
Fast SEU Detection and Correction in LUT Configuration Bits
 of SRAM-based FPGAs

Hamid R. Zarandi1,2, Seyed Ghassem Miremadi1, Costas Argyrides2, Dhiraj K. Pradhan2

1Department of Computer Engineering, Sharif University of Technology, Azadi Ave. Tehran, Iran

2Department of Computer Science, Bristol University, Bristol BS 1UB, UK
zarandi@ce.sharif.edu, miremadi@sharif.edu, costas@cs.bris.ac.uk, pradhan@cs.bris.ac.uk

Abstract1

FPGAs are an appealing solution for the space-based
remote sensing applications. However, in a low-earth
orbit, configuration bits of SRAM-based FPGAs are
susceptible to single-event upsets (SEUs). In this paper, a
new protected CLB and FPGA architecture are proposed
which utilize error detection and correction codes to
correct SEUs occurred in LUTs of the FPGA. The fault
detection and correction is achieved using online or
offline fast detection and correction cycles. In the latter,
detection and correction is performed in predefined
error-correction intervals. In both of them error
detections and corrections of k-input LUTs are performed
with a latency of 2k clock cycle without any required
reconfiguration and significant area overhead. The power
and area analysis of the proposed techniques show that
these methods are more efficient than the traditional
schemes such as duplication with comparison and TMR
circuit design in the FPGAs.

1. Introduction

SRAM-based field programmable gate arrays are
being increasingly used to start new designs because of
their growing density and speed, reconfigurability, shot-
design cycle and cost-effectiveness [1]. While the use of
reprogrammable FPGAs offers a number of important
advantages, these SRAM-based FPGAs are very sensible
to heavy ion, proton and neutron induced single event
upsets (SEUs) [3], [6], [9].

There are many available resources within an FPGA
to perform various logic functions. The way in which
these resources are utilized and interconnected is
specified by the circuit design, also known as a
configuration bitstream. The configuration bitstream
determines which resources within the FPGA are used to
implement a specific logic design.

1-4244-0910-1/07/$20.00 c2007 IEEE.

The effect of the SEU on the configuration memory of
an FPGA, would lead to a permanent error which remains
in the FPGA until the next reconfiguration of a new design
[4]. This permanent error may result in a logic error or
routing error depending on which part of the configuration
memory is affected. A logic error may lead to complement
one of the entries of the Look-Up Tables (LUTs)
modifying the functionality of the mapped logical function
[8]. A routing error may lead to a signal getting misrouted
or disconnected [5], [9].

Error detection and correction code (EDAC) is a well-
known technique for protecting storage devices against
transient faults [7]. An example of EDAC is the Hamming
code, which is useful for protecting memories against SEU
because of its efficient ability to correct single upsets per
coded word with reduced area and performance overhead.

In this paper, we introduce three different schemes for
detecting and correcting errors in configuration bits of the
LUTs. These schemes can be applied at different level of
FPGA structure: 1) FPGA-level, which every line of CLBs
within the FPGA is protected, 2) CLB-level, which
protection is performed for every CLB (a set of LUTs) and
3) LUT-level, which protection is performed for every
LUT. In these schemes, the error detection and correction
is provided in one clock cycle and is independent to the
number of CLBs located in SRAM-based FPGAs.

The experimental studies show that using the proposed
schemes in FPGAs, all single and double SEUs are
detectable and single SEUs is correctable in just one clock
cycle without any FPGA reconfiguration and is
independent to the number of CLBs. Moreover, using the
proposed schemes, the area and power overhead of the new
circuit design is more efficient than the previous schemes
such as duplication with comparison (DWC) [11].

The rest of this paper is organized as follows. Section 2
presents some related work. Section 3 introduces the
protection code and the proposed schemes for the FPGAs.
The CLB architecture for fast detection and correction is
presented in section 4. Section 5 calculates the probability
of having multiple uncorrectable errors in protected Xilinx
Viretex II FPGA family. Section 6 compares area, power
and correction capability of the proposed technique with
related work. Finally section 7 concludes the paper.

