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Abstract 
 
Implementing real-time video processing systems put 

high requirements on computation and memory 
performance. FPGAs have proven to be effective 
implementation architecture for these systems. However, 
the hardware based design flow for FPGAs make the 
implementation task complex. The system synthesis tool 
presented in this paper reduces this design complexity. 
The synthesis is done from a SystemC based coarse grain 
data flow graph that captures the video processing system. 
The data flow graph is optimized and mapped onto an 
FPGA. The results from real-life video processing systems 
clearly show that the presented tool produces effective 
implementations. 

 
 

1. Introduction 
 
Video processing is gaining importance in such areas 

as process surveillance, communication and security 
systems. Often the video processing in these systems are 
done in real-time. In real-time video processing systems 
(RTVPS) huge amounts of information are processed in 
real-time. Memory accesses are the main bottle neck in 
these systems, which make the optimization of memory 
structures and memory access the key design challenge in 
achieving cost effective implementations for embedded 
applications [1]. 

Smart camera is a term normally used for a video 
camera with built-in computing power [2]. Smart cameras 
are, for instance, used in robotic vision and the 
information leaving the camera can, for example, be 
statistics based on various objects [3]. The most important 
idea behind the smart camera architecture is to collect 
video data and then analyze, interpret and reduce the 
information before it leaves the camera. To ensure real-

time processing, the computation architecture used in the 
camera traditionally are VLIW processor and more 
recently it has been shown that programmable logic 
(FPGAs) are more efficient in implementing RTVPS 
systems [4][5]. Based on this fact, we have selected FPGA 
as the target architecture for the design environment 
presented in this paper. 

The pre-processing parts of an RTVPS are usually 
neighborhood oriented. Examples of such 2-D operations 
are convolution, histogram, spatial and gray-level 
transforms, erosion, dilation and component labeling [6]. 
Consequently, spatio-temporal RTVPS will operate on a 
3-D neighborhood, which will also increase data storage 
and transfer intensity. Examples of 3-D operations are 
optical flow calculations and scene change detection [7]. 
Figure 1 depicts an example of a 3-by-3-pixel spatial 
neighborhood. The neighborhood slides over the video 
operation’s input frame in a progressive scan order [7]. 
One output pixel is calculated at every neighborhood 
position. Consequently, the data flow dependencies are 
regular, meaning that they are the same for every pixel 
position, except for the frame boundaries.  

There are several attempts to increase the abstraction 
levels of the design entry with the target to shorten the 
design time. This has led to many propositions for 
implementing hardware from high level languages. These 
include C/C++ [8]-[13], Java [14], [15] and MATLAB 
[16], [17]. Familiarity with C and its variants has led to 
focus on synthesizing hardware from C. Since C modules 
can be compiled into object codes for several 
architectures, compiling these object codes into hardware 
is seen as an efficient way of hardware synthesis from 
system level designs.  
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Figure 1. A 2-D pixel neighborhood slides 
over the input frame in a progressive scan 
order. 
 
De Micheli [11] summarized the major research 

contribution in the use of C/C++ for hardware modeling 
and synthesis while Edwards [12] provided in details, 
challenges to hardware synthesis from C-based languages. 
It was observed in [12] that the studied approaches 
generate inefficient hardware due to difficulties in 
specifying or inferring concurrency, time, type and 
communication in C and its variants. Modeling languages 
like SystemC [9] and HardwareC [18] have been 
optimized to efficiently overcome some of these 
shortcomings (for example, both handle concurrencies 
through process-level parallelism) and are often employed 
to capture the system behavior in the form of executable 
specifications. The executable specification provides the 
possibility of design exploration (choosing among 
different algorithms and resources), system functionality 
partitioning (choosing between software and hardware), 
and memory requirements and state transitions. These 
specifications can be converted into RTL design manually 
or automatically using CAD tools like the Synopsis 
C2HDL [19] (creates VHDL and Verilog modules from 
multi-module level hierarchy in C and also provides HDL 
simulations).  

Current approaches to C/C++ based system synthesis or 
any other synthesis environment do not efficiently make 
use of the FPGA architecture especially the memory sub-
systems for real-time video processing systems. This is 
due to the manner in which memories are currently being 
instantiated in FPGAs. In this paper, we present a system 
synthesis tool for implementing RTVPS with multiple 
neighborhood oriented filters targeting FPGAs.  

The tool takes advantage of our already developed 
memory modeling tool IMEM [23], memory allocation 
[21], boundary conditions management tool [24] and 
behavioral simulation platform. The synthesis process 
explicitly separates the modeling and implementation of 
memory requirements and behavior of the filter functions. 
In this paper we show that real-time video processing 
systems can be synthesized from C/C++ or SystemC codes 
to FPGA implementation. The approach supports 
verification through simulation of both the C/C++ and 
VHDL modules of the filter with real video signal to 
ensure that the behavioral specifications of the filter are 
satisfied. 

