
A General Purpose Partially Reconfigurable Processor Simulator (PReProS) 

 

 
Alisson V. Brito1,2, Matthias Kuehnle2, Elmar U. K. Melcher1,  

Juergen Becker2 

 

1 Federal University of Campina Grande  
Department of Electrical Engineering 
Campina Grande, 58.109-970 Brazil 

{alisson,elmar}@dee.ufcg.edu.br 
 

2 Universitaet Karlsruhe (TH) 
Inst. für Technik der Informationsverarbeitung 

Karlsruhe, D-76128 Germany 

{brito,kuehnle,becker}@itiv.uni-karlsruhe.de 

 
Abstract 

 
An innovative technique to model and simulate partial 

and dynamic reconfigurable processors is presented in 

this paper. The basis for development is a SystemC kernel 

modified for dynamic reconfiguration. The presented 

approach can either be used at transaction-level, which 

allows the modeling and simulation of higher-level 

hardware and embedded software, or at register transfer 

level (RTL), if the dynamic system behavior is desired to 

be observed at signal level. The reconfigurable processor 

can be easily set to model the desired architecture in a 

behavioral but reasonable way. An example is presented 

where a XPP processor is implemented and simulated, 

executing typical applications. The resulting statistics 

assist either in the choice of the best cost/benefit 

configuration area that should be available on chip, or in 

the choice of the target architecture itself. 

 

 

1. Introduction 
 
Nowadays the dynamic and partial run-time 

reconfiguration is a reality [1, 2]. It is offered by a great 
number of vendors such as at fine- (like FPGAs [5, 6, 7]) 
as well as at coarse-grained (like XPP [3] and KressArray 
[4]) architecture level. 

By using this feature less configuration memory is 
necessary since not actually used modules in a system do 
not allocate configuration memory. Thus it is possible to 
reduce the necessary configuration area and develop 
lower-cost and more power efficient systems. However, 
the timing and power consumption necessary to perform 
consecutive configurations should be considered. Power 
dissipation by run-time reconfiguration has been 
investigated in [8]. 

For each system design, in order to evaluate the 
positive aspects of the dynamic and partial run-time 
reconfiguration, and to decrease the negative impacts of 
the known trade-offs, it is necessary to know them as 
soon as possible in the design flow. Normally, the relation 
between the configuration time and the necessary chip 
area is not known before the system has been 
programmed on chip during the testing phase. This is at 
least the case for complex systems. 

This paper uses a simulation technique (described 
before in [17]) to implement a general purpose simulator 
for processors, whereas this technique supports run-time 
reconfiguration. Such a technique uses high-level 
representations to model and simulate the reconfiguration, 
giving the opportunity to designers to foresee the dynamic 
behavior of your system before the hardware is going to 
be implemented for the target architecture, or even before 
the system specification in HDL, if desired. 

An important aspect is the integration of such modeling 
and simulation techniques into the design flow. It should 
be as general as possible in order to avoid re-working and 
time spending on using different formalisms to 
implement, model and simulate the system. To provide 
this light-weight integration, our technique uses the 
SystemC [9] description language,  to model as well as to 
simulate the partial and dynamic reconfigurations. These 
capabilities are presented by an easy to use, well defined 
API. Any system described with SystemC can have the 
dynamic and partial reconfiguration capabilities added to 
its behavior and can be simulated. On the other hand, the 
system can easily be parameterized to reach its previous 
behavior again. 

There are other efforts to provide these or similar 
functionalities. The Adriatic project [10] presents a 
system-level modeling technique for dynamically 
reconfigurable systems. It concerns on selecting 
candidates for dynamic reconfiguration. It is used 
specifically for a hardware architecture formed by a 1-4244-0910-1/07/$20.00 ©2007 IEEE 



Dynamically Programmable Gate Arrays (DPGA [11]) 
and a co-processor responsible for reconfigurations 
management. The modeling and simulation processes are 
implemented using SystemC, but it is not able to simulate 
the dynamic behaviors of the modeled systems. The 
OSSS+R project [12] aims at using the Object-Oriented 
concepts as inheritance and polymorphism in order to 
simulate dynamic reconfiguration. It implements an 
extension to SystemC, adding commands, to be able to 
dynamically switch modules during simulation. It enables 
the switching operation among elements descendent from 
the same base class, using the concept of inheritance. 
Modules with identical interfaces can be dynamically 
switched, but not disabled or removed from the system 
without them being replaced by other equivalent modules. 
Our approach attacks the dynamic and partial behavior in 
a more general way. Any module can be removed, added 
or switched at simulation-time. 

