
Optimization of Area and Performance by Processor-Like Reconfiguration

Tobias Oppold, Sven Eisenhardt, Wolfgang Rosenstiel

Department of Computer Engineering
University of Tuebingen

Sand 13, 72076 Tuebingen, Germany
crc@informatik.uni-tuebingen.de

Abstract

It is well known that the area efficiency of a digital cir-

cuit can be improved by reconfiguration due to the reuse

of resources. In this paper, we show that this benefit can

be achieved for a wide range of applications if the recon-

figuration can take place within each clock cycle, and we

quantify the benefit by area estimations from a synthesiz-

able architecture model. Although reconfiguration typically

involves a decrease of performance, we show how perfor-

mance can actually be increased by redirecting communi-

cation through the time domain. This increase is quantified

by estimations from a silicon-proven commercial architec-

ture and its associated compiler.

1. Introduction

Reconfigurable systems provide the ability to reuse ar-

chitectural resources over time. This reuse is enabled by a

variety of architectures using different models of reconfig-

uration [4, 15]. For statically reconfigurable architectures

(e.g. Xilinx XC4000 FPGAs), execution must be inter-

rupted for the reconfiguration process and reuse typically

happens in the range of minutes or even much longer.

Dynamically reconfigurable architectures (DRAs) can be

reconfigured during run-time to enable a higher degree of

reuse. DRAs include partially reconfigurable (e.g. Xilinx

Virtex FPGAs), pipeline reconfigurable (e.g. PipeRench

[3]), and multi-context architectures (e.g. DPGA [5]).

More recently, a growing number of commercial coarse

grained architectures with more or less different models of

reconfiguration appeared on the market (NEC-DRP, PACT-

XPP, IPFlex-DAP/DNA, MathStar-FPOA, to name just a

few). Such architectures are often available as parameter-

izable IP-cores for System-on-Chip design rather than as a

1-4244-0910-1/07/$20.00 c©2007 IEEE.

off-the-shelf product. Some of these architectures can be

reconfigured within one clock cycle. We call such architec-

tures processor-like reconfigurable architectures.

For lack of standardized benchmarks, it is hard to say

which of the existing reconfigurable architectures provides

the best performance/cost ratio for a large set of applica-

tions. This paper is focused on the costs and benefits of

processor-like reconfiguration in terms of silicon area and

performance compared to other models of reconfiguration.

To emphasize the aspect of reconfiguration, we try to mask

out other features like the width of the data path or the op-

erations supported by the functional units.

We show that by processor-like reconfiguration the area

requirements of a coarse-grained reconfigurable IP-core can

be optimized considerably while meeting a given perfor-

mance constraint. For this purpose we use our modifiable

and synthesizable architecture model (Configurable Recon-

figurable Core, CRC) that allows it to generate architecture

instances with the number of contexts and processing ele-

ments (PEs) being customized for a single application un-

der a given performance constraint. The cell area of such a

core is estimated at the gate-level and compared to a recon-

figurable core with only one context and the number of PEs

also being customized for the application.

The modifiable CRC model enables a detailed evalua-

tion of area which we can not accomplish with commercial

architectures since detailed area information is usually not

available. On the other hand, using the stable tool chain of

commercial architectures enables the evaluation of complex

applications more efficiently. Since NEC’s DRP (Dynami-

cally Reconfigurable Processor) architecture [9] is very sim-

ilar to the CRC model with respect to run-time reconfigura-

tion [10], we can use the silicon-proven DRP and its asso-

ciated tools [13] to get additional evaluation data.

The DRP compiler in particular provides timing infor-

mation including the effects of placement and routing. We

therefore use the DRP system to demonstrate that the time

needed for processor-like reconfiguration can be compen-

interconnect network

context

memory

register

set
FU

Figure 1. General CRC model (a) and
overview of the CRC-A template (b).

sated by redirecting communication through the time do-

main and that a processor-like reconfigurable architecture

can even outperform architectures that are not reconfigured

during run-time.

