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Abstract1 
 

FPGAs are an appealing solution for the space-based 
remote sensing applications. However, in a low-earth 
orbit, configuration bits of SRAM-based FPGAs are 
susceptible to single-event upsets (SEUs). In this paper, a 
new protected CLB and FPGA architecture are proposed 
which utilize error detection and correction codes to 
correct SEUs occurred in LUTs of the FPGA. The fault 
detection and correction is achieved using online or 
offline fast detection and correction cycles. In the latter, 
detection and correction is performed in predefined 
error-correction intervals. In both of them error 
detections and corrections of k-input LUTs are performed 
with a latency of 2k clock cycle without any required 
reconfiguration and significant area overhead. The power 
and area analysis of the proposed techniques show that 
these methods are more efficient than the traditional 
schemes such as duplication with comparison and TMR 
circuit design in the FPGAs. 
 
 
1. Introduction 
 

SRAM-based field programmable gate arrays are 
being increasingly used to start new designs because of 
their growing density and speed, reconfigurability, shot-
design cycle and cost-effectiveness [1]. While the use of 
reprogrammable FPGAs offers a number of important 
advantages, these SRAM-based FPGAs are very sensible 
to heavy ion, proton and neutron induced single event 
upsets (SEUs) [3], [6], [9]. 

There are many available resources within an FPGA 
to perform various logic functions. The way in which 
these resources are utilized and interconnected is 
specified by the circuit design, also known as a 
configuration bitstream. The configuration bitstream 
determines which resources within the FPGA are used to 
implement a specific logic design. 
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The effect of the SEU on the configuration memory of 
an FPGA, would lead to a permanent error which remains 
in the FPGA until the next reconfiguration of a new design 
[4]. This permanent error may result in a logic error or 
routing error depending on which part of the configuration 
memory is affected. A logic error may lead to complement 
one of the entries of the Look-Up Tables (LUTs) 
modifying the functionality of the mapped logical function 
[8]. A routing error may lead to a signal getting misrouted 
or disconnected [5], [9]. 

Error detection and correction code (EDAC) is a well-
known technique for protecting storage devices against 
transient faults [7]. An example of EDAC is the Hamming 
code, which is useful for protecting memories against SEU 
because of its efficient ability to correct single upsets per 
coded word with reduced area and performance overhead. 

In this paper, we introduce three different schemes for 
detecting and correcting errors in configuration bits of the 
LUTs. These schemes can be applied at different level of 
FPGA structure: 1) FPGA-level, which every line of CLBs 
within the FPGA is protected, 2) CLB-level, which 
protection is performed for every CLB (a set of LUTs) and 
3) LUT-level, which protection is performed for every 
LUT. In these schemes, the error detection and correction 
is provided in one clock cycle and is independent to the 
number of CLBs located in SRAM-based FPGAs. 

The experimental studies show that using the proposed 
schemes in FPGAs, all single and double SEUs are 
detectable and single SEUs is correctable in just one clock 
cycle without any FPGA reconfiguration and is 
independent to the number of CLBs. Moreover, using the 
proposed schemes, the area and power overhead of the new 
circuit design is more efficient than the previous schemes 
such as duplication with comparison (DWC) [11]. 

The rest of this paper is organized as follows. Section 2 
presents some related work. Section 3 introduces the 
protection code and the proposed schemes for the FPGAs. 
The CLB architecture for fast detection and correction is 
presented in section 4. Section 5 calculates the probability 
of having multiple uncorrectable errors in protected Xilinx 
Viretex II FPGA family. Section 6 compares area, power 
and correction capability of the proposed technique with 
related work. Finally section 7 concludes the paper. 



2. Related work 
 

In order to overcome SEUs affecting the FPGA 
configuration memory, several fault-tolerance methods 
have been proposed in the past years. One of techniques, 
called scrubbing, is periodically reloading the whole 
content of the configuration memory [1]. By the use of 
readback and partial reconfiguration capabilities of 
FPGAs, a recovery system can be used [2]. Through the 
readback option, the content of the FPGA’s configuration 
memory is read and compared with the expected one, 
which is stored in a predefined memory located outside of 
the FPGA. If a mismatch is found, the correct information 
is downloaded in the FPGA’s configuration memory. 
During reconfiguration only the faulty portion of the 
configuration memory is overwritten. There are several 
fault-tolerant techniques that do not consider detection 
and correction occurred SEUs, but just aim at masking 
errors not to propagate elsewhere. These methods are 
proposed mainly by hardware redundancy.  

