
AModulo Scheduling Algorithm for a Coarse-Grain Reconfigurable Array
Template

Akira Hatanaka1 and Nader Bagherzadeh2

1University of California, Irvine 2 University of California, Irvine
Department of Electrical Engineering Department of Electrical Engineering

and Computer Science and Computer Science
Irvine, CA 92697 USA Irvine, CA 92697 USA
ahatanak@uci.edu nader@uci.edu

Abstract

Coarse Grain Reconfigurable Arrays (CGRAs) have
been drawing attention due to its programmability and per-
formance. Compilation onto CGRAs is still an open prob-
lem. Several groups have proposed algorithms that software
pipeline loops onto CGRAs. In this paper, we present an ef-
ficient modulo scheduling algorithm for a CGRA template.
The novelties of the approach are the separation of re-
source reservation and scheduling, use of a compact three-
dimensional architecture graph and a resource usage aware
relocation algorithm. Preliminary experiments indicate that
the proposed algorithm can find schedules with small initi-
ation intervals within a reasonable amount of time.

1. Introduction

In the past several years, sales of electronic gadgets, such

as MP3 or DVD players and PDA communication devices,

have achieved significant growth. Traditionally, these de-

vices have been controlled by embedded microprocessors

combined with a few hardwired accelerators to meet the

stringent and conflicting requirements, such as low power

consumption and high performance. However, as these em-

bedded devices become more and more sophisticated and

powerful, it is getting difficult to meet the demand for func-

tionalities and computational power with the combination

of microprocessors and hardwired accelerators.

CGRA [3] is a new category of architectures that has

been drawing attention recently due to its programmability

and computational power.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

Although many institutions, both from academia and in-

dustry, have proposed and developed various CGRA archi-

tectures, automatic compilation of a program written in a

high level language is still a problem that remains unsolved.

The difficulty of automatic compilation onto CGRAs has its

roots in the micro-architectural features of CGRAs that are

different from conventional general purpose microproces-

sors, i.e. distributed register files and shared interconnect

architectures that are sparse and irregular. These features

make it difficult to apply conventional compiler algorithms

to CGRAs.

Several groups have proposed algorithms that automat-

ically compile a program onto CGRAs. However, most of

them either assume the underlying micro-architectures, in-

cluding both the computational units and interconnect ar-

chitectures, are homogeneous or of regular structures, to

achieve short compilation time with a light heuristic,or try

to compile onto an irregular architecture by a random algo-

rithm, such as simulated annealing, at the expense of a very

long compilation time.

In this paper, we propose a modulo scheduling algorithm

that is capable of compiling loops in a program onto a fam-

ily of heterogeneous CGRAs, which consists of processor

elements and possibly irregular interconnect architectures.

We propose a two phase algorithm consisting of a resource

reservation phase and a scheduling phase. A compact graph

representation of the target architecture is used to map the

application. Also, a resource usage aware placement algo-

rithm is used to shorten the time it to find a legal solution.

The organization of the paper is as follows. Section 2

presents related work. Section 3 explains the background of

this work, including a brief discussion of software pipelin-

ing algorithm on CGRAs, followed by an explanation of

the work in [8]. Section 4 explains the software tools used

for this work. Section 5 discusses the proposed modulo



scheduling algorithm in this work.

Section 6 shows the results of compiling kernels of

benchmark applications onto different CGRA architectures.

Finally, section 7 concludes this paper.

2. Related Work

2.1 Reconfigurable Architecture

Many groups have developed coarse grain reconfigurable

arrays over the last decade. [12] is a SIMD-like 8×8 mesh
architecture. It broadcasts the same instruction word to all

the processing elements in a column or a row, and can ef-

ficiently exploit regular data parallelism in a program. The

architectures of [11] and [13] share the traits of dataflow

machines. Operations are fired as soon as all the input data

packets are available. [7] is a reconfigurable accelerator

with distributed processor elements and register files con-

trolled by very long instruction words.