This paper is organized into different sections. Section 
2 presents the technique that made modeling and 
simulation of run-time reconfigurable systems possible. It 
also shows a simple example about how these features 
can be used. Section 3 presents the concept of the 
Partially Reconfigurable Processor Simulator, named 
PReProS. A usage scenario is presented in section 4, 
where the simulator is configured and tested. The 
simulation results are presented in section 5. Section 6 
presents the final considerations and gives an outline 
about further works. 

 
2. Simulation of dynamic reconfiguration 

 
In order to simulate dynamic and partially 

reconfigurable systems, the simulator must perform some 
specialized operations. A partially reconfiguration 
simulator should perform basic operations such insertion 
and removal of modules into and from running systems. 
These operations are the basis for all possible operations 
to perform dynamic and partial reconfiguration. 

The idea is to provide these two basic operations for 
SystemC in the form of two different routines, named 
dr_sc_turn_on and dr_sc_turn_off. They were 
implemented by applying some modifications to the 
SystemC kernel. 

Each SystemC module can have one or more processes, 
which executes the module’s algorithms. During each 
simulation cycle, the execution table is checked by the 
simulator and all requested processes are executed. The 
routine crunch from sc_simulation_context class is 
responsible for executing every process. 

A linked list named configList was implemented to 
store the name of the modules that should not be 
executed. At each simulation cycle, before executing the 
processes, the module name is searched on the linked list, 

if it is there, its execution is avoided and the simulation 
keeps normally working. From the entire system point of 
view, the avoided processes are like non-existing 
processes. 

The routines dr_sc_turn_on and dr_sc_turn_off 
respectively add and remove modules names from 
configList. Once dr_sc_turn_off routine is called during 
simulation referencing a module name, processes from 
this module will not be executed until a call to routine 
dr_sc_turn_on is executed. 
 

2.1. Proof of concept 
 
A simple example was implemented in order to explain 
how to use the simulation routines dr_sc_turn_on and 
dr_sc_turn_off. It contains two modules (moduleA and 
moduleB), which generate two different waveforms (see 
Figure 1). The modules produce square waveforms. While 
moduleA produces a waveform with a period of 1ns, 
moduleB’s output shows a period of 3ns. These two 
modules are connected to the same signal, which is 
traced. This signal presents a mixed behavior, where the 
two modules sending data at the same time. Using the 
routines dr_sc_turn_on and dr_sc_turn_off, the modules 
will work always at different moments, avoiding the 
overlapping of their signals. This way, two scenarios are 
formed, one with just moduleA configured to work, and 
the other with the contrary situation, where just moduleB 
is configured, hence in use. In the simulation’s context, 
just one module is working at each moment. 

Figure 2 presents the waveforms, generated from this 
simulation. It shows the signals of moduleA and 
moduleB, being executed separately without partial 
reconfiguration in order to show their behavior only. The 
output signal produced during partial reconfiguration is 
named reconf and it aggregates the behavior of moduleA 
until 30ns, and the behavior of moduleB during remaining 
simulation time. This waveform illustrates that the system 
really changed its behavior during simulation time. 

 
Figure 1. Two scenarios switched dynamically 
at simulation time. At each scenario just one 
module is configured. 



 
Figure 2. Waveforms from the example. The 
reconfiguration moments are pointed. 