The CRC model and the DRP architecture are described

in the next section. In Section 3, we present our evalu-

ation approach including techniques for mapping applica-

tions. Related work is also discussed in that section. Area

and performance evaluations are presented in Section 4 and

5, respectively.

2. Architecture Model

The CRC model was developed to represent a wide range

of processor-like reconfigurable architectures. In its most

general specification, only a few features are defined. As

depicted in Fig. 1, it consists of a rectangular array of pro-

cessing elements (PE) that are connected by a reconfig-

urable interconnect network. Each PE consists of a func-

tional unit (FU) for word-wide arithmetic and logic opera-

tions, a register set, and a context memory that defines sev-

eral configurations for the PE. A context is selected by a

control unit which can vary significantly for the various ar-

chitectures. So does the interconnect network and therefore

both are not further specified in the general CRC model.

Based on that general specification we have mapped the

operations and control structures of several applications de-

scribed in C onto the CRC model. The model was succes-

sively augmented with features that enable the execution

as proposed by the application mapping. These features

are implemented as a parameterizable architecture template.

We denote this template as CRC-A since it is the first out of

a set of architecture templates that we implemented in Ver-

ilog.

Fig. 2 depicts the features that are common to the DRP

architecture and the CRC-A template. The interconnect net-

work is subdivided into word-wide data channels and 1-bit

status signals but not further detailed. For the FU and the

PE

registers

context

memory

FU

FSM

clk

interconnect network
control unit

word-wide

1-bit

registers

Figure 2. Features common to the CRC-A
template and the DRP architecture.

registers, the word-wide data flow is also separated from the

1-bit signals. The output of the FU can be stored in a regis-

ter and it can be fed into the interconnect network to execute

two or more operations in a chain of FUs. For the control

unit, it is only specified that it implements a finite state ma-

chine (FSM) controlled by the 1-bit status signals and that

an entry of the context memory is selected by the FSM at

the beginning of each clock cycle.

2.1. CRC-A Architecture Template

Fig. 1(b) shows the topology of the interconnect network

and the control unit for the CRC-A template. Each PE fea-

tures its own control unit and the interconnect network im-

plements a nearest-neighbor (NN) network. The PEs at the

borders of the array use the NN-network for I/O.

For the CRC-A template we have implemented a num-

ber of RT-level components (FUs with and without mul-

tiplier, NN-networks with one or two data channels, etc.)

that can be combined in various ways so that different ar-

chitecture instances can be synthesized and analyzed in a

highly automated flow with reasonable effort. To create ar-

chitecture instances, the template is configured by selecting

RT-level components and setting parameters of the Verilog

code (e.g., the word length and the number of contexts).

2.2. NEC-DRP

For the DRP architecture, there is one control unit (“state

transition controller”) for an array of 8x8 PEs as depicted

in Fig. 3. The array is surrounded by embedded memory

blocks.

The interconnect network implements a more sophisti-

cated topology compared to the simple NN-network of the

CRC-A template. In reference to Fig. 2, the word length of

the DRP is 8 bits and there are 16 contexts. A DRP “core”

is composed of one or more such DRP “tiles”. We use the

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

state transition controller

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

PE PEPEPE PE PEPEPE

mem mem mem mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem

mem mem mem mem

Figure 3. A tile of the DRP architecure [9].

DRP-1 prototype core that consists of 8 tiles, i.e. 512 PEs in

total, and is manufactured in a 150 nm CMOS technology.

The compiler for the DRP partitions an application writ-

ten in C into several configuration contexts automatically.

NEC developed this compiler based on their hardware syn-

thesis tool Cyber [16].

3. Evaluation Approach

As outlined in the introduction, our evaluation of area re-

quirements is based on the analysis of reconfigurable cores

customized for a single application associated with a perfor-

mance constraint. The design of such a core highly depends

on how the application is eventually mapped to it. Mapping

techniques to take advantage of processor-like reconfigura-

tion are therefore crucial for our evaluation approach and

described in detail later in this section.

We consider applications written in C and focus espe-

cially on techniques for scheduling operations for execution

in different contexts. These techniques minimize the num-

ber of required FUs by reusing them in different clock cy-

cles which also leads to reuse of the interconnect network.