2.2 Compilers for CGRAs

Compilation onto CGRAs has been a topic of active re-

search during the last few years. Since compilation for

CGRAs is much more complex than that for conventional

general purpose processors, many works make certain as-

sumptions about the target architecture. The works in [9],

[14] and [6] all propose constructive scheduling heuristics

for CGRAs, assuming some regularities in the intercon-

nect architectures. The compilation problem becomesmuch

simpler when some of the idiosyncratic micro-architectural

features are removed.

The compiler in [14] uses a space-time scheduler that

decouples the partitioning phase, or the placement phase,

and the scheduling phase.

[6] adopts a one-pass algorithm that divides the appli-

cation graph into clusters and schedules the operations in

sequence.

However, both [14] and [6] are not capable of producing

code for an architecture with irregular interconnect archi-

tectures. [14] is a homogeneousmesh architecture that uses

a MIPS processor as its processing elements. Although the

target architecture of [6] is parameterizable, the base archi-

tecture in the paper is a regular mesh.

Also they do not exploit instruction level parallelism

beyond a basic block. Since the amount of parallelism

available within a basic block is usually small, they cannot

achieve a large speedup in many cases.

The work in [8] is closest in its goal to our work.

The compilation algorithm modulo-schedules loops onto a

CGRA architecture template. The graph representation of

the architecture allows a wide range of architectures to be

targeted.

To apply modulo scheduling to CGRAs, [8] uses a three-

dimensional architecture graph representation that is gener-

ated by replicating the two-dimensional spatial architecture

along the time axis. The problem becomes very similar to

placement and routing for FPGAs[1].

The approach iteratively relocates operation vertices and

reroutes communication edges until no resource overuses

exist. The problem of this approach is that depending on

the target architecture and application program to be sched-

uled, it may take a very long time to come up with a feasible

schedule. The time axis of the three-dimensional architec-

ture graph has to be at least as long as the number of cycles

of the final schedule, which makes the size of the architec-

ture graph large. Restricted relocations of operations can

also contribute to longer running time as explained later in

this paper.

3. Background

3.1 Software Pipelining

Software pipelining [5] improves performance by over-

lapping the execution of different iterations of a loop. An

iteration can start executing before completions of previ-

ous iterations. The interval at which iterations are started is

called the initiation interval, abbreviated II. The goal of the
software pipelining optimization is to find a schedule that

overlaps iterations and uses the shortest possible initiation

interval.

Many algorithms have been developed that effectively

software pipeline loops. One of the well-known algorithm

is Modulo Scheduling, first proposed in [10]. The approach

adopts list scheduling with height-based operations prior-

ity. This approach is effective when the architecture has a

centralized register file through which all functional units

communicate, and any functional unit can freely read and

write operands any time without interference from other

functional units. For this type of architecture, the sched-

uler can assume the communication resources that are used

to send data from one functional unit to another can be used

freely.

For architectures with partitioned register files [2], the

scheduler needs to pay attention to additional issues. The

partitioning of operations determines the amount of com-

munication placed on the inter-cluster communication bus.

The scheduler needs to schedule operations so that there are

no conflicts on the communication bus. Still, for a simple

VLIW architecture with two register files, the scheduler can

produce high quality codes using simple heuristics.

In addition to these issues, mapping onto CGRAs needs

to address routing. Because there is a high degree of sharing

of interconnect architecture resources between PEs, and it

takes variable number of cycles to communicate data from



bus0

PE0 PE1 PE2

bus1

(a) Architecture

0

2

0

1

0

2

0
1

2

0

1

1

1

1

0
PE

cycle 1

cycle 2

cycle 0
bus

time

(b) Three-dimensional graph

Figure 1. Three-dimensional graph represen-
tation of an architecture

one PE to another, the task of determining a route becomes

much more complicated.

3.2 Motivational Example

Algorithms to modulo schedule loops onto CGRAs have

been proposed recently by several groups. As mentioned in

section 2, our work is close in its goal to [8], which places

few restrictions on the interconnect architecture.