2. Related work

In order to overcome SEUs affecting the FPGA
configuration memory, several fault-tolerance methods
have been proposed in the past years. One of techniques,
called scrubbing, is periodically reloading the whole
content of the configuration memory [1]. By the use of
readback and partial reconfiguration capabilities of
FPGAs, a recovery system can be used [2]. Through the
readback option, the content of the FPGA’s configuration
memory is read and compared with the expected one,
which is stored in a predefined memory located outside of
the FPGA. If a mismatch is found, the correct information
is downloaded in the FPGA’s configuration memory.
During reconfiguration only the faulty portion of the
configuration memory is overwritten. There are several
fault-tolerant techniques that do not consider detection
and correction occurred SEUs, but just aim at masking
errors not to propagate elsewhere. These methods are
proposed mainly by hardware redundancy.

Triple Modular Redundancy (TMR) is a well-known
fault-tolerant technique for preventing error propagation
[3]. The TMR implementation uses three identical logic
blocks performing the same task in parallel regarding to
outputs being compared through majority voter. However,
this solution enforces high area overhead, three times
more input and output pins, high performance penalties
[6]. Moreover, it may not be affordable to put redundancy
in each and every module (or component) especially in
embedded systems where power and area are important
constraints. Another error mitigation technique which is
based on modular redundancy and time redundancy has
been proposed in [11] which uses Duplication with
Comparison (DWC) and Concurrent Error Detection
(CED) to create a fault-tolerant system. However, this
method is depended on the logic of the circuit that is
mapped on to the FPGA and suitable encoding and
decoding functions for each such block

3. Error detection and correction

The proposed approach is to use SEC-DED codes in
several separated LUTs to detect and correct the errors in
a cluster of LUTs rather than to detect one LUT as in the
case of DWC technique. Employing SEC-DED codes in
the FPGA can be done at different grains:
• To use protection codes in each horizontal (vertical)

line of FPGA through CLBs (FPGA-level).
• To use protection codes in each CLB (CLB-level

protection).
• To use protection codes in each LUT (LUT-level

protection).

We define the ratio of dividing number of protection code
bits used in the FPGA by the number of FPGA bits that are
protected as protection-granularity.

The protection-granularity of the last case is greater
than the other cases while the protection-granularity of the
first case is less than the others. As the protection-
granularity of a protected FPGA increases, the probability
of being an error in configuration bits of FPGA decreases.
However, the area overhead, and therefore the power of the
protected FPGA would be increased. Hence, there is a
trade off between the area (and power) overhead and the
fault-tolerant capability to protect an FPGA, that designers
of the FPGA-based circuits should determine.

Based on design and implement of mentioned cases,
the second case with medium protection-granularity is
suggested. In this scheme, for a cluster of N LUTs, the
number of K LUTs are dedicated to check the errors of N
LUTs and to correct the error in the case of single error in
one of the N LUTs. Therefore, the following equation
should be satisfied.

N+K+1 <= 2K (1)

This means that for a cluster of N LUTs, about log(N)

LUTs are needed for storing the protected codes and this
overhead is very considerable with the DWC and TMR
approaches which impose at least two and three times area
and power overhead, respectively. It can be shown that, the
bitwise protection coding is sufficient to detect and correct
errors. Consider a line of 16 LUTs (N=16) that are
protected by 5 extra LUTs (K=5), and each LUT maps m-
input boolean function. Let Di

 be the jth bit of ith LUTs.
Therefore, the bitwise parity bits of the SEC-DED code is
computed as follow.

0356691011130 DDDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗⊗= , (2)
146710111213141 DDDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗⊗= , (3)

02367891014152 DDDDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗⊗⊗= , (4)
1347891011153 DDDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗⊗= , (5)

24589101112 4 DDDDDDDD P ⊗⊗⊗⊗⊗⊗⊗= , (6)

where Pk is jth bit of the kth LUTs.

When the protected FPGA is programmed, these
protected bits are computed and stored in the protection
LUTs. During testing period the new protected bits are
computed and compared with the original stored ones. The
result of this comparison, call syndrome, will indicate the
incorrect bit position in a single error. In this protection
code, there is an overall parity that computed by all bits.
Using the syndrome and overall parity comparison, fault
detection and correction is available. Double bit errors are
detected when syndrome is not zero but the overall parity
is zero. In the case of single faults, the overall parity

comparison is not zero and the syndrome indicates the
location of fault occurrence bit.

