
Interconnect Customization for a Coarse-grained Reconfigurable Fabric ∗

Gayatri Mehta1, Justin Stander1, Mustafa Baz2, Brady Hunsaker2, and Alex K. Jones1

1 Electrical and Computer Engineering 2 Industrial Engineering
University of Pittsburgh, {hunsaker,akjones}@engr.pitt.edu

Abstract

This paper describes several system-level interconnec-
tion strategies for a coarse-grained reconfigurable fabric
designed for low-energy hardware acceleration. A small,
representative sub-graph for signal and image processing
applications is used to predict the success of mapping larger
applications onto the fabric device with these different in-
terconnection strategies, which include 32:1, 8:1, 5:1, 4:1,
3553:1 (3:1, 5:1, 5:1, 3:1) and 355:1 (3:1, 5:1, 5:1) cardi-
nalities. Three mapping techniques are presented and used
to complete mappings onto several of these fabric instances
including a mixed integer linear programming technique, a
constraint programming approach, and a greedy heuristic.
We present results for area (in number of required rows),
power, delay, and energy as well as run times for mapping
a set of signal and image processing benchmarks onto each
of these interconnects. Our results indicate that the 5:1 in-
terconnect provides the best overall results and does not re-
quire any additional hardware resources than the baseline
4:1 technique. When compared with other implementation
strategies, the reconfigurable fabric energy consumption,
using 5:1-based interconnect, is within 5-10X of a direct
ASIC implementation, is 10X better than an Virtex II Pro
FPGA and is 100X better than an Intel XScale processor.

1 Introduction

Reconfigurable devices mitigate many of the problems
encountered with the development of Application Specific
Integrated Circuits (ASICs) for hardware acceleration. For
example, reconfigurable devices amortize the rapidly in-
creasing mask and non-recurring engineering (NRE) costs
over many more generic devices. Computer Aided Design
(CAD) flows are often simplified for these devices. Thus,
the design cycle is much reduced, which can significantly
decrease the time to market.

∗This work was partially supported by the Technology Collaborative.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

The tradeoff for using these reconfigurable devices
is a compromise in performance and most notably
power/energy consumption. To reduce the overhead of us-
ing a reconfigurable device, particular care must be given to
designing the system-level interconnect of the device. It is
the interconnect that largely determines the power and per-
formance characteristics of the device (see Section 2.1).

This paper describes a system-level interconnect predic-
tion strategy for the SuperCISC low-energy reconfigurable
fabric target. In previous work, the fabric architecture was
developed based on multi-bit functional units and multi-bit
routing structures configured through multiplexers [13]. As
part of the previous work, an architectural design space ex-
ploration was completed that determined parameters for the
functional units and routing. However, the structure of the
routing was considered only briefly. In this paper, a com-
monly recurring graph structure from applications in the
multimedia and signal processing domains that is difficult
to map onto the fabric is used to drive the interconnect strat-
egy. This graphical structure is applied to several intercon-
nection strategies within the fabric architecture to help de-
termine their viability for larger applications.

The remainder of this paper is organized as follows: Sec-
tion 2 provides some background material on the Super-
CISC project and the mapping concept including a study of
related work within these areas. The system-level intercon-
nect architectures and evaluation strategies are described in
detail in Section 3. Section 4 presents the three mapping
strategies employed in this work. Power, delay, and energy
results are presented in Section 5. Section 6 discusses sev-
eral conclusions and considers future work.

2 Background and Literature Review

2.1 System Overview

While FPGAs are the most commonly used general pur-
pose reconfigurable fabrics, they exhibit poor power char-
acteristics. The dynamic power consumption in FPGAs has
been shown to be dominated by interconnect power. For ex-
ample, the reconfigurable interconnect in the Xilinx Virtex
II FPGA consumes more than 70% of the total power dis-

sipated in the device [16]. Contributing to the static power
consumption of FPGAs are the SRAMs for programming
the state of the device. This is exacerbated by the neces-
sity of bit-level control for the computational and switch
blocks. Additionally, because the device is designed to han-
dle sequential logic, clock trees and storage registers are re-
quired, which also contribute to power consumption. Thus,
to create a low-power computational fabric, it is desirable to
remove or reduce as many of these power consuming char-
acteristics as possible.