The approach in [8] borrows ideas from placement and

routing algorithms developed for FPGAs. Similar to place-

ment and routing algorithms for FPGAs, the approach rep-

resents the architecture and the application program as di-

rected graphs. The vertices and the edges of the architecture

graph together represent relevant features and interconnec-

tion of different hardware resources of the architecture, such

as input/output ports of functional units, register files and

multiplexers.

The uniqueness of this approach is that the architecture

graph is a three dimensional representation, which has a

time dimension in addition to the space dimensions. The

three dimensional graph is built by replicating the vertices

of the two dimensional spatial representation of the archi-

tecture along the time dimension, and adding edges accord-

ingly. For example, the architecture in Fig.1(a) can be rep-

resented as the graph in Fig.1(b).

Representing architectures as three-dimensional graphs

A B

C D

E F
(a) Application graph

cycle PE0 PE1 PE2 Bus0 Bus1
0 A B
1 A -> D B -> C
2 C D
3 C -> F D -> E
4 E F
5

(b) Initial schedule

cycle PE0 PE1 PE2 Bus0 Bus1
0 A
1 B A -> D
2 B ->C,D
3 C
4 D C ->E,F
5 D -> E
6 E
7 F

(c) Final schedule

Figure 2. Motivational example

allows simultaneous scheduling, placement and routing of

the application graph. The operation vertices are placed

onto vertices in the architecture graph. Data dependency

edges between these operations are routed using shortest

path algorithms, with weights of architecture edges repre-

senting resource overuses. The whole problem becomes al-

most equivalent to finding a feasible placement and rout-

ing solution for a FPGA, except that there are additional

constraints on resource usages due to the nature of modulo

scheduling,

The problem of this approach is that adding the time di-

mension may not be effective in finding a feasible solution

in a reasonably short amount of time.

First the sheer size of the graph may lengthen the time to

find a legal solution. The graph has to be replicated along

the time axis, at least as many times as the length of the final

schedule. For example, if the final schedule takes twenty

cycles, the replicated graph will have at least twenty times

as many nodes as the spatial graph representation.

Second, the routability of dependency edges of an oper-

ation vertex are restricted by the vertex’s predecessor and

successor vertices’ location and cycle. To clarify our point,

we will use Fig.2 as an example.

Suppose the application graph in Fig.2(a) is to be

mapped onto an architecture in Fig.1(a), and II = 2. An
initial schedule may look like the one in Fig.2(b), which

is clearly not legal and needs to be fixed. Since operation

vertices must always adhere to their precedence constraints,



Front End

Conventional
Optimization Pass

Architecture
Parser

Modulo
Scheduling Pass

C Program

Architecture
Description

Binary Code

Figure 3. Framework of the modulo scheduler

vertices B,C and D cannot be relocated to their final loca-

tions unless their successors are moved to later cycles. For

example, relocation of operation B to PE1 at cycle 1 will not

be accepted, since vertex (PE0, cycle = 2), which is the lo-

cation of vertex C, is not reachable from (PE1, cycle = 1). In

other words, there are no routes in Fig.1(b) that starts from

vertex (PE1, cycle1) and terminates at vertex (PE2, cycle2).

Vertex B cannot be relocated because its successors C and

D are scheduled too early, and C and D cannot be pushed

down either, because of E and F. Of course, it is possible

to include slacks in the schedule by extending the architec-

ture graph along the time axis to give more freedom to the

vertices to move around. However, this will result in even

larger sizes of architecture graphs. Even if the graph was

extended, the same situation could show up locally where

movements of vertices are restricted by their predecessors

and successors. A lot of attempts to relocate vertices will

end up being rejected, and it will take a long time to find a

legal solution.

As explained in later sections, we propose an approach to

schedule loops without inflating the size of the architecture

graph.