 

3. The Partially Reconfigurable Processor 

Simulator (PReProS) 
 
Considering the simulation of dynamic and partially 

reconfigurable systems, a couple of steps should be done, 
like the target architecture specification, the definition of 
necessary hardware resources and the designing of the 
applications. The presented approach aims at writing a 
reusable parametrizable SystemC program able to model 
and simulate real target processor architectures. For 
example, coarse-grained, like XPP [15], which consists of 
configurable ALUs communicating via a packet oriented, 
automatically synchronized communication network. 
Also like PiCoGA, a reconfigurable architecture based on 
a very long instruction word RISC processor featuring an 
embedded programmable hardware unit that implements a 
pipelined, run-time configurable data path and 
KressArrays. Further, fine-grained architectures, like 
standalone FPGAs and embedded FPGAs (e.g. FlexEOS 
from M2000), which have the well known FPGA 
behavior, or any other, running any kind of application. 

The goal is to parameterize the individual processor’s 
characteristics in such a general way that all kind of 
processing element can be fully described using this set of 
parameters. The main features that have to be considered 
here are the clock frequency, properties of the data and 
configuration ports, and the number of chip area available 
on chip. In the same way, the applications’ properties can 
be set by the frequency, needed ports, data width and 
number of configured area units. 

When using this simulator, the designer should just 
have to set the parameters and implement its own blocks 
to configure the applications and exchange data with the 
PReProS, as shown on Figure 3. 

 
Figure 3. Usage example of the Dynamically 
Reconfigurable Processor. 

 
After the simulation, statistic files are generated that 

illustrate e.g. chip performance and the area consumption. 
The chip area usage and the configuration delay impact 
are by default generated by the SystemC kernel, when 
using the above mentioned approach for dynamic 
reconfiguration simulation. 

 
3.1. Simulator Specification and 

Implementation 

 
To get a deeper understanding of the functionality of 

the system, a detailed description of the architecture is 
given in this section. This will not only show the 
programmed modules but it will also demonstrate the 
user-friendliness of the simulator.  

Therefore, the approach is divided into different steps. 
One is the physical architecture of the processor that has 
to be set and simulated. The second step takes care of the 
programming model and the data exchange. Figure 4 
shows the parametrizable, implemented architecture. The 
processor can be set through its property parameters, 
while the other elements should be implemented outside, 
as SystemC module, and connected to the simulator (see 
Figure 3). 

 Let us consider physical constraints only in the 
following paragraph. As mentioned above, the number of 
ports, their bit width, the processor’s frequency and the 
area are parametrizable. The area units are arranged as an 
array, where column and line size can be set individually. 
The area units have to be chosen in a way to reflect the 
smallest programmable processing element of the 
complete processor. Taking a FPGA as example, the 
processing element could be a Slice. If greater resolution 
is desired, also the single LUTs can be defined to be the 
smallest area units. However, considering a coarse 
grained array, a complex ALU can be mirrored by a basic 
area unit. The processing power can then be adapted by 
setting the frequency respectively. This generic approach 
allows the emulation of any kind of reconfigurable 
processing element, any parallelism and every processing 
power.  

Although the user is intended to deal with an 
architectural model as shown in Figure 4, which mirrors a 
high level view of the processor’s physical architecture, 
the implementation is different. This was done 
intentionally to be able to better handle, first of all 
movement of application data, but also the 
reconfiguration mechanism. Using this approach, a 
geometry independent implementation is possible. Figure 

5 illustrates that no processing elements are observed but 
rather slots, where the maximum number of slots equals 
the number of physical ports. By contrast, from the 
application point of view, more than one port can be used 
by one configuration.  



 
Figure 4. Parameterizable Dynamic Reconf. 

Processor Architecture 
 
The data ports in Figure 5 are bidirectional, where the 

transfer protocol of the data driver can send and receive 
data from all ports in parallel. Finally, since we are not 
dealing with the physical location of each area unit, it 
remains unnecessary to take care of the geometrical 
relation of the connected port to the configured area units. 
The same holds for the area units, configured for one 
application, among each other. It is assumed that a well 
defined floorplan protects from unforeseen arising 
problems concerning the area constraints. Therefore, the 
configuration driver’s task is merely to check the 
availability of the area and the desired port, whereas it 
isn’t necessary to check, if the chosen area and the port 
are compatible in terms of their geometrical location on 
chip. 

Referring to Figure 3, it can be seen that these tasks are 
executed by the drivers. The whole simulation is triggered 
by the configuration management. User defined 
configuration requests are processed in a serial order 
where the actual configuration bit stream is loaded right at 
the request time or just after demanded ports and area are 
available. 