The SuperCISC low-power fabric was designed to op-
erate within the SuperCISC processor architecture sum-
marized in [10]. The idea is to accelerate the high inci-
dence code segments (e.g. loops) that require large portions
of the application runtime, called kernels, while assigning
the control-intensive portion of the code to a core proces-
sor. These kernels are converted into entirely combinational
hardware functions generated automatically from the C us-
ing a design automation flow [9]. Using hardware predica-
tion, a Control Data Flow Graph (CDFG) can be converted
into a Super Data Flow Graph (SDFG) [9]. SDFG based
hardware functions operate asynchronously from the pro-
cessor core. Also by removing the sequential logic makes
the hardware fabric for implementing the SDFG much sim-
pler.

Due to certain assumptions of the SuperCISC flow, such
as entirely combinational hardware, original computation
from C implying 8, 16, and 32-bit operation granularities, it
is possible to reduce high power characteristics of an FPGA
for a more efficient reconfigurable device. Moving to multi-
bit functional units significantly reduces routing complexity
and leads to a lower power device. Removal of sequential
logic eliminates clock trees and local storage also contribut-
ing to power reduction. Thus, the interconnect prediction in
Section 3 begins with these assumptions.

2.2 Reconfigurable Fabric Target

ALU(1,1) ALU(1,2) ALU(1,3) ALU(1,W)

Interconnect

ALU(2,1) ALU(2,2) ALU(2,3) ALU(2,W)

Interconnect

ALU(H,1) ALU(H,2) ALU(H,3) ALU(H,W)

Figure 1. The fabric model is comprised of
ALUs and a reconfigurable interconnect.

SDFGs retain a data flow structure allowing computa-

tional results to be computed in one arithmetic and logic
unit (ALU) and flow onto others in the system. The pro-
posed reconfigurable fabric model is designed to mimic this
computational style. As shown in Figure 1, ALUs are orga-
nized into rows or computational stripes within which each
functional unit operates independently. The results of these
ALU operations are then fed into interconnection stripes
constructed using multiplexers. The model does not include
registers or other internal storage, and does not permit feed-
back between stripes.

The fabric model was implemented in parameterized
VHDL using the generic capability of the VHDL lan-
guage. For example, each ALU in the fabric can be rep-
resented by a number of parameters such as the number of
operands O, data width of each operand DW , the number of
operations OP . The multiplexer cardinality C determines
the width of each multiplexer and as a result connectivity of
the interconnection stripe.

Mux1(R,0)

ALU(R-1,0) ALU(R-1,W)

Mux2(R,0)

ALU(R-1,0) ALU(R-1,W)

Mux1(R,W-1)

ALU(R-1,0) ALU(R-1,W)

Mux2(R,W-1)

ALU(R-1,0) ALU(R-1,W)

ALU(R+1,0) ALU(R+1,W)

Figure 2. Interconnect stripe feeding ALUs.

The fabric size is determined with the parameters speci-
fying the width of the fabric W , height of the fabric H , and
data width DW . W dictates the number of ALUs in each
computational stripe. The number of multiplexers in each
interconnection stripe is a function of both W and O as the
input to each ALU operand is configurable. This is shown
in Figure 2. H determines the number of computational and
interconnection stripes in the fabric model. Thus, with the
parameterizable model, a fabric contains WxH DW -wide
ALUs segregated into H computational stripes. These com-
putational stripes are interconnected by H − 1 stripes each
containing OxW DW -wide C : 1 multiplexers.

As the fabric model was designed for implementation
of SDFGs, in addition to the removal of need for internal
storage, one of the operations implemented within the ALU
is hardware predication. This operation requires a third,
single-bit operand to be included in the ALU. This bit spec-
ifies which of the two input operands to propagate to the
output, acting as a selector. Thus, the interconnection stripe
contains a third set of single-bit C : 1 multiplexers for con-
trolling this operand.

2.3 Acceleration with Custom Hardware

Recently, a tremendous amount of effort has been de-
voted to the area of reconfigurable computing particularly

stressing the development and use of coarse-grained fab-
rics for computationally complex tasks. Many architectures
have been proposed and developed both in academia and
industry during the last decade such as MATRIX, Garp,
RaPiD, PipeRench, Elixent, Pact XPP, and the FPOA.

Unlike MATRIX [14] whose basic functional unit con-
sists of an 8-bit ALU and a SRAM, the basic functional unit
in our fabric is a coarse-grained ALU having variable data
width. However, for this paper we fix the ALU data width to
be 32-bits. Our approach differs from GARP [8] insomuch
as we tailor the hardware co-processor to the application
domain. Compared to RaPiD [4], which has smaller RAMs
and registers to store data and intermediate results, our fab-
ric is purely combinational. The programmable connections
in the data-path interconnect in our fabric are modeled as
multiplexers somewhat similar to those in RaPiD. Unlike
RAP [5] whose ALUs are arranged in a chess board style,
the fabric model used in our research has a striped configu-
ration like that of PipeRench [15] but without register files.