4. Tool Framework

Fig.3 shows the whole compilation framework. The

framework takes in two files created by the user: the ap-

plication program and the architecture description.

4.1 Application Program

The application program is written in C, with annotation

pragmas specified by the programmer to indicate which por-

tion of the code is going to be scheduled.

The current implementation of the mapping framework

can only software pipeline the most inner loops of a pro-

gram. In order to schedule multiply-nested loops, the pro-

grammer has to manually rewrite them into singly-nested

loops. In the future, we plan to incorporate a pass into our

framework that automatically or semi-automatically soft-

ware pipelines multiply-nested loops using source level

transformation techniques [5].

The application program first goes through the fron-

tend pass. Then conventional compiler optimizations, such

as constant propagation, copy propagation and common

subexpression elimination, are applied to remove as many

redundancies as possible. After that, the application pro-

gram is transformed into a graph representation, and passed

to the modulo scheduling pass. Information on loop invari-

ants and immediate constants is conveyed as well. This in-

formation is necessary to generate initialization code that

loads loop invariants before the initiation of the first loop

iteration.

4.2 Architecture Description

Similar to the work done in [8] and [4], our work aims to

target a wide range of CGRAs.

The target architecture is defined in an architecture de-

scription file. The description includes functional unit spec-

ifications, register file specifications, local memory specifi-

cations and the interconnect architecture specification.

Although we do not discuss it in this paper, functional

units can be heterogeneous: different functional units can

execute different sets of operations of various latencies.

Functional units are connected to register files to read their

operands. For simplify scheduling, we assume that when a

functional unit reads its operands from a register file, there

are no conflicts of accesses to resources. That is, each func-

tional unit has exclusive access to one or more register file

read ports.

Register files can have different number of registers and

read/write ports. All the operands used by functional units

are read from register files: no functional unit can read di-

rectly from an output of another functional unit or intercon-

nect network.

The interconnect architecture consists of registers and

multiplexer. A variety of interconnect topologies, such as

meshes, rings, buses and trees, can be constructed by a com-

bination of multiplexers and registers. Multiple-hop com-

munications are also allowed.

The connections between components explained above

are specified as a netlist. Information on the individual com-

ponents and the connections between them is sufficient to

generate graphs used for modulo scheduling and designs in

the form of HDL modules.

An example of a target architecture model is shown

in Fig.4. The architecture consists of Processor Elements

(PEs) and interconnect networks through which PEs send



PE PE

PE
PE PE

to network

from network

Figure 4. Example target architecture

and receive data to and from each other.

5. Modulo Scheduling Algorithm

In the following sections, the compilation framework

and the algorithms to modulo-schedule loops onto CGRAs

are explained.

5.1 Internal Data Structures

5.1.1 Application Graph

The vertices of the application graph represent operations.

The edges of the graph are various types of dependencies

including data dependencies and precedence dependencies.

5.1.2 Architecture Graph

As briefly mentioned in section 3, our modulo scheduling

algorithm consists of two phases.

• Resource reservation phase
The first phase assures the resources necessary at the

steady state, i.e. functional units consumed by opera-

tions and routing resources consumed by communica-

tions, are available.

• Scheduling phase
Based on the result of the first phase, the second phase

assigns cycles to each operations.

Because we do not try to do everything from placement

& routing to scheduling in one pass, we do not have to use

a three-dimensional architecture graph that is replicated as

many times as the length of the schedule, as explained in

[8].

Instead, we use an architecture graph that is only II
times as large as the original two-dimensional graph. In

this way, we can keep our approach scalable.

Fig.5 compares the difference between the architecture

graphs adopted in this work and in [8].

0

1

2

3
(a) 2D graph of the

example architecture

time 0 2
1 3

0
1

2
3

0
1

2
3

cycle 0

cycle 1

cycle 2

(b) Work in [8]

0 2

1 3

0

1

2

3

slot 0

slot 1

(c) This work

Figure 5. Comparison of architecture graphs

The two-dimensional representation of an example ar-

chitecture is shown in Fig.5(a). The vertices represent pro-

cessing elements, which include inside computational and

storage units, while the edges represent communication re-

sources. Each edge has a latency of one clock cycle, e.g. it

takes one clock cycle to send data from vertex 0 to vertex 1.