Triple Modular Redundancy (TMR) is a well-known 
fault-tolerant technique for preventing error propagation 
[3]. The TMR implementation uses three identical logic 
blocks performing the same task in parallel regarding to 
outputs being compared through majority voter. However, 
this solution enforces high area overhead, three times 
more input and output pins, high performance penalties 
[6]. Moreover, it may not be affordable to put redundancy 
in each and every module (or component) especially in 
embedded systems where power and area are important 
constraints. Another error mitigation technique which is 
based on modular redundancy and time redundancy has 
been proposed in [11] which uses Duplication with 
Comparison (DWC) and Concurrent Error Detection 
(CED) to create a fault-tolerant system. However, this 
method is depended on the logic of the circuit that is 
mapped on to the FPGA and suitable encoding and 
decoding functions for each such block 

 
 

3. Error detection and correction 
 

The proposed approach is to use SEC-DED codes in 
several separated LUTs to detect and correct the errors in 
a cluster of LUTs rather than to detect one LUT as in the 
case of DWC technique. Employing SEC-DED codes in 
the FPGA can be done at different grains: 
• To use protection codes in each horizontal (vertical) 

line of FPGA through CLBs (FPGA-level). 
• To use protection codes in each CLB (CLB-level 

protection). 
• To use protection codes in each LUT (LUT-level 

protection). 

We define the ratio of dividing number of protection code 
bits used in the FPGA by the number of FPGA bits that are 
protected as protection-granularity. 

The protection-granularity of the last case is greater 
than the other cases while the protection-granularity of the 
first case is less than the others. As the protection-
granularity of a protected FPGA increases, the probability 
of being an error in configuration bits of FPGA decreases. 
However, the area overhead, and therefore the power of the 
protected FPGA would be increased. Hence, there is a 
trade off between the area (and power) overhead and the 
fault-tolerant capability to protect an FPGA, that designers 
of the FPGA-based circuits should determine. 

Based on design and implement of mentioned cases, 
the second case with medium protection-granularity is 
suggested. In this scheme, for a cluster of N LUTs, the 
number of K LUTs are dedicated to check the errors of N 
LUTs and to correct the error in the case of single error in 
one of the N LUTs. Therefore, the following equation 
should be satisfied. 

 
N+K+1 <= 2K    (1) 

 
This means that for a cluster of N LUTs, about log(N) 

LUTs are needed for storing the protected codes and this 
overhead is very considerable with the DWC and TMR 
approaches which impose at least two and three times area 
and power overhead, respectively. It can be shown that, the 
bitwise protection coding is sufficient to detect and correct 
errors. Consider a line of 16 LUTs (N=16) that are 
protected by 5 extra LUTs (K=5), and each LUT maps m-
input boolean function. Let Di

 be the jth bit of ith LUTs. 
Therefore, the bitwise parity bits of the SEC-DED code is 
computed as follow. 
 

0356691011130 DDDDDDDDD  P ⊗⊗⊗⊗⊗⊗⊗⊗= ,  (2) 
146710111213141 DDDDDDDDD  P ⊗⊗⊗⊗⊗⊗⊗⊗= , (3) 

02367891014152 DDDDDDDDDD  P ⊗⊗⊗⊗⊗⊗⊗⊗⊗= , (4) 
1347891011153 DDDDDDDDD  P ⊗⊗⊗⊗⊗⊗⊗⊗= , (5) 

24589101112 4 DDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗=  ,        (6) 
 
where Pk is jth bit of the kth LUTs. 

When the protected FPGA is programmed, these 
protected bits are computed and stored in the protection 
LUTs. During testing period the new protected bits are 
computed and compared with the original stored ones. The 
result of this comparison, call syndrome, will indicate the 
incorrect bit position in a single error. In this protection 
code, there is an overall parity that computed by all bits. 
Using the syndrome and overall parity comparison, fault 
detection and correction is available. Double bit errors are 
detected when syndrome is not zero but the overall parity 
is zero.  In the case of single faults, the overall parity 



comparison is not zero and the syndrome indicates the 
location of fault occurrence bit. 