Several methods have been proposed in the past few
years for design space exploration of reconfigurable ar-
chitectures [1, 2, 6]. However, these methods are either
too technology-dependent or too architecture-dependent.
Bossuet, et al [3] proposed a design space exploration
method that can be used to cover a wide domain of re-
configurable fabrics. They used the architectural processing
use rate and the communication hierarchical distribution as
metrics to investigate a power-efficient architecture. In con-
trast, our work studies the impact of varying the intercon-
nect strategy based on a representative sub-graph to reduce
the power/delay of coarse-grained reconfigurable architec-
tures.

2.4 Mapping Problem Statement

In order to use our fabric with a given benchmark cir-
cuit, it is necessary to map the circuit onto the fabric. Such
a mapping consists of an assignment of operators in the cir-
cuit to ALUs of the fabric such that the logical structure
of the circuit is preserved and the parameters of the fabric
are respected, particularly the width, height, and intercon-
nect design. This mapping problem is central to the use of
the fabric, and we consider it in several forms described as
follows. Our approaches for solving the mapping problems
appear later in Section 4. All of the problems assume a fixed
fabric width and interconnect design.

Minimum Size Mapping: In order to reduce power con-
sumption, it is desirable to use as few rows in the fabric as
possible. Given a fabric width, fabric interconnect design,
and circuit to be mapped, the Minimum Size Mapping prob-
lem is to find a mapping that uses the minimum number of
rows in the fabric. The mapping may use pass gates as nec-
essary.

Feasible Mapping: Given a fully-specified fabric and a

circuit, Feasible Mapping is the problem of identifying any
mapping that preserves the logical structure of the circuit
and respects the fabric parameters. Note that for a given
height, width, and interconnect design, some circuits may
have no feasible mapping.

Feasible Mapping with Fixed Rows: One of the more
complicated parts of creating a mapping is the introduction
of pass gates to fit the row-wise structure of the fabric. A
successful approach that we have used is to work in two
stages. In the first stage, pass gates are introduced heuris-
tically and operators are assigned to rows so that all edges
go from one row to the next. The second stage assigns the
operators to columns so that the fabric interconnect is re-
spected. This second stage is called Feasible Mapping with
Fixed Rows. Note that depending on the interconnect de-
sign, there may or may not exist such a feasible mapping.

Optimal Graded-Cost Mapping: In this problem, we
assume that a full interconnect is available in the fabric, but
we assign different costs to each ALU depending on what
size of interconnect it needs for its inputs. Interconnects
with larger fan-in are given a higher cost than those with
lower fan-in, on a graded scale. The problem is to find a
mapping with minimum total cost. Our reason for investi-
gating this problem is to see how often large interconnects
are needed and to gain insight into possible interconnect de-
signs. We will solve this problem and show the results in
Section 3.2.

3 System-level Interconnection

A fundamental problem that we explore in this paper is
the Fabric Design Problem: Given a set of representative
benchmarks, determine a good fabric design. This is a sub-
jective problem in that it may involve tradeoffs between the
interconnect design and the size of the fabric.

3.1 Benchmark Driven Interconnect

Architectural innovations are often developed in some-
what of a vacuum, without consideration of the tools needed
to program the architectures and without consideration of
the needs of the applications to run on the architectures. For
a reconfigurable fabric such as the architecture described
here, the temptation is to create an interconnect that has a
regular structure. However, depending on the needs of the
applications to be implemented, this regular structure may
not be appropriate.

As we describe in Section 2.2 our reconfigurable fab-
ric consists of a multiplexer-based interconnect. Based on
our initial design space exploration studies, a 4:1 intercon-
nect was selected to create enough flexibility in the routing
while reducing power consumption and delay in the fab-
ric [12, 13]. An example of this interconnection is shown in
Figure 3. Each operand of the ALU has a multiplexer in this
configuration, including the third operand for the predica-

A B C D E F

G H I J K L

M N O P Q R

(a) Problem graph.

A B

G H

(b) Standard.

A B

G H

(c) Top shifted right.

A B

G H

(d) Top two shifted right.

A B

G H

(e) Bottom shifted left.