3.1. FPGA-level protection

Figure 1 shows a simple example of the
implementation of FPGA-level protection in which the
protection codes are considered for a row of FPGA with
four columns FPGA and the protected FPGA’s columns
are increased to seven columns. The gray box show
modifications needed to implement the protection code. In
this scheme, the “Generate SEC-DED and Comparator”
can be shared for all of the LEs inside of CLBs in a row
of FPGA. At time of fault detection and correction, the
contents of LUTs inside of one CLB row are read and the
syndrome and overall parity are generated. Therefore, for
testing each of LUTs, the detection and correction should
be repeated 2k times where k is the input number of a
LUT. Assume that each CLB has M LUTs, a k-bit counter
is necessary to be located inside of each CLB for
addressing each bit position of LUTs in parallel, and
therefore, the results of each LUT would be checked by
the SEC-DED generation codes. In this scheme, some
modification can be applied for decreasing the area
overhead of FPGA-level protecting. As each LUT inside
of CLBs are checked by corresponded SEC-DED
circuitry, therefore we need M different SEC-DED
circuitry for each LUTs where M is the number of LUTs
inside of CLBs. However, we can use just one SEC-DED
circuitry and share it for all rows of LUTs. This make the
area overhead to be decreased but the testing time of each
CLB will be increased. We considered these two schemes
with name of FPGA-level with and without shared
circuitry in the experimental results. In order to
implement this level of FPGA protection, several
modifications are necessary in the x-channel connections.
There are several direct lines namely direct, double, hex
and long lines, in X and Y channels in Xilinx FPGAs
which connect two CLBs that are one, two, six and one
row far apart, respectively. These given lines in Xilinx
FPGAs can be utilized for implementing the connections
required for the protection code circuitry. Although
available X-channel connections can be utilized for the
circuitry of producing SEC-DED codes, however this
cause the flexibility of X-channels in routing circuits
inside of FPGA to be decreased. Hence, for implementing
this level of protection, embedding several direct wires
between information bits and circuitry of SEC-DED is
desirable.

It should be noted that in this scheme, the length of
information bits which is used for protecting is based on
the number of columns that FPGA has. This means that
the protection capability of this scheme is significantly
depended to FPGA size. For example, if the dimensions

of FPGA increase, the protection capability of this scheme
would decrease.

0

0

0

1

0

0

1

1

1

1

0

0

0

1

1

1

Generate SEC-DED and Comparator

1

0

0

0

1

1

1

0

1

0

1

0

Syndrome and Overall parity

CLBCLBCLBCLB CLB CLB CLB
LELE LE LE LELELE

Figure 1. FPGA-Level protection: an FPGA with SEC-

DED protection CLBs

3.2. CLB-level protection

Utilizing SEC-DED codes can be applied for all of
LUTs inside of a CLB. Figure 2 shows a CLB which is
protected by protection code. B0, B1, B3 are LUTs
required for storing the protection codes of B2, B4, B5 and
B6 LUTs. In this case, all bits in the same significant bit
positions in different LUTs are protected in the same
significant bit positions in the protection blocks.

In this architecture, since the information and
protection bits are stored apart and in separated blocks
(LUTs), therefore the probability of having more than
double errors in each LUT of information and protection
bits will be decreased significantly. In this case, all of
multiple errors occurred in only one LUT of a CLB can be
detected and corrected but if multiple errors occurred in
different LUTs of a CLB in same bit positions, they may
be detected providing that the number of errors is equal or
less than two.

In order to implementing this level of protection, a k-
bit counter is required to address different bit position of
each LUTs. The detection and correction of errors in LUTs
of a CLB can be achieved by 2k times of detection and
correction for each bit inside of a LUT. The main
difference between this level of protection and FPGA-level
one is that the information bits in this scheme are much
less than the other one. Moreover, all connections between
information and protection bits are router inside of CLB
internally and therefore this method is more modular than
the previous one. However, the area overhead of this
scheme is more than FPGA-level. The implementation of
CLB-level protection codes can be done in two different
cases with and without sharing the SEC-DED circuitry. In
the case of sharing SEC-DED circuitry, area overhead of
protection is decreased but the time of detection and
correction of errors will be increased 2k times.