 
3.1. FPGA-level protection 
 

Figure 1 shows a simple example of the 
implementation of FPGA-level protection in which the 
protection codes are considered for a row of FPGA with 
four columns FPGA and the protected FPGA’s columns 
are increased to seven columns. The gray box show 
modifications needed to implement the protection code. In 
this scheme, the “Generate SEC-DED and Comparator” 
can be shared for all of the LEs inside of CLBs in a row 
of FPGA. At time of fault detection and correction, the 
contents of LUTs inside of one CLB row are read and the 
syndrome and overall parity are generated. Therefore, for 
testing each of LUTs, the detection and correction should 
be repeated 2k times where k is the input number of a 
LUT. Assume that each CLB has M LUTs, a k-bit counter 
is necessary to be located inside of each CLB for 
addressing each bit position of LUTs in parallel, and 
therefore, the results of each LUT would be checked by 
the SEC-DED generation codes. In this scheme, some 
modification can be applied for decreasing the area 
overhead of FPGA-level protecting. As each LUT inside 
of CLBs are checked by corresponded SEC-DED 
circuitry, therefore we need M different SEC-DED 
circuitry for each LUTs where M is the number of LUTs 
inside of CLBs. However, we can use just one SEC-DED 
circuitry and share it for all rows of LUTs. This make the 
area overhead to be decreased but the testing time of each 
CLB will be increased. We considered these two schemes 
with name of FPGA-level with and without shared 
circuitry in the experimental results. In order to 
implement this level of FPGA protection, several 
modifications are necessary in the x-channel connections. 
There are several direct lines namely direct, double, hex 
and long lines, in X and Y channels in Xilinx FPGAs 
which connect two CLBs that are one, two, six and one 
row far apart, respectively. These given lines in Xilinx 
FPGAs can be utilized for implementing the connections 
required for the protection code circuitry. Although 
available X-channel connections can be utilized for the 
circuitry of producing SEC-DED codes, however this 
cause the flexibility of X-channels in routing circuits 
inside of FPGA to be decreased. Hence, for implementing 
this level of protection, embedding several direct wires 
between information bits and circuitry of SEC-DED is 
desirable.  

It should be noted that in this scheme, the length of 
information bits which is used for protecting is based on 
the number of columns that FPGA has. This means that 
the protection capability of this scheme is significantly 
depended to FPGA size. For example, if the dimensions 

of FPGA increase, the protection capability of this scheme 
would decrease.  
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Figure 1. FPGA-Level protection: an FPGA with SEC-

DED protection CLBs 
 
3.2. CLB-level protection 
 

Utilizing SEC-DED codes can be applied for all of 
LUTs inside of a CLB. Figure 2 shows a CLB which is 
protected by protection code. B0, B1, B3 are LUTs 
required for storing the protection codes of B2, B4, B5 and 
B6 LUTs. In this case, all bits in the same significant bit 
positions in different LUTs are protected in the same 
significant bit positions in the protection blocks.  

In this architecture, since the information and 
protection bits are stored apart and in separated blocks 
(LUTs), therefore the probability of having more than 
double errors in each LUT of information and protection 
bits will be decreased significantly. In this case, all of 
multiple errors occurred in only one LUT of a CLB can be 
detected and corrected but if multiple errors occurred in 
different LUTs of a CLB in same bit positions, they may 
be detected providing that the number of errors is equal or 
less than two. 

In order to implementing this level of protection, a k-
bit counter is required to address different bit position of 
each LUTs. The detection and correction of errors in LUTs 
of a CLB can be achieved by 2k times of detection and 
correction for each bit inside of a LUT. The main 
difference between this level of protection and FPGA-level 
one is that the information bits in this scheme are much 
less than the other one. Moreover, all connections between 
information and protection bits are router inside of CLB 
internally and therefore this method is more modular than 
the previous one. However, the area overhead of this 
scheme is more than FPGA-level. The implementation of 
CLB-level protection codes can be done in two different 
cases with and without sharing the SEC-DED circuitry. In 
the case of sharing SEC-DED circuitry, area overhead of 
protection is decreased but the time of detection and 
correction of errors will be increased 2k times. 
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Figure 2. CLB-Level protection: a CLB with SEC-DED 

protection LUTs 
 

 
Figure 3. A dual-port 4-input LUT 

 
In figure 2, each 16×1 LUT is replaced by a dual-

read LUT shown in figure 3. Therefore, every CLB has 4 
additional input lines that consist of the four output lines 
of testing counter. The testing counter is a 4-bit counter, 
0-15 binary up-counter, provided either on FPGA chip or 
kept as a stand-lone counter, incremented once every 
clock cycle. In addition to the LUTs used by the circuit 
mapped to the FPGA, a few SEC-DED LUTs are also 
added to every CLB of FPGA. These SEC-DED LUTs 
store the pre-computed 16-bit SEC-DED check bits of the 
other LUTs of CLB. The architecture shown in figure 2 
performs at-speed detection and correction of single error 
of configuration bits of LUTs without disturbing the 
normal functioning of the FPGA. 
 