Figure 4. A problem graph and different ways to overlap node pairs with 4:1 connectivity.

ALU

Multiplexer

ALU
2

ALU
1

ALU
3

ALU
4

ALU
0

Figure 3. Connectivity using 4:1 multiplexers.

tion operation. In this configuration, there are four possible
locations to read the input operands from the previous row.

While many structures can be successfully mapped using
this interconnection strategy, this configuration is somewhat
limiting, as it provides only a 4-way fanout from one node
to other nodes in the circuit. Additionally, a subgraph that
appears frequently in signal and image processing applica-
tions is shown in Figure 4(a). Between the first and sec-
ond rows, this graph consists of three pairs of nodes (A,B),
(C,D), and (E,F) that communicate with three other pairs
of nodes (G,H), (I,J), and (K,L) in the subsequent stage.
However, between the second and third stage nodes G-H
are grouped into three different pairs (G,I), (H,K), and (J,L),
which communicate with three new pairs in the third stage
(M,N), (O,P), and (Q,R). While separately, either of these
rows could be implemented with the configuration in Fig-
ure 3, the edges connecting H with P and J with R are not
possible in this configuration.

A B C D E F

G H I J K L

M N O P Q R

Figure 5. Attempt to embed the graph from
Figure 4(a) into 4:1 multiplexer interconnect.

The graph in Figure 4(a) is not a directed minor of the
graph created by the connectivity in the fabric supplied by
the 4:1 multiplexers as oriented in Figure 3. Two edges

represented by dashed lines, as shown in Figure 5, are not
available in this structure. This is not solved by permuting
the nodes. Figure 4 presents all four orientations possible
for two pairs of nodes with dependency edges under this
connectivity. Unfortunately, none of these configurations
can be overlapped with another pair of nodes, which shows
that permutation of the nodes is not possible. To effectively
map this structure, what is required is effectively a 5:1 mul-
tiplexer. However, a true 5:1 multiplexer would require an
additional control bit and an additional level of logic, which
is undesirable from a power and performance perspective.

ALU

Multiplexer

ALU
2

ALU
1

ALU
3

ALU
4

ALU
0

Multiplexer

Multiplexer

Figure 6. Schematic for a 5:1 multiplexer
equivalent using 4:1 multiplexers

The connectivity shown in Figure 6 is a compromise that
allows an emulation of a 5:1 multiplexer without increas-
ing the architectural complexity beyond 4:1 multiplexers.
In this case, the three internal ALUs, 1-3, are shared on
both operand’s multiplexers. The outermost ALUs, 1 and 5,
are only available on the left and right operand multiplexer,
respectively. The rationale for this is that if an operand is
placed to the far left or right ALU, the other operand can-
not occupy the same space, thus there is no conflict for the
resource. The biggest limitation to this approach is that for
non-commutative operations such as subtract, there is some
restriction as to which operand may be retrieved from the
far left or far right.

As shown in Figure 7, it is relatively easy to embed the
graph from Figure 4(a) into the connectivity provided by
Figure 6. Based on our study of several applications graphs,
we have found that the limited 5:1 connectivity provides a
good baseline to relatively easily map. The limitation of

A B C D E F

G H I J K L

M N O P Q R

Figure 7. Embedding the graph from Fig-
ure 4(a) with the connectivity in Figure 6.

non-commutative operation mapping can be overcome by
providing a separate operation that executes the operation
right to left in addition to left to right.

3.2 Optimizing the Interconnect

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gsm idct
row

idct
col

adpcm
enc

adpcm
dec

sobel laplace

Benchmark

3:1 mux 5:1 mux 9:1 mux 17:1 mux

Figure 8. Multiplexer cardinality usage.

While we have demonstrated that our 5:1 multiplexer
is an effective interconnect for signal and image process-
ing applications, it may be possible to further optimize this
strategy. We mapped our benchmark set to a fabric with
fully interconnected stripes (e.g. any ALU from a previous
stripe could be connected to any ALU in the current stripe).
Using a mixed-integer linear programming (MILP)1 formu-
lation that provided an increasing penalty to using 5:1, 9:1,
and 17:1 routes or higher, we created the multiplexer us-
age statistics in Figure 8. The IP technique eliminated need
for nearly all multiplexers greater than 5:1 for most of the
cases.

Consider the goal to replace one-third of the 5:1 multi-
plexers with 3:1 multiplexers, built from mirrored 2:1 mul-
tiplexers. Now, consider a structure where we have two
5:1 multiplexers adjacent, followed by a 3:1 which is re-
peated. We call this a 355:1 interconnect. The graph from
Figure 4(a) can be directly mapped.