B2

B3

B1

B0

B4

B5

B6

O2

O4

O5

O6

I2

I5

I4

I6

4

4

4

4
Testing
Counter

4

1

1

1
1

1

1
1

1

1

1

1

8

O’0

O’1

O’2

O’3

O’4

O’5

O’6

8

Generate SEC-DED
and Comparator

Figure 2. CLB-Level protection: a CLB with SEC-DED

protection LUTs

Figure 3. A dual-port 4-input LUT

In figure 2, each 16×1 LUT is replaced by a dual-

read LUT shown in figure 3. Therefore, every CLB has 4
additional input lines that consist of the four output lines
of testing counter. The testing counter is a 4-bit counter,
0-15 binary up-counter, provided either on FPGA chip or
kept as a stand-lone counter, incremented once every
clock cycle. In addition to the LUTs used by the circuit
mapped to the FPGA, a few SEC-DED LUTs are also
added to every CLB of FPGA. These SEC-DED LUTs
store the pre-computed 16-bit SEC-DED check bits of the
other LUTs of CLB. The architecture shown in figure 2
performs at-speed detection and correction of single error
of configuration bits of LUTs without disturbing the
normal functioning of the FPGA.

3.3. LUT-level protection

Figure 4 shows employing SEC-DED codes used in a

LUT. The gray shapes in this figure show the
modifications needed for implementing it in a LUT. In
this scheme, each LUT in a FPGA has its own protection
code and therefore all double errors inside of one LUT
can be detected and all single errors inside of one LUT
can be corrected. The area overhead of this scheme is
more than the previous two schemes since each LUT has
separated protection circuitry.

Figure 4. LUT-level protection: a LUT with SEC-DED

protection bits

4. CLB architecture for detection and correction
errors

Based on these three mentioned protection levels,
CLB-level protection is suggested for employing in
FPGAs. Figure 2 shows the proposed technique applied on
CLB architecture. The main reasons are that CLB-level
protection is less complex than FPGA-level to layout the
FPGA by manufacturers since the protection structure is
localized in each CLB architecture and the protection code
routings are inside of each CLB. Typically, manufacturers
manually layout a single tile consisting of logic block and
switch block and replicate them across the entire chip.
Therefore, CLB-level and LUT-level protection schemes
are better ones for implementing compared to FPGA-level.
However, CLB-level protection is more reliable than LUT-
level, since the information bits that is protected by each
check bits are distributed through several LUTs. So it can
detect and correct multiple errors occurred in a LUT while
in the LUT-level because of using protection codes for
each LUT, only detecting double errors and correcting one
error is achievable.

Without loss of generality, we assume that FPGA
design used for the fault tolerance is composed of 16 × 16
CLBs arranged in a square matrix and each CLB consists
of 8 3-input LUTs. Table 1 shows different implementation
of the mentioned schemes and compare them in terms of
information and check bits, area, delay of detecting and
correcting information bits and delay of testing whole
FPGA.

In this table, T8 and T16 are time requited for
performing detection and correction of single error in 8 and
16 bits, respectively. For each protection scheme, two
cases of implementation are considered based on sharing or
not sharing the hardware implementation for a group of
similar information bits. For example, in the LUT-level
with shared hardware, all LUTs inside one CLB are

considered to share the hardware needed for encoding,
decoding logics needed for SEC-DED code. FPGA-level
protection scheme has less area overhead compared to
CLB-level and LUT-level. However, FPGA-level testing
time is more than other cases because it protects
information bits more than others. Moreover, it is more
complex to implement compared to others. CLB-level and
LUT-level have same area and delay overhead, since the
size of LUT and number of LUTs inside one CLB is same
in the mentioned FPGA. However, CLB-level is more
powerful in terms of correction multiple faults in one
LUT.