 

2. Conceptual model – IMEM 
 
The video system is captured using a coarse grained 

synchronous dataflow graph called IMEM, see Figure 2A. 
IMEM means Interface and MEmory Model and is build 
on top of the SystemC modeling library [23]. Each node in 
the IMEM dataflow graph captures both the abstract video 
interface and the memory model as shown in Figure 2B. 
The model is stated to be conceptual since it explicitly 
captures the data dependencies. The memory model is a 
description of the neighborhood of pixels that the task 
operates on, Figure 3A shows an example of such a 
neighborhood. Additionally, each node consists of a 
description of the task’s functional behavior. The task 
does not include any data dependency or timing related to 
the dataflow, just an un-timed C++ description of the 
relation between input and output pixels.  

The IMEM model can be verified through simulation at 
system level using the SystemC simulator. Source and 
sink nodes can easily be added to the model, which 
produce and consume video data, respectively. When 
verified the supporting tool set can extract the IMEM 
model from the system to the synthesis tools, which is 
further described in Section 4. 

 

3. Target architecture 
 
The target architecture is FPGA having on-chip Block 

RAMs. These RAMs are required as cache memory for 
the streaming data oriented application that we target. 
Resource reuse is not possible between processes but only 
within individual tasks (as shown in Figure 2).  

The architecture in Figure 4 handles data storage and 
boundaries conditions for the spatial pixel neighborhood 
shown in Figure 3.  
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Figure 2. IMEM model of a video processing 
system. 

 
 
 
 



In Figure 4, the video/image processing (VIP) 
algorithm is the neighborhood oriented filter. It is 
connected to the memory architecture through the port 
interfaces for all the pixels data required in the 
neighborhood. The sliding window controller SLWC 
monitors the centre pixel in a spatial neighborhood and 
using the position information provides valid data for all 
the pixels in the spatial neighborhood through the Line 
buffers, Window ctrl and Pixel Switch. The Line buffers in 
Figure 3B are required to buffer image data in order to 
create the neighborhood shown in Figure 3A. They are 
implemented in hardware through the line buffer modules 
described in details in Section 5.  

Window control (Window ctrl) provides control signals 
used by the Pixel switch to build a spatial neighborhood 
around the current pixel. Window ctrl is implemented in 
hardware such that only one copy is instantiated and used 
to control all Pixel Switch modules instantiated for all the 
spatial neighborhoods in a VIP algorithm involving more 
than one frames. The Pixel switch replaces all pixels in a 
spatial neighborhood affected by boundary condition 
using predefined default values if the centre pixel is at the 
image boundary. The output sync is optional and is 
required to realign the pixels with other video signals 
where time synchronized data and control signal outputs 
are expected. This is because the neighborhood’s output 
pixel is usually skewed with respect to the input video 
control signals by an amount depending of the 
neighborhood size and the number of pipeline stages.  

The architecture in Figure 5 eliminates the optional 
output sync and is suitable for a system with many 
neighborhoods and high demands for Block RAMs. A 
central state machine is employed to maintain the data and 
control signal synchronization for all the neighborhoods. 
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Figure 3. A: Spatio-temporal neighborhood 
of pixels. B: Memory architecture for a 
single image processing operation. 
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Figure 4. Boundary conditions implementation 
architecture. 
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Figure 5. Neighborhood oriented system.  
 

4. System synthesis 
 
The IMEM synthesis workflow depicted in Figure 6 

demonstrates how our research on modeling and high 
level synthesis fits into an implementation trajectory. This 
workflow is defined at six different levels along the left-
hand axis. The video-processing algorithm is developed 
and simulated using IMEM at level 1. This executable 
model can then be verified through functional simulation. 
Data dependency information, frame sizes, composition of 
the 3-dimensional neighborhoods and color space models 
are exported into an interface and memory model at level 
2. Hence at it is at this level that the memory requirements 
of a RTVPS are separated from the behavioral C++ 
description of the RTVPS filters (as shown in Figure 2B). 
The interface between the memory and filters of each 
operator is also defined at this level. The model exported 
in level 2 is the input to the memory synthesis process at 
level 3. This is where memory estimation, memory 
hierarchy optimization, memory allocation and address 
generation is performed.  

At level 3, the SystemC functional description together 
with the interface template generated from the memory 
model is synthesized using a SystemC based commercial 
high-level synthesis tool, in this paper Agility from 
Celoxica. The VHDL code from both the functional part 
and the optimized interface and memory model is 
integrated at level 4 and synthesized at level 5. Hence the 
components separated at level 2 are integrated at level 5. 
Hardware simulation and compilation are also carried out. 
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Figure 6. System synthesis workflow. 
 