Fig.5(b) and Fig.5(c) show respectively the three-

dimensional representation proposed in [8] and this paper.

The algorithm to generate the architecture graph in Fig.5(c)

is shown in Fig.6.

First, all the nodes in the original two-dimensional rep-

resentation are replicated II times (II = 2, in the example).
The edges are added between vertices that belong to differ-



procedure GenArchGraph
for each ui ∈ vertices of orgG
for j = 0 to II − 1
add vertex vi·II+j to newG

for each e ∈ edges of orgG
vs ← source(e)
vt ← target(e)
for j = 0 to II − 1
if (e consumes a cycle) then
add edge (vs·II+j , vt·II+(j+1)%II) to newG
else
add edge (vs·II+j , vt·II+j) to newG

for each ui ∈ vertices of orgG
if (ui is an input port of an RF) then
for j = 0 to II − 1
add edge (vi·II+j , vi·II+(j+1)%II) to newG

end procedure

Figure 6. Pseudo code of the algorithm to
generate architecture graphs

ent slots, if the edge in the original graph consumes a cycle.

Otherwise, edges are added between vertices that belong to

the same slot. Finally, edges that connect input ports of reg-

ister files are added.

5.2 Algorithm Overview

The algorithm borrows ideas from research on FPGA

placement & routing algorithms. Vertices of the application

graph are relocated and edges are rerouted to iteratively de-

crease the overuses of resources. The algorithm is based

on simulated annealing, and the process is repeated until a

feasible solution is found. For this work, we assume the ar-

chitectures have sufficient number of registers to schedule

the application without having to spill some operands to the

local memory. Also, we assume the primary goal of modulo

scheduling is to find schedules with small IIs and smaller
IIs result in shorter schedules.
The outermost loop of the algorithm slowly decreases

the temperature. The pseudo code of the inner loop of the

algorithm is shown in Fig.7.

The operation vertices are popped from queue appV Q
one at a time, and relocated to another functional unit. The

new location is chosen based on how much resources will

be used as a result of relocation. compCost() is obtained by

computing the number of overused resources. Details are

explained in later sections. A vertex that is already placed

on the new location will be evicted, and relocated to the

original location of the vertex that caused the eviction.

Outgoing edges of the relocated vertices and direct pre-

procedure InnerLoop
appV Q ← all vertices of application graph
while appV Q is not empty do

v ← pop appV Q
oldCost ← compCost()
if (SetNewLocation(v) = true) then
routeEdges()

newCost ← compCost()
if (accept(newCost− oldCost) = false) then
restore relocated vertices

end while
end procedure

Figure 7. Pseudo code of the inner loop of the
mapping algorithm

decessors of the relocated vertices are rerouted using Dijk-

stra’s shortest path algorithm. The algorithm is run once

per vertex. The formula to compute edge weights is given

below:

weight(e) = cycleWeight(e) + ruWeight(e) (1)

where, cycleWeight(e) and ruWeight(e) are given as
follows:

ruWeight(e) =

{
0, if e unoccupied
W1 × use(e), otherwise

(2)

cycleWeight(e) =

{
W2, if e consumes cycle
0, otherwise

(3)

The edge weight is the sum of two parts: the cy-

cle weight, cycleWeight, and the resource usage weight,
ruWeight.

The cycle weight, W2, is given to resource edges that

consumes a cycle, such as registers, and biases the algo-

rithm to choose paths with smaller total number of cycles.

The resource weight is proportional to the number of ap-

plication edges that are assigned to the resource edge, which

is denoted as use(e). The weight factor, W1, is increased
after every annealing iteration, if the resource overuse on

the resource edge doesn’t get resolved.