 
Figure 5. Processor’s Application view 

 
This request time has to be specified before the 

simulation. It is intended to emulate any kind of user 
interaction, interrupts or any unpredictable requested 
service routine. Dependent on the bit stream size and the 
bandwidth, calculated from bit width and the frequency of 
the configuration port, the configuration driver can 
exactly maintain real configuration timing. All important 
time stamps are logged and can later contribute to a 
statistical performance analysis.  

Once parameterized, the user can implement its own 
algorithms for configuration and data exchange. The 
simulator can than be used not just to simulate different 
architectures, but mainly to model and simulate the 
dynamic and partial reconfiguration of applications, 
running in real systems, all of this in a fast and practical 
way. All data about chip area usage, reconfiguration 
delaying and data exchanging performance are generated 
automatically, making the analysis phases shorter as 
usual. 

  

4. Use Case 
 

For testing purposes, different processors have been 
examined and case studies have been implemented on the 
simulator. The selection was decided on top of available 
information for the examined reconfigurable processor. It 
was not only necessary to having collected information 
about the physical constraints of the processor, but also 
information about performance and timing of already 
mapped configurations and data processing were 
important. In the following, without loss of generality a 
coarse grained array, which is called the eXtreme 
Processing Platform (XPP) architecture [16] is chosen and 
examined in greater detail. This processor consists of 
configurable ALUs that communicate via a packet 
oriented, automatically synchronized communication 
network. Table 1 shows some parameters from the XPP II 
array that are implemented in the simulator model. All of 
the parameters are set in the processor model before 
system simulation startup. 

To be able to validate the simulation results, existing 
tables of already mapped applications were taken. Table 2 
shows the algorithms and their parameters. They have 
been implemented in the configuration driver in the order 
as shown by the application index.  

frequency 200 MHz 

number of ALUs 

(coarse grained elements) 

8*8= 64 

ports 4 IOs of 2*16 bit 

 total configuration bitstream 16kbyte 

configuration bitstream for one 

area unit 

0,25kbyte per ALU 

configuration bitwidth 42 

Table 1. Processor parameter of the XPP array 
 



Right after simulation startup, the configuration driver 
is checking the user requests that are implemented in a 
configuration list. If the user request time is equal to the 
actual time stamp, the configuring procedure will start 
where the duration is dependent on the earlier defined 
parameters of the processor and the size of the bit stream. 

app. 

index 

application configuration 

time 

used 

area 

free 

area 

1 Fir filtering 4000 cycles 64 0 

2 IIR filtering 4000 cycles 64 0 

3 Multichannel 
viterbi 

1340 cycles 22 42 

4 Fourier 
transform 

1250 cycles 20 44 

5 Adapt 
beamforming 

1625 cycles 26 38 

     
app. 

index 

number of 

configurations 

Performance 

(ops per 

cycle) 

used 

ports 

 

1 1 128  4  

2 1 128 2  

3 2 43 1  

4 3 40 1  

5 2 52 1  

Table 2. Parameter of the application/ 
algorithms for 8x8 XPP 
 
Just after a single configuration is finished, the 

configuration driver triggers the data driver to notify the 
readiness of the configuration. The data driver is now able 
to start sending data to the proper ports. These ports are 
locked until being released again by the end of transfer 
signal of the data driver. After the notification of the 
configuration driver, the configured area will be released 
again. For any further configuration requests, feedback 
from the processor is demanded by the configuration 
driver. Feedback can be: occupied area or ports. This way, 
the consistency of the configured parts of the chip is 
assured. The simulation will be finished, when no more 
configuration requests are located in the request queue 
and no more data is being processed. Finally, with the 
help of the generated statistics, area occupation and 
timing analysis can be performed easily. Just to give an 
example: the multiplication of the frequency with the 
configuration time in clock cycles. This results in the real 
configuration time for each application as given in Table 

2.  
Finally, these values can be compared with the statistics 

that are generated by the simulator after the simulation.  
 

5. Results 
 

Some performance results were generated automatically 
by the PReProS, without the user writing any additional 
command. The results are presented below. Table 3 
presents the performance referring to the data ports of the 
simulated system based on the XPP architecture. 