3.3. LUT-level protection 

 
Figure 4 shows employing SEC-DED codes used in a 

LUT.  The gray shapes in this figure show the 
modifications needed for implementing it in a LUT. In 
this scheme, each LUT in a FPGA has its own protection 
code and therefore all double errors inside of one LUT 
can be detected and all single errors inside of one LUT 
can be corrected. The area overhead of this scheme is 
more than the previous two schemes since each LUT has 
separated protection circuitry. 

 

 
Figure 4. LUT-level protection: a LUT with SEC-DED 

protection bits 
 
 

4. CLB architecture for detection and correction 
errors 
 

Based on these three mentioned protection levels, 
CLB-level protection is suggested for employing in 
FPGAs. Figure 2 shows the proposed technique applied on 
CLB architecture. The main reasons are that CLB-level 
protection is less complex than FPGA-level to layout the 
FPGA by manufacturers since the protection structure is 
localized in each CLB architecture and the protection code 
routings are inside of each CLB. Typically, manufacturers 
manually layout a single tile consisting of logic block and 
switch block and replicate them across the entire chip. 
Therefore, CLB-level and LUT-level protection schemes 
are better ones for implementing compared to FPGA-level. 
However, CLB-level protection is more reliable than LUT-
level, since the information bits that is protected by each 
check bits are distributed through several LUTs. So it can 
detect and correct multiple errors occurred in a LUT while 
in the LUT-level because of using protection codes for 
each LUT, only detecting double errors and correcting one 
error is achievable.  

Without loss of generality, we assume that FPGA 
design used for the fault tolerance is composed of 16 ×  16 
CLBs arranged in a square matrix and each CLB consists 
of 8 3-input LUTs. Table 1 shows different implementation 
of the mentioned schemes and compare them in terms of 
information and check bits, area, delay of detecting and 
correcting information bits and delay of testing whole 
FPGA. 

In this table, T8 and T16 are time requited for 
performing detection and correction of single error in 8 and 
16 bits, respectively. For each protection scheme, two 
cases of implementation are considered based on sharing or 
not sharing the hardware implementation for a group of 
similar information bits. For example, in the LUT-level 
with shared hardware, all LUTs inside one CLB are 



considered to share the hardware needed for encoding, 
decoding logics needed for SEC-DED code. FPGA-level 
protection scheme has less area overhead compared to 
CLB-level and LUT-level. However, FPGA-level testing 
time is more than other cases because it protects 
information bits more than others. Moreover, it is more 
complex to implement compared to others. CLB-level and 
LUT-level have same area and delay overhead, since the 
size of LUT and number of LUTs inside one CLB is same 
in the mentioned FPGA. However, CLB-level is more 
powerful in terms of correction multiple faults in one 
LUT. 

 
Table 1. Comparison of area and delay overheads and FPGA 

testing time for 16 ×16 FPGA (CLB size= 8 3-input LUTs) 
 

Level of 
protection codes 

# of 
information 
+ check bits 

area 
(µm2) 

delay 
(ns) 

FPGA 
testing 
delay 

FPGA-level 
(with shared HW) 16384+5120 3842304 12 64 T16 

FPGA-level 
(without shared HW) 16384+5120 4376576 12 T16 

CLB-level  
(with shared HW) 16384+8191 4225536 8 8 T8 

CLB-level  
(without shared HW) 16384+8191 6355742 8 T8 

LUT-level  
(with shared HW) 16384+8191 4116992 8 8 T8 

LUT-level  
(without shared HW) 16384+8191 6170624 8 T8 

 
5. Detection and Correction of multiple faults 
 

Based on the different levels of protections, the CLB-
level is the best level for the protection using SEC-DED 
method since it can detect multiple adjacent faults in the 
LUTs with good level of modularity and less complexity. 
Although the LUT-level can detect double errors and 
correct single errors in each LUT, however the cost of 
implementation of CLB-level is close to the LUT-level. 
We propose the CLB-level protection method to be used 
in the FPGA. In this case, any double faults in same 
significant bit position of LUTs of a CLB are detectable 
while single fault at each significant bit position of LUTs 
of a CLB is correctable. In this scheme, the probability of 
undetecting double errors inside of a FPGA will be 
decreased significantly.  