Table 1. Comparison of area and delay overheads and FPGA

testing time for 16 ×16 FPGA (CLB size= 8 3-input LUTs)

Level of
protection codes

of
information
+ check bits

area
(µm2)

delay
(ns)

FPGA
testing
delay

FPGA-level
(with shared HW) 16384+5120 3842304 12 64 T16

FPGA-level
(without shared HW) 16384+5120 4376576 12 T16

CLB-level
(with shared HW) 16384+8191 4225536 8 8 T8

CLB-level
(without shared HW) 16384+8191 6355742 8 T8

LUT-level
(with shared HW) 16384+8191 4116992 8 8 T8

LUT-level
(without shared HW) 16384+8191 6170624 8 T8

5. Detection and Correction of multiple faults

Based on the different levels of protections, the CLB-
level is the best level for the protection using SEC-DED
method since it can detect multiple adjacent faults in the
LUTs with good level of modularity and less complexity.
Although the LUT-level can detect double errors and
correct single errors in each LUT, however the cost of
implementation of CLB-level is close to the LUT-level.
We propose the CLB-level protection method to be used
in the FPGA. In this case, any double faults in same
significant bit position of LUTs of a CLB are detectable
while single fault at each significant bit position of LUTs
of a CLB is correctable. In this scheme, the probability of
undetecting double errors inside of a FPGA will be
decreased significantly.

When double configuration upsets occurred, if they
happened in same bit positions of LUTs of a CLB cannot
be correctable. Let N be the number of LUTs in the device
and each CLB composed of 8 4-input LUTs and CLB-
level protection is employed in the FPGA. The probability
of two, three and four configuration upsets uncorrectable
by this scheme are given by:

,

2
192

2
12

1
16

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
N

N

p errorsbleuncorrecta

 (6)

,

3
192

1
12

2
12

2
16

3
12

1
16

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
N

NN

p errorsbleuncorrecta

 (7)

,

4
192

2
12

1
12

1
12

3
16

3
12

1
12

2
16

2
12

2
12

2
16

4
12

1
16

4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
N

NNNN

p errorsbleuncorrecta

 (8)

We computed these probabilities for a series of Xilinx
FPGAs which are mentioned in Table 2. As this table
shows, the probability of having 2 uncorrectable errors for
the mentioned scheme is very low and this probability
decreases when the size of FPGA increased. However, the
probability of having three or four uncorrectable in FPGA
is more than the probability of having two uncorrectable in
FPGA because the employed protection code can correct
single fault. It should be noted that in the real application
the probability of occurring three and four errors is
considerably less than the probability of occurring two
errors. Therefore, if the correction of LUT contents
happened in appropriate time slots, the content of LUTs
will not be erroneous.

6. Area and Power Comparison

The CLB architecture shown in figure 2, parity-
protected, DWC and TMR FPGA architectures were
synthesized with Synopsys® CAD tool and 0.18 micron
CMOS technology to compare the area, power and delay
requirements. The advantage and disadvantage of proposed
architecture over standard DWC technique in terms of
area, power, delay and additional configuration memory
requirements are shown in Table 3. The area overhead of
parity-protected CLB architecture is about 48 percent
regarding to the area of simple CLB architecture. The area
overhead of DWC and TMR methods are also about 79 and
204 percent compared to the simple CLB architecture.
Based on these results the area overhead of our proposed
technique is less than DWC and TMR schemes. In the case
of power consumption, the parity-protected CLB
architecture consumes less power among the other
protection schemes, but it can be only used for detecting
errors. However, the power consumption of the proposed
technique is less than the DWC and TMR schemes. This is
expected since the implementation of the proposed
hardware causes several extra check bits and routes to
perform error detection and correction.

7. Conclusions

In this paper, we have presented a new FPGA
architecture which detect and correct errors of LUT
configuration bits. This is achieved by employing SEC-
DED codes in CLBs of FPGA architecture. Hence, three
different implementation of SEC-DED based FPGA
architecture were introduced and explored and the best
one is proposed for implementing in FPGA. The
analytical results have shown that using the proposed
CLB architecture improves the reliability of CLB so that
the probability of having two uncorrectable errors in a
CLB is decreased significantly. The results of
implementation comparison has shown that this method
impose less area and power overhead compared to the
previous fault-tolerant schemes such as duplication with
comparison and triple modular redundancy schemes.

References

[1] “Correcting Single Event Upsets Through Virtex Partial

Reconfiguration”, Xilinx Application Note XAPP216,
June 2000.

[2] M. Gokhale, P. Graham, E. Johnson, N. Rollins, M.
Wirthlin, “Dynamic Reconfiguration for Management of
Radiation-Induced Faults in FPGAs,” 18th IEEE Parallel
and Distribution Processing Symposium, pages 145-150,
2004.