If we increase the goal to replace one-half of the 5:1 mul-
tiplexers with 3:1 multiplexers, the first case to be consid-
ered is alternating both types of multiplexers. If we con-
sider the possible pair communications from Figure 4, with

1We use the MILP and IP interchangably to refer to an mixed-integer
linear program.

the inclusion of 5:1 multiplexers we can now also consider
the mirror of Figure 4(c) - 4(e) in addition to a few more
configurations such as the (H,K) and (O,P) node pairs from
Figure 4(a). To overlap any of these node pairs requires two
adjacent spaces with 5:1 multiplexer connectivity, which
explains in part why the embedding from Figure 7 is rel-
atively straightforward. However, it is possible to replace
half of the 5:1 multiplexers with 3:1 multiplexers and map
the graph if we alternate in groups of two. We call this a
3553:1 interconnect and the solution is shown in Figure 9.

A B C D E F

G I H J K L

M N O P Q R

Figure 9. Embedding the graph from Fig-
ure 4(a) into a 3553:1 interconnect.

4 Mapping Strategies

As discussed in Section 2.4, a central problem in work-
ing with the architecture we discuss here is that of mapping
a circuit onto the fabric. In this section we discuss the ap-
proaches we used to solving the various forms of the map-
ping problem.

4.1 Mixed Integer Linear Program

MILP is a common modeling and solution technique
for combinatorial optimization. We used MILP to solve
Feasible Mapping with Fixed Rows as well as for Opti-
mal Graded-Cost Mapping. The objective function used in
MILP is to minimize the number of required edges that are
outside the interconnect design. If the MILP formulation
finds a solution with objective value zero, then the solution
is a valid mapping for the given interconnect design. If the
optimal objective value is greater than zero, then there is
no feasible mapping for that interconnect design. We used
CPLEX 9.0 to solve the MILP. The details of the IP formu-
lation can be found in [11].

4.2 Constraint Program

Constraint programming is a modeling and solution
methodology based on the ideas of intelligent enumeration
and reduction of the search space through careful analysis of
constraints. It is most often applied to feasibility problems.
We developed a constraint program to solve the problem
of Feasible Mapping with Fixed Rows and then used this
model in a heuristic approach to Minimum Size Mapping.
The model was implemented in the open-source Mozart/Oz
environment. The details can be found in [11].

4.3 Greedy Heuristic

The Greedy Heuristic Mapper follows a top-down map-
ping approach to provide a Feasible Mapping for any given
benchmark. Starting with the top row, it completely places
each individual row using a limited look-ahead of two rows.
After each row is mapped, the mapper will not modify the
mapping of any portion of that row. While the limited in-
formation available to the mapper does not often allow it
to produce Optimal Mappings or Minimum-Size Mappings,
its relative simplicity provides a decidedly short runtime.
By default it tries to map the given benchmark to a fabric
with width equal to the largest individual row, and height
equal to the longest path through the graph. Although the
width is static throughout a single mapping, the height can
increase as needed. The details can be found in [11].

5 Results
In order to evaluate power and performance, a set of

core signal processing benchmarks were selected from Me-
diaBench benchmark suite including the ADPCM encoder
(enc), ADPCM decoder (dec), GSM channel encoder (gsm),
and the MPEG II decoder (row, col). We added the So-
bel (sob) and Laplace (lap) edge detection algorithms to the
benchmark suite. Using the SuperCISC compilation flow
[9], computational kernels were extracted for these appli-
cations and converted into SDFGs, which we used as our
benchmark circuits. These SDFGs were then mapped to
the fabric model using the IP program, constraint program,
and greedy heuristic as described in Section 4. We targeted
fabric hardware using 32:1, 8:1, and 4:1 multiplexers. We
also targeted 5:1, 3553:1 and 355:1 multiplexer-based in-
terconnects as described in Section 3. A detailed study of
varying other parameters of the fabric such as the bit-width
the ALUs can be found in [13].

Table 1 provides a summary of the area requirements
of the benchmarks mapped to the fabric using the differ-
ent multiplexing cardinalities and using the previously men-
tioned mapping strategies. Table 2 summaries the runtimes
required by the mapping algorithms for each multiplex-
ing cardinality. All items marked ‘-’ were not able to be
mapped. Once all benchmarks were mapped using a spe-
cific mapping technique to a fabric with a particular inter-
connect, the fabric size was fixed to the smallest size that
could fit all seven benchmarks.