Based on the application mapping, we create a customized

instance of the CRC model that features only the required

number of FUs and contexts.

By applying only techniques that do not take advantage

of processor-like reconfiguration, the same application can

be mapped to a reconfigurable core with only one context

and the number of FUs also being customized for the ap-

plication. For comparison with a customized processor-

like reconfigurable architecture, we implement such a core

as a coarse-grained architecture with the lowest overhead

for reconfiguration in terms of area, i.e., as a statically re-

configurable variant of the CRC model. For such an ar-

chitecture, resources could be reused by multiplexing the

data path using PEs that provide multiplexer functionality.

This is commonly done by high-level synthesis tools target-

ing fine-grained FPGAs which can implement multiplex-

ers efficiently. Like other coarse-grained architectures, the

CRC-A template provides multiplexing as one of the mutu-

ally exclusive operations of the FU and therefore supports

this technique not efficiently. Since it often results in even

higher resources requirements it is not considered in our ap-

proach.

For the evaluation of performance, the interconnect de-

lay must not be neglected since it is dominant for the ar-

chitectures that we consider [13]. Our tools for placement

and routing are currently in a rather experimental state [2].

Since these steps influence the performance results signifi-

cantly, we use NEC’s DRP and its stable tool chain for the

performance evaluation. However, the DRP compiler does

not provide all scheduling techniques that we apply. We

therefore provide the scheduling of the operations in the C

code for the DRP compiler by breaking up data dependen-

cies and rearranging the original source code where neces-

sary. By this approach, we can bypass the scheduler of the

DRP compiler and use the compiler for technology map-

ping, placement, and routing.

To specify a performance constraint for the evaluation,

we use the initiation interval (II), i.e. the number of clock

cycles that are available to consume a set of input values.

For the area evaluation, the clock frequency is not specified

and we rather compare IP-cores based on clock cycles. For

the performance evaluation, we try to achieve the maximum

clock frequency for a given II.

3.1. Techniques for Data Flow

The most interesting aspect of processor-like recon-

figurable architectures is certainly multi-context execution

since it provides an additional degree of freedom for appli-

cation mapping compared to statically reconfigurable archi-

tectures. Early work on fast reconfiguration has been pre-

sented by DeHon [5] and Trimberger et al. [14]. But the

principle of multi-context execution is actually well known

for much longer from von Neumann architectures where the

context is changed with each instruction. To realize multi-

context execution, we schedule all instructions that can be

executed in parallel for execution in one control step. Each

of these control steps is assigned to a separate context and

the contexts are executed sequentially.

But the instruction level parallelism of C descriptions

is usually too low to satisfy reasonable performance con-

straints for streaming applications and loop kernels. We use

pipelining to increase the parallelism for such applications

as it is commonly done for statically reconfigurable archi-

tectures.

If the II allows distributing the operations over multi-

ple clock cycles, we combine the previous techniques as

multi-context pipelining. This corresponds to the software

pipelining techniques used by software compilers. Modulo

scheduling algorithms are used by software compilers for

pipelining loops at various IIs. Mei et al. present a modulo

c-step 1

xy

xr

xg

xb

c1

c2

c3

c5

c4

c-step 2

c-step 3

c-step 4

c-step 5

c-step 6

Figure 4. Scheduling of operations for II=3.

scheduling algorithm for mapping loop kernels to coarse-

grained reconfigurable architectures in [8].

To illustrate multi-context pipelining, Fig. 4 shows the

result of an ASAP (as soon as possible) scheduling for II=3

for the following example:

xy = (c1 ∗ xr + c2 ∗ xg + c3 ∗ xb + c4) >> c5;

c1 to c5 are constants and xr, xg, and xb are the inputs

that are read in three different control steps (c-steps) due to

the II constraint. The sequential execution of all six c-steps

would result in II=6. Therefore, c-steps 1 & 4 are executed

in parallel in context 1, and c-steps 2 & 5 and 3 & 6 are

executed in parallel in context 2 and context 3, respectively,

to achieve II=3.