After relocating vertices and rerouting edges, the over-

all cost, which is the sum of the number of overuses of re-

sources is computed. Then the algorithm decides whether to

accept the perturbation, based on how much the overall cost

has changed. If the solution is not accepted, the vertices and

the edges are restored to their original state.



5.3 Resource Usage Aware Placement

From our experiments, we found that a large portion of

the running time is spent on running Dijkstra’s shortest path

algorithm when vertices are relocated. We also found that a

lot of times, relocating operation vertices to randomly cho-

sen new locations doesn’t decrease the overuse of resources.

Therefore, instead of randomly choosing a new location for

each vertex, we choose new locations that are likely to lead

to decrease in resource usages. The pseudo code of the

function that chooses a new location is given in Fig.8.

procedure SetNewLocation(v)
found← false
initialize n
while (found = false ‖ n > 0) do
oldLoc← save old location of v
newLoc← select new location of v
if (a vertex already placed on newLoc) then
ev← vertex placed on newLoc
else
ev← NULL

newCost = GetP lacementCost(newLoc, v, oldLoc, ev)
oldCost = GetP lacementCost(oldLoc, v, newLoc, ev)
if (acceptPlacement(newCost - oldCost)) then
found← true
break

n ← n − 1
end while
return found

end procedure

procedure GetP lacementCost(locV , v, locEV , ev)
vSet ← {v, ev}∪ {direct predecessors of v and ev}
sum ← 0
for each v ∈ vSet

patialSum ← 0
for each e ∈ outedges of v

c ← numberOfCycles(v, target(e))
partialSum ← partialSum + c

sum ← sum + partialSum/
√
outDegree(v)

return sum
end procedure

Figure 8. Pseudo code of the algorithm to find
a new location

The procedure SetNewLocation repeatedly searches
for a new location for a vertex v that is likely to decrease
the resource usages. It compares the resource usage esti-

mates obtained by the procedure GetP lacementCost to
determine whether or not to accept the new location. If it

cannot find a new location after a predetermined number of

attempts, it gives up and returns a null location.

The procedureGetP lacementCost uses the sum of the
number of cycles the rerouted edges consume. For source

vertices with multiple out edges, the sum is divided by the

square root of the out degree, to take into account the pos-

sible resource sharings among the out edges.

6. Experimental Results

All the experiments were run under linux 2.4, on a

1.6GHz Pentium 4 processor with 512MB of memory.

The benchmark applications used in this work are shown

in Table.1. The second column shows the number of opera-

tion vertices in the application graphs.

size

DCT 87

FFT 118

Table 1. Benchmark applications

For the experiments, we targeted three architectures. The

first one is a 4×4 mesh-like architecture with additional
interconnect resources that connect functional units in the

same row or column, as seen in Morphosys[12]. The sec-

ond one is a 8×8 mesh-like architecture that is constructed
by replicating the 4×4 architecture. The third one is a tree-
like architecture that has four clusters, each of which con-

sisting of four PEs. The PEs in a cluster communicate with

each other through three local buses. The number of com-

munications between PEs belonging to different clusters is

limited to four, two for incoming communications and two

for outgoing communications.

The experimental results are shown in the table below.

8×8, II=3 8×8, II=2
w wo util w wo util

DCT 29 110 45 55 323 68

FFT 69 98 61 143 na 92
(a) 8x8 architecture, with different IIs

4×4 mesh 8×8 mesh tree

w wo util w wo util w wo util

DCT 3.3 8.4 90 55 323 68 46 na 90

FFT 4.0 16.1 92 143 na 92 56 69 92
(b) Running time when the minimum IIs were targeted

Table 2. Experimental results

The columns ”w” and ”wo” are the program running

time in seconds, with and without resource aware placement



respectively. The columns ”util” shows the utilization of the

functional units in percentage.