In the subsequent sections we study the power, delay, and
energy impact of varying the interconnect strategy within
the fabric. To calculate the power and delay of the design,
the fabric was synthesized into an Oki cell-based ASIC de-
sign with a feature size of 0.16 µm using Synopsys Design
Compiler. The post-synthesis design was simulated in Men-
tor Graphics ModelSim to calculate the delay of each design
and these simulations were used as stimulus to the Synopsys
PrimePower tool to estimate the power consumption of the

Table 1. Final size (W x H) for various map-
ping strategies onto different interconnects.

gsm sob lap row col enc dec
32:1
Greedy 14x18 10x9 15x8 17x10 20x12 17x16 16x13
8:1
IP 20x18 14x9 20x8 19x10 20x13 20x16 20x13
Const. 18x18 13x9 17x9 18x10 20x13 19x16 16x13
Greedy 14x18 10x9 15x8 17x10 20x12 17x16 16x13
5:1
IP 19x18 17x9 20x8 17x10 20x13 20x16 20x13
Const. 18x18 13x9 15x9 18x10 20x13 18x16 16x13
Greedy 20x19 10x9 20x8 17x13 20x19 20x18 16x13
4:1
IP 20x18 16x9 15x8 - - - 19x13
Const. 18x18 13x9 18x10 20x13 20x17 19x19 16x13
Greedy 20x21 10x9 20x8 17x18 20x28 20x20 16x15
3553:1
IP 20x18 - 17x8 - - - 17x13
Const. 17x18 - 17x9 16x22 - - 16x13
Greedy 20x22 20x10 20x9 17x19 20x29 17x30 20x21
355:1
IP 20x18 20x9 15x8 - - - 20x13
Const. 16x18 11x9 16x11 17x10 - 18x16 16x13
Greedy 14x19 20x10 20x9 20x17 20x24 20x22 16x15

device. Energy was calculated by computing the product of
the power and delay of the design.

5.1 8:1 mappings

The size of the 8:1 multiplexer-based interconnection
fabric was set to 20x18 as each of the three mapping strate-
gies was able to map all seven benchmarks within a fabric
of this size. Table 3 summarizes the power, delay, and en-
ergy results for mapping to this particular fabric instance. In
most cases, the results are pretty consistent across all map-
pers.

5.2 5:1 mappings

While the greedy heuristic performs reasonably well for
8:1 mappings, it does not perform as well for 5:1 map-
pings. The first indication, is that while the constraint and IP
programming approach require no increase over the 20x18
fabric used in the 8:1 case, the greedy heuristic requires a
20x19 device. This leads to a power and delay increase. It
should be noted that this improvement comes at a cost of at
best a 10X additional mapping time. The summary of all
power, delay, and energy results are shown in Table 4.

5.3 4:1, 3553:1 and 355:1 mappings

One of the successes of the 5:1 mappings, described in
Section 5.2 is that with no additional architectural com-
plexity, the interconnect flexibility is much greater than the
baseline 4:1 multiplexing. This can be seen in Tables 1

Table 2. Runtime (seconds) of various map-
ping strategies onto different interconnects.

gsm sob lap row col enc dec
32:1
Greedy < 1 < 1 < 1 < 1 < 1 < 1 < 1
8:1
IP 514 37 13 460 894 306 155
Const. 1 < 1 27 1 10 1 1
Greedy < 1 < 1 < 1 < 1 1 4 < 1
5:1
IP 1801 6162 46 2049 7587 2746 960
Const. 1 < 1 38 27 5 213 1
Greedy 3 1 1 4 7 10 3
4:1
IP 2613 104 158 - - - 1257
Const. 1 < 1 62 87 307 86 1
Greedy 4 1 1 17 19 16 2
3553:1
IP 1351 - 181 - - - 539
Const. 25 - 23 512 - - 1
Greedy 48 1 2 8 25 64 7
355:1
IP 581 82 62 - - - 451
Const. 30 < 1 93 23 - 2 1
Greedy 2 < 1 < 1 4 7 7 3

and 2, where the numbers of required rows are consistently
lower for 5:1, and many 4:1 mappings are not possible to
be obtained in a reasonable amount of time using the IP
formulation. The results for mapping to 3553:1 and 355:1
multiplexing-based interconnect are shown in Table 5. Be-
cause the IP and constraint programming solutions were un-
able to map several instances, a fixed size device was unable
to be established and thus the power, delay, and energy re-
sults cannot be included. The results show that mappings to
these interconnects were difficult, and that all mappers re-
quired some compromise. The greedy heuristic was forced
to add too many rows that counteracted the savings due to
the simplified interconnect.