3.2. Techniques for Control Flow

Branches in the control flow can be resolved by spatially

multiplexing the data path. This transforms the control flow

graph of an application into a pure data flow graph that can

be further processed as described above. This approach is

commonly used for reconfigurable architectures, e.g. by

Huang and Malik [7], and is also well known from hard-

ware design.

Alternatively, the branches can be assigned to different

contexts, i.e. temporally multiplexed, to minimize the num-

ber of required FUs without impact on the performance

since always only one of the branches is actually needed

during execution. We call this technique multi-context con-

trol flow branches which corresponds to the conditional

jump instructions of von Neumann architectures. In [12],

Rivera et al. propose a configuration scheduler for condi-

tional branch execution which assumes that the computation

is interrupted for switching configurations. For processor-

like reconfigurable architectures like the CRC model and

NEC’s DRP architecture, reconfiguration is part of the reg-

ular execution. Branches in the control flow can thus be

handled at a finer granularity.

As an extension of the previous technique we use

pipelined multi-context control flow branches. Using this

technique, a pipeline stage may change its state and context

depending on the results of a previous stage. If the target

architecture features only one control unit for all PEs, an

excessive number of states can be required to ensure a sus-

tained II for all combinations of branches in the application.

The CRC-A template, featuring a control unit in each PE,

can implement independent FSMs for each pipeline stage so

that the number of states and contexts is minimal since the

possible combinations have not to be considered at compile

time.

4. Evaluation of Area

To quantify the area trade-off between statically and

processor-like reconfigurable architectures, we used in-

stances of the CRC-A template based on four different PEs.

To estimate the area of statically reconfigurable architec-

tures, the control unit and the context memory have been

removed from the PEs of the CRC-A template and each PE

features one data and one status register. The configuration

data to control the operation performed by the FU as well

as the interconnections is directly taken from a shift register

inside the PE which is otherwise used to transfer the config-

uration data from outside the core to the control unit and the

context memory of the PE. For the processor-like reconfig-

urable architectures, PEs of the CRC-A template with 2, 4,

and 8 contexts and the same number of states in the control

unit as well as data and status registers were used. For all

instances the word length is set to 32 bit, each FU features a

16x16-bit multiplier, and the NN-interconnect provides one

data channel and one channel for status signals.

We synthesized the PEs using a commercial synthesis

tool targeting a 130 nm standard cell technology. For all

PEs a target clock speed of 200 MHz was specified. The

area of a PE is estimated as the cell area of the resulting

gate-level netlist. To obtain area estimations for an architec-

ture instance being composed of several identical PEs, we

summed up the area of all PEs being part of the instance.

Table 1 shows the results of applying the techniques de-

scribed in the previous section to four example applications.

For each application, different techniques are used result-

ing in different requirements in terms of needed FUs and

contexts. For each application/technique pair, the area of a

customized IP-core featuring exactly the required number

of FUs is provided in the table. The number of contexts

provided by the core, and with it the number of states and

registers, is rounded up to the next power of two. The inter-

connect network and register requirements are not consid-

ered and we set the number of PEs equal the number of re-

quired FUs. Since the interconnect resources can be reused

in different contexts, similar penalties resulting from poor

application techniques II FUs contexts area of IP-core area compared

with min. # FUs to static arch.

rgb2yiq pipelining 1 21 1 0.610 mm2 100.0 %

rgb2yiq multi-context pipelining 3 7 3 0.322 mm2 52.7 %

ellipf pipelining 1 26 1 0.756 mm2 100.0 %

ellipf multi-context pipelining 2 13 2 0.468 mm2 61.9 %

ellipf multi-context pipelining 4 7 4 0.322 mm2 42.6 %

ellipf multi-context pipelining 8 4 8 0.280 mm2 37.0 %

rgb2cmyk spatially multiplexed data path / pipelining 1 9 1 0.262 mm2 100.0 %

rgb2cmyk pipelined multi-context control flow branches 1 7 3 0.322 mm2 132.0 %

resampling spatially multiplexed data path / pipelining 1 39 1 1.134 mm2 100.0 %

resampling pipelined multi-context control flow branches 1 28 2 1.007 mm2 88.9 %

Table 1. Area results for example applications.

routability can be expected for the different architectures

customized for one application. The implications of exces-

sive register requirements are discussed in [10]. The last

column in the table compares this IP-core to a customized

statically reconfigurable architecture that uses the same II

but does not reuse the FUs.