 

application #ports sending 

data rate 

(MB/sec.) 

receiving 

data rate 

(MB/sec.) 

Fir filtering 4 3200 3200 

IIR filtering 2 1600 1600 

Multichannel 
viterbi 

1 800 800 

Fourier 
transform 

1 800 800 

Adapt 
beamforming 

1 800 800 

    

application data 

sent 

(bytes) 

data 

received 

(bytes) 

total data 

rate 

(MB/sec.) 

Fir filtering 6400 6400 6400 

IIR filtering 1600 1600 3200 

Multichannel 
viterbi 

400 400 1600 

Fourier 
transform 

400 400 1600 

Adapt 
beamforming 

1600 1600 1600 

Table 3. Data ports performance of the XPP 
processor 

 
These results present a reasonable accuracy when 

compared to other related works, which made these 
measurements on chip [16].  

The configuration performance can be seen on Table 4. 
This table shows the time stamp of request (cfg_request), 
configuration (config), start, and end of execution for 
each application. With this information the configuration 
and the response time for each application can be 
clarified. It depends directly on configuration bitstream 
size and on the chip usage of the specific moment. The 
FIR algorithm, for example, having 16Kbytes of 
configuration bitstream, took 1.9ms from its request until 
its configuration on chip. On the other hand, the Fourier 
transform algorithm, with a configuration bitstream of 
5Kbits, needed only 0.6ms for the configuration. 

application t (cfg_request) t (config) t (start) 

Fir filtering 10 ns 1915 ns 2020 ns 

IIR filtering 1925 ns 3830 ns 3930 ns 

Multichannel 
viterbi 

3840 ns 4495 ns 4595 ns 

Fourier 
transform 

4505 ns 5105 ns 5205 ns 

Adapt 
beamforming 

5115 ns 5890 ns 5995 ns 
 

    

application t (end) config 

bitstream 

(bits) 

config 

rate 

(MB/sec.) 

Fir filtering 4020 ns 16000 8400 

IIR filtering 4930 ns 16000 8400 

Multichannel 
viterbi 

5095 ns 5500 8400 

Fourier 
transform 

5705 ns 5000 8300 

Adapt 
beamforming 

8000 ns 6500 8400 

Table 4: Configuration timing and performance 



 
More details about chip utilization can be found in the 

figures below. Figure 6 presents timing, when each 
application is configured on chip and how many ALUs 
each one is using at the moment. It is of interest to 
observe the parallelism of the application execution on 
chip. For example, the IIR works together with FIR and 
later with Viterbi, after that it is removed from chip, 
leaving space for the other applications. 

 
Figure 6: Chip area utilization by each 

application 
On Figure 7 it is possible to see the amount of used 

resources of the chip. The XPP processor was simulated 
containing 144 ALUs, instead of the mentioned 64. In this 
way more parallel configurations can be simulated. The 
free area is marked by the darker area in the picture. By 
investigating these results, the best parallel performance 
and hence the best processing power and efficiency of the 
simulated processor can be achieved. It helps the designer 
to reevaluate his/her algorithms and implementation 
strategy, or if the selected architecture should be changed 
to better target his needs. 

 

6. Final Considerations 
 

This paper presents a general purpose partially 
reconfigurable processor simulator, named PReProS. Its 
intention is to support hardware as well as software 
designers. Hardware designers take benefit from the 
possibility of the simulators ability to quickly change 
processor parameters, whereas software designers can 
investigate the end of simulation statistics to reorganize 
their configuration scheduler, where the statistics help in 
the choice of the best cost/benefit configuration area that 
should be available on chip, or in the choice of the target 
architecture itself. This approach helps to easily model 
and simulate complex systems in a very short timeframe. 

As further work, these capabilities are being considered 
to be executed by an embedded processor. It would be 
possible to analyze the system resources and dynamic 
behavior at run-time, enabling faster and more intelligent 

decisions. These features will be potentially used by 
different heterogeneous dynamically reconfigurable 
platforms supported by European research projects, like 
Morpheus (http://morpheus.arces.unibo.it), 4S 
(www.smart-chips.org) and Aether (www.aether-ist.org). 
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