5. Memory synthesis 
 
The memory synthesis tool creates all necessary 

memory and control functionality needed for a functional 
spatio-temporal RTVPS. The required memory 
architecture specified by IMEM for both spatial and 
temporal neighborhood is automatically optimized and 
mapped against the memory resources in a manner that 
produce an efficient implementation in terms of used 
resources. The tool also generates a VHDL template for 
the filter function, instantiates the filter and interfaces it 
with a memory management VHDL. 

 

5.1 Space-time optimization 
 
In the clock synchronous target architecture, temporal 

resource sharing is only used within a task. Thus, the 
scheduling problem for the overall system is reduced to a 
space-time mapping problem. Where tasks, buffers and 
delays are placed in time. Since memory is a scarce 
resource on the FPGA, the placement is done as a 
minimization process where the objective function is to 
reduce the number of storage elements. 

 

∑
∈SIQ

QNSMinimize     (1) 

 
NSQ∈Z+ is the memory storage requirement associated 

with all data flow dependencies stemming from the video 
stream indexed by Q. { }+∈= ZNVNVSI |,,2,1  is an 

index of NV number of video streams. 
One optimization that is explored is buffer retiming, 

which is depicted in Figure 7 [25]. The objective is to 
move buffers such that the behavior of the whole system 
does not change and such that the total size of all buffers 

is minimized. For example, in Figure 7A the delay is 
placed after operation B the width of the buffer is 12, and 
when moved to the signal width is reduce to 8. The 
behavior of the system is unchanged but the buffer size is 
reduced by 33% [25]. Other optimizations that are 
explored are sharing of buffers between tasks and buffer 
elimination. 

 

5.2 Memory allocation and mapping 
 
The Line buffers identified in Figure 4 are required to 

store data required in the spatial neighborhood in Figure 3. 
They are implemented using global memory object 
(GMO) architecture [20]-[23]. For each neighborhood 
oriented operator in the VIP algorithm, a GMO can be 
achieved through: 

 

plinesiR wnW ×=     (2) 

 
where WRi is the width of the GMO, nlines is the number 

of required line buffers for an operator and wp is the bit 
width representing a pixel. The length of the GMO is 
equal to the length of the operator’s line buffers [20]. 
GMOs require a minimal number of required memory 
entities in comparison to the direct mapping architecture. 
Consequently, the number of memory accesses for an 
RTVPS operation is minimal for a GMO.  

Implementing GMOs and their allocation to Block 
RAMs requires an efficient algorithm so that accessing the 
allocated data and reconstructing the line buffers would be 
seamless and with as little overhead and latency as 
possible. An allocation algorithm has been developed and 
implemented [21] for this purpose. This algorithm creates 
the GMOs based on Equation (2). It partitions the GMOs 
to ensure that their widths conform to those specified by 
the FPGA, thus ensuring optimal usage of the Block 
RAMs. The algorithm takes advantage of the dual port 
capabilities of the Block RAMs to achieve optimal 
allocations and the possibility of allocating a GMO to as 
many Block RAMs as required.  
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Figure 7. Example of register retiming. 
 
 
 
 



Figure 8 depicts how the algorithm would allocate four 
memory objects according to the GMO architecture. In 
Figure 8A, the four line buffers were grouped together to 
form one GMO. Assuming the GMO is 640 pixels wide 
and if it were to be allocated on a Xilinx Spartan 3 FPGA, 
it would be partitioned into two segments, of widths 32 
and 16, since it would be not possible to have a data path 
width of 48 on a Xilinx Spartan 3 FPGA. In addition, 
since each Block RAM is 16KBit (excluding parity 
feature), the first segment, of width 32, would require 2 
Block RAMs, thus creating two partitions. The second 
segment would require a single partition on a Block RAM.  

Figure 8B illustrates the partitioning of the GMO while 
Figure 8C shows how the GMO is allocated to two Block 
RAMs using a data path of 32-bit and 16-bit. The main 
objective of the allocation algorithm is to minimize Block 
RAM usage. This is achieved in Figure 8 since two Block 
RAMs were used as opposed to four Block RAMs 
required for direct mapping of the four line buffers. In the 
figure op, seg, par and BR represent the operator, segment, 
partition and Block RAM numbers respectively. In [22] 
two possible approaches for accessing and reconstructing 
the allocated memory objects were presented and 
compares. The implemented GMO takes the form of a 
circular buffer allocated to a set of memory locations 
corresponding to the video width and performs first-read-
then-write memory access operation in one single clock 
cycle.  
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Figure 8. Implementation of memory 
architecture. 