4.1. Data Flow Examples

The first example in table 1 (rgb2yiq) is the loop kernel

of the RGB to YIQ conversion which is part of the EEMBC

Consumer Benchmark [6]. The loop kernel contains 21

operations without branches in the control flow so that 21

FUs are required for fully pipelined execution (II=1). Since

processor-like reconfiguration can not be applied in this

case, the customized IP-core features a single context and

no control unit and thus requires 100 % of the area required

for the statically reconfigurable alternative. If the three in-

put values are read in three different clock cycles (II=3), the

operations can be distributed over these three clock cycles

using multi-context pieplining. This requires seven FUs and

three contexts resulting in an IP-core that features seven PEs

with four contexts. The IP-core for II=3 requires about half

the area of a statically reconfigurable architecture since the

latter does not benefit from the increased II and therefore

has the same area as for II=1.

The second example (ellipf) is the fifth order elliptical

wave filter from the high-level synthesis benchmark suit [1].

It contains 26 operations without branches in the control

flow. The results in the table are similar to the rgb2yiq ex-

ample. To quantify the area penalty resulting from contexts

being implemented in an IP-core but not used by the appli-

cation, a more detailed evaluation of the ellipf example is

depicted in Fig. 5. For this additional evaluation, IP-cores

with 2, 4, and 8 contexts as well as a static alternative were

targeted for all four IIs (1, 2, 4, and 8). In contrast to the ap-

proach described in Section 3, the minimal number of FUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8

initiation interval

c
e

ll
 a

re
a

 [
m

m
2
]

statically reconfigurable

2 contexts

4 contexts

8 contexts

Figure 5. Detailed evaluation of the ellipf ex-
ample.

was determined based on the II and the context constraint

for each II/architecture pair.

For II=1, all architectures require 26 FUs so that the stat-

ically reconfigurable architecture yields the lowest area and

the IP-core with 8 contexts requires more than double the

area. For II=2, the core with 4 contexts already requires

less area than the statically reconfigurable architecture al-

though only two contexts are used by the application. The

8-context architecture pays off only for II=4 and II=8.

4.2. Control Flow Examples

The third example in table 1 (rgb2cmyk) is the loop ker-

nel of the RGB to CMYK conversion which is also part of

the EEMBC Consumer Benchmark. It contains three if/else

statements but only few operations within the branches:

c=255-r; m=255-g; y=255-b;

if (c<m) { k=(c<y)?c:y; }

else { k=(m<y)?m:y; }

c=c-k; m=m-k; y=y-k;

The lowest area for II=1 is achieved if the branches in

the control flow are spatially multiplexed in the data path

and the execution is pipelined afterwards. By mapping the

branches to different contexts, two FUs can be saved. One

FU can be saved because the two compare operations c<y

and m<y can be assigned to different contexts sharing one

FU. The other FU can be eliminated by moving the final

calculation of c, m, and y into the branches so that in each

branch one subtraction can be replaced by constant assign-

ment to zero. But 7 PEs with 4 contexts require more area

than 9 PEs of a statically reconfigurable architecture so that

processor-like reconfiguration does not pay off for this ex-

ample.

The fourth example (resampling) is an implementation

of the resampling stage of the ray casting algorithm as de-

scribed in [11]. In this example, two different filter kernels

to perform the resampling are implemented. During execu-

tion, only one of the filters is applied so that they can be

mapped to two different contexts without increasing the II.

For this example, only a moderate area improvement can

be achieved by processor-like reconfiguration compared to

a statically reconfigurable architecture because the opera-

tions are not evenly distributed over the two branches (28

vs. 11).