5.4 Fabric Technology Comparison

Figure 10 shows a comparison of the best energy results
for each type of interconnect, be it from the constraint, IP, or
greedy mapping approach. Based on these results, clearly
the 5:1 interconnect is the best overall solution for energy.

To provide some context, we compare the “best” fab-
ric architecture with 5:1 multiplexing interconnect to im-
plement the design on other digital hardware technologies,
shown in Figure 11. Delay of the FPGA-based design was
computed using post place-and-route simulation in Model-
Sim and power was estimated in Xilinx XPower using the
results of the delay simulations. The delay of the XScale
processor was calculated using the SimpleScalar ARM sim-
ulator and the XTREM [7] tool to estimate the power con-

Table 3. Power, delay, and energy results for
an 8:1 multiplexer-based interconnect.

gsm sob lap row col enc dec
Power (mW)
IP 22.19 5.68 4.42 35.74 31.87 20.68 3.52
Const. 22.27 5.81 5.03 36.57 31.95 19.84 3.38
Greedy 21.45 5.65 4.30 36.22 29.09 20.08 3.50
Delay (ns)
IP 48.4 28.6 22.2 37.5 47.2 39.5 35.4
Const. 48.4 28.6 25.4 37.5 47.2 39.5 35.4
Greedy 48.4 28.6 22.2 37.5 44.0 39.5 35.4
Energy (pJ)
IP 1110 244 172 1858 1753 910 151
Const. 1114 250 196 1902 1757 873 145
Greedy 1073 243 168 1883 1600 884 151

Table 4. Power, delay, and energy results for
a 5:1 multiplexer-based interconnect.

gsm sob lap row col enc dec
Power (mW)
IP 19.6 5.0 4.0 31.8 28.9 17.4 2.9
Const. 19.4 5.0 4.4 31.2 27.2 17.7 2.7
Greedy 19.3 4.7 3.9 39.4 33.4 18.0 2.7
Delay (ns)
IP 42.0 25.3 22.1 34.2 42.5 36.8 30.8
Const. 42.0 25.3 22.1 34.2 42.5 36.8 30.8
Greedy 43.7 26.6 23.4 40.6 49.0 38.0 32.1
Energy (pJ)
IP 843 188 137 1464 1415 662 107
Const. 832 185 150 1436 1334 672 100
Greedy 868 181 139 1889 1704 722 105

sumed by the processor. As before, energy is computed as
the product of the delay and power.

This chart is shown with a logarithmic scale for the en-
ergy. The energy required by the optimized fabric is within
about 5-10X of an ASIC implementation and is 10X better
than a Xilinx Virtex II Pro FPGA and 100X better than an
Intel XScale processor operating at 733 MHz. A more de-
tailed discussion of the tradeoffs of the reconfigurable fab-
ric versus the ASIC, FPGA and embedded processor imple-
mentations can be found in [13].

6 Conclusions
In this paper we describe several multiplexer-based sys-

tem level interconnection strategies (32:1, 8:1, 5:1, 4:1,
3553:1, 355:1) for a reconfigurable fabric that are predicted
to work well for signal and image processing applications.
The results presented here indicate that the 5:1 interconnect
provides the best overall results and does not require any ad-
ditional hardware resources than the baseline 4:1 technique.
When compared with other implementation strategies, the
reconfigurable fabric energy consumption, using 5:1-based
interconnect, is within 5-10X of a direct ASIC implementa-

Table 5. Power, delay, and energy results for
3553:1 and 355:1 interconnects.

3553:1 gsm sob lap row col enc dec
Power (mW)
Greedy 16.2 3.5 3.0 40.1 35.3 20.2 3.4
Delay (ns)
Greedy 50.1 27.8 24.6 52 63.0 52.0 43.5
Energy (pJ)
Greedy 937 183 146 2445 2259 1068 175
355:1
Power (mW)
Greedy 15.9 4.71 3.31 39.8 33.5 17.38 2.81
Delay (ns)
Greedy 44.43 27.8 24.6 43.09 55.23 41.84 32.05
Energy (pJ)
Greedy 795 207.24 135.71 2109.4 1876 782 123.64

0
500

1000
1500
2000
2500
3000
3500
4000
4500

adpcm
enc

adpcm
dec

idct
row

idct col gsm sobel laplace

Benchmark

Fabric (32:1 mux) Fabric (8:1 mux) Fabric (5:1 mux)
Fabric (4:1 mux) Fabric (3-55-3:1 mux) Fabric (3-55:1 mux)

Figure 10. Energy comparison of bench-
marks mapped to various interconnects.

tion, is 10X better than an Virtex II Pro FPGA and is 100X
better than an Intel XScale processor.