Table.2(b) shows that, when resource aware placement

was turned on, the proposed algorithm was able to find le-

gal solutions with the minimum IIs for all combinations
of target architecture and benchmark application in a short

amount of time. Although it is difficult to make a fair com-

parison, since our target architectures differ from those in

[8], the shorter running time of the program and the tighter

schedule achieved underscore the effectiveness in our ap-

proach.

In some cases, when resource aware placement was

turned off, the program wasn’t able to come up with a le-

gal solution within the given amount of time. The results

clearly show that resource aware placement played a large

role in shortening the program running time. On average,

resource usage aware placement reduces the running time

by 65%.

Table.2(a) shows how much the running time varies

when the target II was changed. As expected, running
times increase when the target II is smaller.

7. Conclusion

This work proposes a modulo scheduling algorithm that

can target CGRAs with irregular interconnect architectures.

The algorithm uses a compact three-dimensional architec-

ture graph onto which application graphs are mapped. A

placement algorithm that is aware of possible resource us-

ages is proposed to reduce the program running time.

References

[1] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns. Place-

ment and routing tools for the triptych fpga. IEEE Trans.
VLSI Syst., 3:473–482, 1995.

[2] E. Granston, E. Stotzer, and J. Zbiciak. Software pipelining

irregular loops on the tms320c6000 vliw dsp architecture.

Proceedings of the ACM SIGPLAN workshop on Languages,
compilers and tools for embedded systems, pages 138 – 144,
2001.

[3] R. Hartenstein. A decade of reconfigurable computing: a

visionary retrospective. Design, Automation and Test in Eu-
rope, 2001. Conference and Exhibition 2001. Proceedings,
pages 642 – 649, March 2001.

[4] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger.

Kressarray xplorer: a new cad environment to optimize re-

configurable datapath array architectures. Proceedings of the
ASP-DAC 2000. Asia and South Pacific Design Automation
Conference, 2000., pages 163–168, January 2000.

[5] M. Lam. Software pipelining: An effective scheduling

technique for vliw machines. In Conference on Program-
ming Language Design and Implementation, pages 318–
328, 1988.

[6] J. Lee, K. Choi, and N. Dutt. Compilation approach for

coarse-grained reconfigurable architectures. IEEE Des. Test.
Comput., 20(1):26–33, January 2003.

[7] J. Leijten, G. Burns, J. Huisken, E. Waterlander, and A. van

Wel. Avispa: a massively parallel reconfigurable acceler-

ator. International Symposium on System-on-Chip, 2003.
Proceedings, pages 165 – 168, November 2003.

[8] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauw-

ereins. Exploiting loop-level parallelism on coarse-grained

reconfigurable architectures using modulo scheduling. De-
sign, Automation and Test in Europe Conference and Exhi-
bition, 2003, Proceedings, 2003.

[9] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph

embedding: Mapping applications onto coarse-grained re-

configurable architectures. International Conference on
Compilers, Architecture, and Synthesis for Embedded Sys-
tems (CASES), 2006, October 2006.

[10] B. Rau. Iterative modulo scheduling: an algorithm for soft-

ware pipelining loops. Proceedings of the 27th annual in-
ternational symposium on Microarchitecture, pages 63–74,
1994.

[11] T. Sato, H. Watanabe, and K. Shiba. Implementation of dy-

namically reconfigurable processor dapdna-2. VLSI Design,
Automation and Test, 2005. (VLSI-TSA-DAT), pages 323 –
324, April 2005.

[12] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh,

and E. Filho. Morphosys: An integrated reconfigurable

system for data-parallel and computation-intensive applica-

tions. IEEE Trans. Computers, 49(5):465–481, 2000.
[13] M. Vorbach and R. Becker. Reconfigurable processor ar-

chitectures for mobile phones. Proceedings of Parallel and
Distributed Processing Symposium, 2003., April 2003.

[14] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee,

V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,

S. Amarasinghe, and A. Agarwal. Baring it all to software:

Raw machines. IEEE Computer, 30(9):86 – 93, September
1997.