The two control flow examples show that it is

highly application-dependent whether mapping control flow

branches to multiple contexts leads to an area improvement

over a statically reconfigurable architecture. However, it is

a useful technique in general if the targeted IP-core features

multiple contexts, e.g., because other parts of the applica-

tion are mapped to different contexts.

5. Evaluation of Performance

For deep sub-micron process technologies, the intercon-

nect delay contributes significantly to the overall delay of

digital circuits. In addition to the metal wire delays, the re-

configurable routing switches contribute to the interconnect

delay of reconfigurable architectures.

Processor-like reconfiguration allows it to utilize recon-

figuration as a third dimension for routing by redirecting

communication through the time domain. By doing so, the

connection lengths may be reduced as illustrated in Fig. 6

for an 8-point fast Fourier transform (FFT) implementing

the Cooley-Tukey algorithm. When moving from II=1 to

II=2, the longest connections can be reduced to nearest-

neighbor connections by executing the upper and the lower

half of the graph in different contexts.

By doubling the number of contexts again (II=4), the

connections in the middle of the graphs can also be reduced

to nearest-neighbor connections. Due to the regularity of

the Cooley-Tukey algorithm, the same considerations hold

for n-point FFTs at different IIs in general (with n and II

II=1

II=2

II=4

Figure 6. Reduction of an 8-point FFT’s inter-
connect requirements by redirecting commu-
nication through the time domain.

being powers of two).

For the following experiments, pipelining and multi-

context pipelining based on operations as described in Sec-

tion 3.1 are applied and the resulting clock frequency is es-

timated. To further increase the clock frequency, additional

registers could be inserted between operations to pipeline

communication over the interconnect network. This dimin-

ishes the impact of interconnect delay in terms of through-

put but also increases the latency and requires a larger num-

ber of registers which already was a limiting factor for the

application mapping.

5.1. Experiments

As explained in Section 3, we used NEC’s DRP and its

associated tools for the performance estimations. For the

experiments we used a simplified version of the FFT. This

simplified FFT uses integer arithmetic (add and subtract op-

erations) for the nodes of the graphs in Fig. 6 while the

Cooley-Tukey algorithm uses complex arithmetic (multiply,

add, and subtract). This is done to focus on the interconnect

delay, since otherwise the mapping of the complex opera-

tions to the integer FUs of the DRP would require too many

PEs to implement larger FFTs.

Fig. 7 shows the clock frequencies achieved for simpli-

fied FFTs with 2 to 16 input values (corresponding to 2-

point to 16-point FFTs) at different IIs. The clock frequen-

cies are estimated by the DRP compiler after placement and

routing. For the simplified FFT with 16 input values, place-

ment and routing was not possible at II=8 for lack of regis-

ters and therefore no data point is provided in the figure.

Except for the simplified FFT with 2 input values, for

which the interconnect requirements are already very low

for II=1, a noticeable gain of clock speed can be observed

when the II is increased from 1 to 2 and to 4. For II=8, the

120

130

140

150

160

170

180

190

1 2 4 8

initiation interval

fr
e

q
u

e
n

c
y

 [
M

H
z
]

2 input values

4 input values

8 input values

16 input values

Figure 7. Clock frequencies for the simplified

FFT.

clock speed drops below the speed achieved for II=4. The

irregular characteristics of the curves are discussed in the

following.

The pipelined (II=1) and multi-context pipelined (II ≥ 2)

execution was achieved by breaking up data dependencies

in the C code of the FFT. But we did not force a placement

of the operations as proposed by Fig. 6. This allows the

DRP compiler to optimize the placement within one con-

text, which in turn leads to a mapping of overlapping op-

erations (Fig. 6, II ≥ 2) to different FUs possibly far away

form each other. Therefore the speed-up is enabled inde-

pendently of the placement but solely by the reduction of

routing complexity. This reduces the benefit of redirecting

communication through the time domain compared to the

idealized placement suggested by Fig. 6.

In addition to that, the irregular placement of the oper-

ations prohibits storing intermediate results locally in the

register sets of the PEs that actually perform the operations.