[3] F.L. Kastensmidt, L. Sterpone, L. Carro, M. Sonza
Reorda, “On the Optimal Design of Triple Modular
Redundancy Logic for SRAM-based FPGAs,” IEEE
Design, Automation and Test in Europe, pages 1290-

1295, March 6-10, 2005.
[4] M. Sonza Reorda, L. Sterpone, M. Violante, “Multiple

errors produced by single upsets in FPGA configuration
memory: a possible solution,” IEEE European Test
Symposium, pages 136-141, 2005.

[5] E.S.S. Reddy, V. Chandrasekhar, M. Sashikanth, V.
Kamakoti, ”Detecting SEU-caused Routing Errors in
SRAM-based FPGAs,” 18th International Conference on
VLSI Design, pages 736-741, 2005.

[6] G. Asadi, M.B. Tahoori, “Soft Error Mitigation for SRAM-
Based FPGAs,” 23th IEEE VLSI Test Symposium, pages
207-212, May 2005.

[7] E.S.S. Reddy, V. Chandrasekhar, M. Sashikanth, V.
Kamakoti , “Online Detection and Diagnosis of Multiple
Configuration Upsets in LUTs of SRAM-based FPGAs,”
19th IEEE International Parallel and Distributed
Processing Symposium, pages 172-175, 2005.

[8] E.S.S. Reddy, V. Chandrasekhar, M. Sashikanth, V.
Kamakoti , “Novel CLB Architecture to Detect and Correct
SEU in LUTs of SRAM-based FPGAs,” IEEE
International Conference on Field-Programmable
Technology, pages 121-128, December 2004.

[9] S.Srinivasan, A.Gaysen, N.Vijaykrishnan, M.Kandemir,
Y.Xie, M.J. Irwin, “Improving Soft-error Tolerance of
FPGA Configuration Bits,” IEEE/ACM International
Conference on Computer Aided Design, pages 107-110,
Nov. 2004.

[10] Michael Wirthlin, Eric Johnson, and Nathan Rollins, “The
Reliability of FPGA Circuit Designs in the Presence of
Radiation Induced Configuration Upsets,” 11th
International IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 113-122, 2003.

[11] F. Lima, L. Carro, R. Reis, “Designing Fault Tolerant
Systems into SRAM-based FPGAs,” IEEE/ACM Design
Automation Conference, pages 650-656, June, 2003.

Table 2. The probability of multiple errors not being correctable for protected Xilinx Virtex II FPGAs
Device No. of CLBs Prob. of having 2

uncorrectable errors
Prob. of having 3
 uncorrectable errors

Prob. of having 4
uncorrectable errors

XC2V40 8 × 8 8.95E-004 1.30E-003 1.80E-003
XC2V80 16 × 8 4.48E-004 6.71E-004 8.95E-004
XC2V250 24 × 16 1.49E-004 2.28E-004 2.98E-004
XC2V500 32 × 24 7.45E-005 1.12E-004 1.49E-004
XC2V1000 40 × 32 4.47E-005 7.71E-005 8.95E-005
XC2V1500 48 × 40 2.98E-005 4.48E-005 5.97E-005
XC2V2000 56 × 48 2.13E-005 3.20E-005 4.26E-005
XC2V3000 64 × 56 1.60E-005 2.40E-005 3.20E-005
XC2V4000 80 × 72 9.95E-006 1.49E-005 1.98E-005
XC2V8000 112 × 104 4.92E-006 7.37E-006 9.83E-006

Table 3. Comparison of area, power and configuration memory requirement for a CLB

CLB architecture No. of
LUTs

Area Power No. of
SRAM

bits

Single
Error

Detection

Double
Error

Detection

Error
Correction

µm2 % µw %
Standard FPGA (Virtex II) 8 10240 100 230 100 128 0% 0% 0%
Protected FPGA with parity [7] 9 15258 149 331 144 144 100% 0% 0%
Duplication with comparison 16 16282 179 525 228 256 100% 100% 0%
TMR-based FPGA 24 31130 304 802 348 348 100% 100% 0%
Our proposed FPGA 12 16506 161 532 231 160 100% 100% 100%

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

