 ns 5000 8300

Adapt
beamforming

8000 ns 6500 8400

Table 4: Configuration timing and performance

More details about chip utilization can be found in the

figures below. Figure 6 presents timing, when each
application is configured on chip and how many ALUs
each one is using at the moment. It is of interest to
observe the parallelism of the application execution on
chip. For example, the IIR works together with FIR and
later with Viterbi, after that it is removed from chip,
leaving space for the other applications.

Figure 6: Chip area utilization by each

application
On Figure 7 it is possible to see the amount of used

resources of the chip. The XPP processor was simulated
containing 144 ALUs, instead of the mentioned 64. In this
way more parallel configurations can be simulated. The
free area is marked by the darker area in the picture. By
investigating these results, the best parallel performance
and hence the best processing power and efficiency of the
simulated processor can be achieved. It helps the designer
to reevaluate his/her algorithms and implementation
strategy, or if the selected architecture should be changed
to better target his needs.

6. Final Considerations

This paper presents a general purpose partially
reconfigurable processor simulator, named PReProS. Its
intention is to support hardware as well as software
designers. Hardware designers take benefit from the
possibility of the simulators ability to quickly change
processor parameters, whereas software designers can
investigate the end of simulation statistics to reorganize
their configuration scheduler, where the statistics help in
the choice of the best cost/benefit configuration area that
should be available on chip, or in the choice of the target
architecture itself. This approach helps to easily model
and simulate complex systems in a very short timeframe.

As further work, these capabilities are being considered
to be executed by an embedded processor. It would be
possible to analyze the system resources and dynamic
behavior at run-time, enabling faster and more intelligent

decisions. These features will be potentially used by
different heterogeneous dynamically reconfigurable
platforms supported by European research projects, like
Morpheus (http://morpheus.arces.unibo.it), 4S
(www.smart-chips.org) and Aether (www.aether-ist.org).

Acknowledgments

This research work is supported by “Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq)”,
Brazil.

Figure 7: Total chip area utilization

References

[1] Reiner Hartenstein, “Coarse Grain Reconfigurable
Architectures” Proceedings of the Conference on Asia South
Pacific Design Automation, 2001.

[2] Becker, J., Hartenstein, R., Configware and morphware
going mainstream. Journal of Systems Architecture. 49, 4-6,
127-142, September, 2003.

[3] Becker, J., Vorbach, M., Architecture, Memory and
Interface Technology Integration of an Industrial/Academic
Configurable System-on-Chip (CSoC), IEEE COMPUTER
SOCIETY. ANNUAL Symposium on VLSI, Tampa,
Florida, February 2002.

[4] Kress, R. “A Fast Reconfigurable ALU for Xputers”. Ph.D.
Thesis, University of Kaiserslautern, 1996.

[5] ATMEL. Application Note: Implementing Cache Logic with
FPGAs. USA, Sep. 1999. Available at
http://www.atmel.com (latest access august, 2006).

[6] Xilinx Inc. http://www.xilinx.com/products

[7] Ferrandi, F., Santambrogio, M., Sciuto, D., A Design
Methodology for Dynamic Reconfiguration: The Caronte
Architecture. Proceedings of the 19th International Parallel
and Distributed Processing Symposium (IPDPS’2005),
2005, Denver, CA, USA.

[8] Becker, J., Hübner, M., Ullmann, M.: “Real-Time
Dynamically Run-Time Reconfiguration for Power-
Costoptimized Virtex FPGA Realizations”, VLSI03,
Darmstadt, Sep. 2003.

[9] SystemC Community. http://www.systemc.org

[10] Qu, Y., Tiensyrja, K. Masselos, K., System-Level
Modeling of Dynamically Reconfigurable Co-Processors,
International Conference on Field Programmable Logic
and Applications, Antwerp, Belgium, August-September,
2004.

[11] Dehon, A., DPGA Utilization and Application, in
FPGA’2006, pp 115-121, February, 1996.

[12] Schallenberg, A., Oppenheimer, F., Nebel, W. Designing
for Dynamic and Partially Reconfigurable FPGAs with
SystemC and OSSS, Forum on Specification and Design
Languages (FDL ‘04), Lille, France, Sept. 2004.

[13] Huebner, M., Becker, T., Becker, J., “Real-Time LUT-
Based Network Topologies for Dynamic and Partial
FPGA Self-Reconfiguration”, 17th Brazilian Symposium
on Integrated Circuit Design (SBCCI04), Brasil

[14] Blodget, B., McMillan, S., “A lightweight approach for
embedded reconfiguration of FPGAs”, DATE03, Munich,
Germany

[15] Becker, J., Huebner, M., Ullmann, M., “Power Estimation
and Power Measurement of Xilinx Virtex FPGAs: Trade-
offs and Limitations”, SBCCI03, Sao Paulo, Sep. 2003

[16] PACT, “The XPP White Paper – release 2.1”.
http://www.pactxpp.com

[17] Brito, A. V. , Melcher, E. U. K. ; Rosas, W. . An open-
source tool for simulation of partially reconfigurable
systems using SystemC. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI 2006), 2006,
Karlsruhe. IEEE Computer Society Annual Symposium on
VLSI (ISVLSI 2006), 2006. v. 1. p. 434-435.