Therefore a great number of PEs is used for storing interme-

diate results only and the placement becomes constrained

by the availability of registers rather than by the availability

of FUs. This becomes in particular obvious for II=8, where

placement and routing was not possible anymore (16 input

values) or the clock frequency drops below the frequency

for II=4 (8 input values).

5.2. Comparison to Statically Reconfig-
urable Architectures

To estimate whether the results for II ≥ 2 are superior to

a statically reconfigurable architecture, it is assumed that a

statically reconfigurable architecture similar to the DRP is

available. This architecture would be the same as the DRP

except for the ability to switch contexts, i.e. the control

unit (“state transition controller” in Fig. 3) and the context

memory are removed. For this architecture the clock speed

can be calculated by equation 1, whereas the clock speed

for a processor-like reconfigurable architecture is calculated

by equation 2, with trec, tFU , and tic being the delay im-

posed by reconfiguration, calculation, and communication

over the innterconnect network, respectively.

clkstatic = 1/(tFU + tic) (1)

clkproc−like = 1/(trec + tFU + tic) (2)

A processor-like reconfigurable architecture outperforms

a statically reconfigurable architecture for II=n if inequal-

ity 3 is true, with tic,static being the interconnect delay of a

statically reconfigurable architecture and tic,II=n being the

interconnect delay of a processor-like reconfigurable archi-

tecture for II=n.

tFU + tic,static > trec + tFU + tic,II=n (3)

For the statically reconfigurable architecture, tic,static

can not be decreased by redirecting communication through

the time domain, i.e. it is constant for all IIs of one simpli-

fied FFT with a given number of input values. We assume

that tic,static is equal to tic,II=1 as estimated for the DRP so

that the break-even point can be expressed by inequality 4.

tFU + tic,II=1 > trec + tFU + tic,II=n (4)

Since we can obtain performance estimations for the

DRP only for trec + tFU + tic,II=n as a whole, inequal-

ity 4 must be rewritten as inequality 5 in order to estimate

the performance of a statically reconfigurable architecture.

(trec + tFU + tic,II=1)− trec > trec + tFU + tic,II=n (5)

By transforming inequality 5 to inequality 6, the perfor-

mance estimations of our experiments can be used to deter-

mine the break-even point in terms of time that can be spent

for reconfiguration.

trec < (trec+tFU +tic,II=1)−(trec+tFU +tic,II=n) (6)

In [13], the time to select a context of the DRP is reported

to be “less than a nanosecond.” But the time to select a con-

text is not exactly the same as trec since the latter is related

to an architecture where control unit and context memory

are completely absent. Table 2 summarizes the calculated

right hand side of inequality 6 based on our experiments. In

four of the seven cases trec can be more than one nanosec-

ond and still the processor-like reconfigurable architecture

would outperform an architecture that can be reconfigured

only statically.

II=2 II=4 II=8

4 input values 0.58 ns 1.23 ns n/a

8 input values 0.05 ns 1.04 ns 0.52 ns

16 input values 1.15 ns 1.67 ns n/a

Table 2. Delay penalty that may be imposed
by reconfiguration in order to outperform a

statically reconfigurable architecture for the
simplified FFT.

6. Conclusions and Further Work

The experiments presented in this paper show how to

take advantage of processor-like reconfiguration to optimize

area and performance. The presented techniques for map-

ping C code do not rely on application-specific features but

are applicable to a wide range of applications if the I/O is

constrained by the surrounding system or if/else-statements

in the source code split up the control flow.

The comparison of statically and processor-like recon-

figurable architectures customized for a single application

demonstrate that a significant reduction of area can be

achieved by fast reconfiguration while meeting I/O con-

straints. In ongoing work, we explore architectures that are

optimized for an application domain since reconfigurable

architectures are usually not intended to be used for just a

single application.