Our planned future work is to investigate further dif-
ferent interconnect structure patterns for reconfigurable ar-
chitectures. We also plan to improve the mapping tech-
niques and by doing so, we expect to further improve
power/performance results.

References

[1] P. Benoit, G. Sassatelli, L. Torres, D. Demigny, M. Robert,
and G. Cambon. Metrics for reconfigurable architectures
characterization: Remanence and scalability. In Reconfig-
urable Architecture Workshop, 2003.

[2] S. Bilavarn, G. Gogniat, J. L. Philippe, and L. Bossuet. Fast
prototyping of reconfigurable architectures from a C pro-
gram. In IEEE Symposium on Circuits and Systems, 2003.

[3] L. Bossuet, G. Gogniat, and J.-L. Philippe. Generic design
space exploration for reconfigurable architectures. In Proc.
of the Reconfigurable Architectures Workshop (RAW), 2005.

[4] C. Ebeling, D. C. Cronquist, and P. Franklin. Rapid - recon-
figurable pipelined datapath. In Proc. of FPL, 1996.

1

10

100

1000

10000

100000

1000000

adpcm
enc

adpcm
dec

idct
row

idct col gsm sobel laplace

Benchmark

ASIC (0.16um) Fabric (5:1 mux)(0.16um)
Virtex-2P (0.13um) Xscale (0.18um)

Figure 11. Energy comparison for various
hardware and software implementations.

[5] Elixent. The reconfigurable algorithm processor.
http://www.elixent.com/.

[6] R. Enzler, T. Jeger, D.Cottet, and G. Troster. High-level area
and performance estimation of hardware building blocks on
FPGAs. In Proc. of FPL: Forum on Design Language, 2000.

[7] C. Gilberto, M. Martonosi, J. Peng, R. Ju, and G. Lueh.
XTREM: A power simulator for the Intel XScale core. In
Proc. ACM LCTES, 2004.

[8] J. R. Hauser and J. Wawrzynek. Garp: A MIPS proces-
sor with a reconfigurable coprocessor. In K. L. Pocek and
J. Arnold, editors, IEEE Symposium on FPGAs for Cus-
tom Computing Machines, pages 12–21, Los Alamitos, CA,
1997. IEEE Computer Society Press.

[9] R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster,
S. Tung, and M. McCloud. Rapid VLIW processor cus-
tomization for signal processing applications using combi-
national hardware functions. EURASIP Journal on Applied
Signal Processing, 2006:Article ID 46472, 23 pages, 2006.

[10] A. K. Jones, R. Hoare, D. Kusic, G. Mehta, J. Fazekas, and
J. Foster. Reducing power while increasing performance
with superCISC. ACM Transactions on Embedded Comput-
ing Systems (TECS), 5(3):658–686, 2006.

[11] A. K. Jones, G. Mehta, J. Stander, M. Baz, and B. Hunsaker.
Interconnect predicition and customization for a hardware
fabric. IEEE Transactions on VLSI, submitted. preliminary
edition published in technical report TR-ECE-2006-07-001.

[12] G. Mehta, R. R. Hoare, J. Stander, and A. K. Jones. Design
space exploration for low-power reconfigurable fabrics. In
Proc. of the Reconfigurable Architectures Workshop (RAW),
2006.

[13] G. Mehta, J. Stander, J. Lucas, R. R. Hoare, B. Hunsaker,
and A. K. Jones. A low-energy reconfigurable fabric fo the
supercisc architecture. Journal of Low Power Electronics,
2(2), August 2006.

[14] E. Mirsky and A. Dehon. Matrix: A reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources. In Proc. of FCCM, April 1996.

[15] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and
R. R. Taylor. Piperench: A virtualized programmable data-
path in 0.18 micron technolog. In Proceedings of the IEEE
Custom Integrated Circuits Conference, 2002.

[16] L. Sheng, A. S. Kaviani, and K. Bathala. Dynamic power
consumption in virtex-II FPGA family. In FPGA, 2002.