When double configuration upsets occurred, if they 
happened in same bit positions of LUTs of a CLB cannot 
be correctable. Let N be the number of LUTs in the device 
and each CLB composed of 8 4-input LUTs and CLB-
level protection is employed in the FPGA. The probability 
of two, three and four configuration upsets uncorrectable 
by this scheme are given by: 

 

,

2
192

2
12

1
16

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
N

N

p errorsbleuncorrecta

    (6) 

 

,

3
192

1
12

2
12

2
16

3
12

1
16

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
N

NN

p errorsbleuncorrecta

 (7) 

 

,

4
192

2
12

1
12

1
12

3
16

3
12

1
12

2
16

2
12

2
12

2
16

4
12

1
16

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
N

NNNN

p errorsbleuncorrecta

      (8) 
 

We computed these probabilities for a series of Xilinx 
FPGAs which are mentioned in Table 2. As this table 
shows, the probability of having 2 uncorrectable errors for 
the mentioned scheme is very low and this probability 
decreases when the size of FPGA increased. However, the 
probability of having three or four uncorrectable in FPGA 
is more than the probability of having two uncorrectable in 
FPGA because the employed protection code can correct 
single fault. It should be noted that in the real application 
the probability of occurring three and four errors is 
considerably less than the probability of occurring two 
errors. Therefore, if the correction of LUT contents 
happened in appropriate time slots, the content of LUTs 
will not be erroneous. 
 
6. Area and Power Comparison 
 

The CLB architecture shown in figure 2, parity-
protected, DWC and TMR FPGA architectures were 
synthesized with Synopsys® CAD tool and 0.18 micron 
CMOS technology to compare the area, power and delay 
requirements. The advantage and disadvantage of proposed 
architecture over standard DWC technique in terms of 
area, power, delay and additional configuration memory 
requirements are shown in Table 3. The area overhead of 
parity-protected CLB architecture is about 48 percent 
regarding to the area of simple CLB architecture. The area 
overhead of DWC and TMR methods are also about 79 and 
204 percent compared to the simple CLB architecture. 
Based on these results the area overhead of our proposed 
technique is less than DWC and TMR schemes. In the case 
of power consumption, the parity-protected CLB 
architecture consumes less power among the other 
protection schemes, but it can be only used for detecting 
errors. However, the power consumption of the proposed 
technique is less than the DWC and TMR schemes. This is 
expected since the implementation of the proposed 
hardware causes several extra check bits and routes to 
perform error detection and correction. 
 



7. Conclusions 
 

In this paper, we have presented a new FPGA 
architecture which detect and correct errors of LUT 
configuration bits. This is achieved by employing SEC-
DED codes in CLBs of FPGA architecture. Hence, three 
different implementation of SEC-DED based FPGA 
architecture were introduced and explored and the best 
one is proposed for implementing in FPGA. The 
analytical results have shown that using the proposed 
CLB architecture improves the reliability of CLB so that 
the probability of having two uncorrectable errors in a 
CLB is decreased significantly. The results of 
implementation comparison has shown that this method 
impose less area and power overhead compared to the 
previous fault-tolerant schemes such as duplication with 
comparison and triple modular redundancy schemes. 
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Table 2. The probability of multiple errors not being correctable for protected Xilinx Virtex II FPGAs 
Device No. of CLBs Prob. of having 2  

uncorrectable errors 
Prob. of having 3 
 uncorrectable errors 

Prob. of having 4  
uncorrectable errors 

XC2V40 8 ×  8 8.95E-004 1.30E-003 1.80E-003 
XC2V80 16 ×  8 4.48E-004 6.71E-004 8.95E-004 
XC2V250 24 ×  16 1.49E-004 2.28E-004 2.98E-004 
XC2V500 32 ×  24 7.45E-005 1.12E-004 1.49E-004 
XC2V1000 40 ×  32 4.47E-005 7.71E-005 8.95E-005 
XC2V1500 48 ×  40 2.98E-005 4.48E-005 5.97E-005 
XC2V2000 56 ×  48 2.13E-005 3.20E-005 4.26E-005 
XC2V3000 64 ×  56 1.60E-005 2.40E-005 3.20E-005 
XC2V4000 80 ×  72 9.95E-006 1.49E-005 1.98E-005 
XC2V8000 112 ×  104 4.92E-006 7.37E-006 9.83E-006 

 
Table 3. Comparison of area, power and configuration memory requirement for a CLB 

CLB architecture No. of 
LUTs 

Area  Power No. of 
SRAM 

bits 

Single 
Error 

Detection 

Double 
Error 

Detection 

Error 
Correction 

µm2 % µw % 
Standard FPGA (Virtex II) 8 10240 100 230 100 128 0% 0% 0% 
Protected FPGA with parity [7] 9 15258 149 331 144 144 100% 0% 0% 
Duplication with comparison 16 16282 179 525 228 256 100% 100% 0% 
TMR-based FPGA 24 31130 304 802 348 348 100% 100% 0% 
Our proposed FPGA 12 16506 161 532 231 160 100% 100% 100% 
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