 
 
 

6. Integration and verification 
 
Figure 9 depicts the integration of tools and steps 

required for system synthesis and verification. The 
memory requirement, determined by IMEM (example is 
shown in Figure 9 [A]), is used in the memory synthesis 
tool to generate a memory management module in VHDL 
and a SystemC header module (Figure 9 [B]) that contains 
a reference to the neighborhood oriented filter written in 
C/C++/SystemC (Figure 9 [C]) as clock sensitive thread. 
SystemC compilation refines the filter function iteratively 
through simulation until a synthesizable module satisfying 
the behavioral specifications of the RTVPS is achieved. 
This module is then compiled into VHDL module. 

VHDL compilation instantiates the memory 
management module and the synthesizable filter function, 
implements the timing relation of the system data-flow 
and verifies the behavior of the system by simulation. The 
final VHDL module is synthesized and downloaded into 
FPGA. The SystemC simulator is also used to provide 
video signal impulse data to the VHDL simulator test-
bench and to write its video response thus verifying that 
the VHDL module produces expected result. 

From Figure 9 we can define two approaches to 
implementing RTVPS namely, automatic synthesis, in 
which C-like algorithms can be compiled into HDL while 
our tool is used to manage memories, and semi-automatic 
synthesis in which the designer writes HDL modules and 
relies on our tool which is used to manage memories. 

 

7. Results 
 
To measure the performance of the two synthesis 

approaches identified above, we implemented three simple 
RTVPS applications with 640-by-480 frame resolution 
and 3-by-3 spatial neighborhood and compared the results 
with manual synthesis. The first video operation is a 1-bit 
morphological erosion, the second an 8-bit mean filter and 
lastly an 8-bit median filter. Table 1 shows the synthesis 
results. 

 

Table 1 Synthesis Results 
 Erosion Mean Median 
 Auto Semi Man Auto Semi Man Auto Semi Man
Area          
  Slices 125 124 69 256 265 250 517 481 448 
  FF 88 86 55 332 358 255 509 494 389 
  LUT 222 220 124 415 421 405 921 840 808 
BRAM 1 1 2 1 1 2 1 1 2 
Speed 
(MHz) 92 92 100 75 92 83 42 92 85 
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      Video Width:    640 
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[B] #include "systemc.h" 
    SC_MODULE( VIP_Algorithm ) { 
    public: 
     sc_in< bool > input_signals; 
     sc_out< sc_uint<8> output; 
     void Filter_Core();     
     SC_CTOR(VIP_Algorithm ) { 
       SC_THREAD(Filter_Core ); 
       sensitive_pos << clk; 
     } 
    }; 
 
[C] Filter_Core() { 
      // A normal VIP algorithm 
      // function written in  
      // C/C++/SystemC. 
      int<16> var; // variables 
      // Manipulate inputs 
      output = input_signals * 2; 
    } 

 

Figure 9. System integration and verification. 
 
The table shows that in all cases, the manual approach 

has lower area cost except for the number Block RAMs 
where 50% savings are achieved. If the three filters in 
Table 1 had been combined according to Figure 5, we will 
save four out of six Block RAMs. This is due to resource 
sharing since true dual port allocation is used to allocate to 
Block RAMs rather than ordinary dual port allocation 
used in implementing line buffers. The table also shows 
that the speed of the automatic synthesis is highly affected 
by the algorithm complexity decreasing from erosion to 
median filter while remaining slightly constant for the 
other approaches. From the table the semi-automatic 
approach combines the advantages of cost and speed. The 
table does not compare development time since this 
depends on the designer’s skill and algorithm complexity. 
Our approaches however generally implements algorithms 
(especially the memory management parts) within a few 
minute rather than days in the manual approach. 

 

8. Conclusion 
 
This paper has presented a synthesis tool for C++ based 

synthesis of real-time video processing systems targeting 
FPGAs. It has been shown that this tool produces cost 
effective implementations capable of running at high 
clock speeds. The number of used block RAMs is lower 
than it would be for a manual design and the speed of the 
memory architecture is close to the speed of the FPGA 
resources. The algorithm implementation that is 
synthesized using this high-level synthesis tool can be 
written manually or using by third party SystemC to HDL 
compilers. Thus, the tool presented in this paper is a big 
step towards accomplishing a compiler that effectively 
synthesizes real-time video processing systems on to an 
FPGA. This can lead to new video processing 
applications, where the combination of high performance, 
cost effective FPGA and a fully automated design flow 
would fulfill requirements that otherwise would be hard to 
meet by most commercial tools but are possible by the 

tool in this paper due to resource reuse through true dual 
port allocation to Block RAMs. 
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