Redirecting communication through the time domain

can compensate for the performance overhead imposed by

processor-like reconfiguration or even outperform a stati-

cally reconfigurable architecture. We have deliberately se-

lected FFT as the example application for its regular com-

munication structure. Experiments with other applications

actually resulted in slower clock frequencies when the II is

increased. On the other hand, placement and routing was

not targeted on optimizing communication through the time

domain and we believe that the potential of this paradigm is

not fully exploited yet. We therefore work on compiler tech-

niques which combine scheduling, placement, and routing

and take into account the delay estimations from the CRC

model.

7. Acknowledgment

This work is funded by DFG under RO-1030/13 within

the ‘Priority Program 1148’ which is focused on reconfig-

urable computing systems.

References

[1] Benchmarks for the 1992 High Level Synthesis Workshop.

http://ftp.ics.uci.edu/pub/hlsynth/HLSynth92.

[2] J. Brenner, J. van der Veen, S. Fekete, J. Oliveira Filho, and

W. Rosenstiel. Simultaneous scheduling, binding and rout-

ing for processor-like reconfigurable architectures. In In-

ternational Conference on Field Programmable Logic and

Applications (FPL), Madrid, Spain, 2006.
[3] S. Cadambi, J. Weener, S. C. Goldstein, H. Schmit, and

D. E. Thomas. Managing pipeline-reconfigurable FPGAs.

In ACM/SIGDA International Symposium on Field- Pro-

grammable Gate Arrays (FPGA), 1998.
[4] K. Compton and S. Hauck. Reconfigurable computing: a

survey of systems and software. ACM Computing Surveys,

34(2):171–210, June 2002.
[5] A. DeHon. DPGA utilization and application. In Inter-

national Symposium on Field-Programmable Gate Arrays

(FPGA), 1996.
[6] Embedded Microprocessor Benchmark Consortium

(EEMBC). http://www.eembc.org.
[7] Z. Huang and S. Malik. Exploiting operation level paral-

lelism through dynamically reconfigurable datapaths. In De-

sign Automation Conference (DAC), 2002.
[8] B. Mei, S. Vernalde, D. Verkest, H. DeMan, and R. Lauw-

ereins. Exploiting loop-level parallelism on coarse-grained

reconfigurable architectures using modulo scheduling. In

Design, Automation and Test in Europe (DATE), 2003.
[9] M. Motomura. A dynamically reconfigurable processor ar-

chitecture. In Microprocessor Forum, 2002.
[10] T. Oppold, S. Eisenhardt, and W. Rosenstiel. Design and val-

idation of execution schemes for dynamically reconfigurable

architectures. In International Conference on Field Pro-

grammable Technology (FPT), Bangkok, Thailand, 2006.
[11] T. Oppold, T. Schweizer, T. Kuhn, W. Rosenstiel, U. Kanus,

and W. Straßer. Evaluation of ray casting on processor-like

reconfigurable architectures. In International Conference on

Field Programmable Logic and Applications (FPL), Tam-

pere, Finland, 2005.
[12] F. Rivera, M. Sánchez-Élez, M. Fernández, R. Hermida,

and N. Bagherzadeh. Configuration scheduling for condi-

tional branch execution onto multi-context reconfigurable

architectures. In International Conference on Field Pro-

grammable Logic and Applications (FPL), Madrid, Spain,

2006.
[13] T. Toi, N. Nakamura, L. Jing, Y. Kato, T. Awashima, and

K. Wakabayashi. High-level synthesis challenges and solu-

tions for a dynamically reconfigurable processor. In Inter-

national Conference on Computer-Aided Design (ICCAD),

Madrid, Spain, 2006.
[14] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A

time-multiplexed FPGA. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM),

1997.
[15] F.-J. Veredas-Ramirez, M. Scheppler, and H.-J. Pfleiderer.

A survey on reconfigurable computing systems: Taxonomy

and metrics. In IV Workshop on Reconfigurable Computing

and Applications (JCRA), Spain, 2004.
[16] K. Wakabayashi and T. Okamoto. C-based SoC design flow

and EDA tools: An ASIC and system vendor perspective.

IEEE Transactions on CAD of Integrated Circuits and Sys-

tems, 19(12):1507–1522, 2000.

