
A Reconfiguration Aware Circuit Mapper for FPGAs

Markus Rullmann and Renate Merker
Dresden University of Technology, Germany

Circuits and Systems Laboratory

E-mail: markus.rullmann@tu-dresden.de

Abstract

Dynamic reconfiguration for fine grained architec-
tures is still associated with significant reconfiguration
costs. In this paper we propose a new reconfiguration
aware design flow. The tools in this flow implement a
set of tasks concurrently. The flow leads to task im-
plementations with minimal costs for routing reconfig-
uration. This is mainly achieved by our mapping tool
which solves two fundamental problems: Our mapping
algorithm generates variants for the mapping of netlist
cells to logic blocks. From those logic blocks a subset for
each task is selected that minimizes the cost for routing
reconfiguration. We derive a cost function and formu-
late an integer linear program to solve this problem.
We implemented several task sets with our method and
compare the results to previous solutions. We show that
the reconfiguration aware mapping leads to better re-
sults than early approaches with vendor provided tools.

1 Introduction

Dynamic reconfiguration for FPGA architectures is
an established design method to increase the efficiency
of system designs. Sequential tasks are reconfigured at
runtime to reduce the resources usage. However, cur-
rent vendor design tools – device mapper and place and
route tools – are not aware of the relation between tasks
and their implementation. Hence, they can not opti-
mize the task configurations to reduce reconfiguration
costs.

In [7] we established a method to extract struc-
tural similarities in tasks. We have further shown how
this information can be used to implement tasks with
reduced reconfiguration costs [6]. Unfortunately the
standard implementations tools have some shortcom-

ings: only the relation between two tasks benefits di-
rectly from the flow and tasks are not treated con-
currently, information can only be transfered from one
completely implemented design to the design currently
in implementation.
In this paper we present a new reconfiguration aware

mapping tool: The tool performs the mapping of all
tasks in a set simultaneously. Therefore, the tool in-
vestigates a variety of mapping alternatives for each
task and selects one implementation for each task that
minimizes the reconfiguration costs between all tasks
in a set.

1.1 Reconfiguration Aware Design Flow for
FPGAs

In an earlier work [6], a Matched Implementation
Flow was described and deficiencies associated to the
use of the vendor implementation tools were high-
lighted. The work inspired us to create a new Recon-
figuration Aware Design Flow for FPGAs. The start-
ing point is a given task set. Each task is given by
a netlist generated with a logic synthesis tool (e.g. in
edif format), which consists of cells and nets. At first,
the similarities between those tasks are extracted us-
ing the methods in [7]. The similarities are described
by matching cells and matching connections between
those matching cells. This information is used in the
subsequent implementation steps. The device map-
per translates the synthesis netlist into a device spe-
cific map netlist. In the map netlist, one or more cells
are merged into an appropriate logic block (LB). This
process is called packing. Our mapper will create a
netlist that allows the place and route tool to have
minimal routing reconfiguration for the given tasks.
For this purpose it also needs to translate the infor-
mation on matching cells to matching LBs. We will
show that this is a computationally non-trivial prob-
lem. The algorithms and objectives of the mapper are

1

1-4244-0910-1/07/$20.00 ©2007 IEEE

described in detail in this paper, see Sections 2 and 3.
The placement tool places LBs at physical resources in
the device. In order to minimize reconfiguration costs,
matching LBs are placed at the same resources for rel-
evant tasks. This ensures that the routing tool can
take advantage of the matching connections and route
them using the same switch block configuration in two
or more tasks.

The tool flow can significantly reduce the amount
on reconfiguration costs for a given set of tasks. We
developed tools for task similarity analysis, mapping,
and a preliminary version for the placement tool. The
analysis of the remaining reconfiguration costs gives
promising results, details are given in Section 5.

1.2 Architecture Model

The most common architectures today are island
style FPGAs. These FPGAs have LBs of different
functionality, e.g. general logic, I/O blocks, dedicated
multipliers, RAM blocks etc. The LBs are connected
to a generic routing architecture, consisting of wires
and configurable switch blocks. We assume that the
switch blocks require much more data to configure rout-
ing structures than the LBs require data to configure
their functionality. This is true e.g. in Xilinx VirtexII
architectures. We found that for each CLB column
22 frames are required for configuration – with 18 out
of 22 frames used for configuring the switch blocks. In
the Xilinx Virtex and Spartan architectures frames can
be written selectively, which allows to reconfigure only
parts of the device that require different configurations
in the tasks.

The organization of configuration data in frames im-
poses a restriction on placement and routing of tasks:
if one or more bits in a frame differ between the tasks’
configurations, the whole frame must be reconfigured,
regardless of the number of different configuration bits.
The presented circuit mapper aims at generating a map
netlist that is an optimal input to a reconfiguration
aware place and route tool. Hence, the resulting netlist
has the least possible difference in LB connections. In
the next step, the place and route tool must arrange
the placement such that the router can generate switch
block configurations with the least possible difference
in configuration frames.

Our approach dissolves the difference between static
and dynamic functionality in a task set. It is replaced
by the notion similarity between the netlists. In case of
similar LBs and connections the place and route tools
can treat these structures as static portions, while the
differing parts are object to place and route with opti-
mal frame difference.

2 General Mapping Approach

Generally, a mapping tool binds the cells given in
a synthesis netlist to resources of LBs in the FPGA
target architecture. In Figure 1 a simple circuit and
somemapping variants are shown. The circuit — given
as a synthesis netlist (Figure 1(a)) — consists of cells
and nets. The cells represent the circuit function and
the nets the connections between those functions. The
mapping tool usually has many possibilities to assign
the cells from a netlist to resources inside LBs (Figure
1(b,c)). Mapping also includes logic packing to place
multiple cells inside one LB, see Figure 1(b). Usually,
packing is driven by three main objectives:

• propagation delay between gates

• task routability

• minimal resource usage.

Algorithms targeting the above objectives are de-
scribed e.g. in [2].
The nets given in the synthesis netlist and the

mapped cells in the LBs determine which output pins
of a LB must be connected with the input pins of
other LBs. The nets are realized as signal routes in
the FPGA fabric. Using logic packing, a net can be-
come local to the LB (Figure 1(b), N1) and thus does
not utilize the routing architecture. Local nets are of-
ten less costly to reconfigure. Packing can also cause
merged net pins (Figure 1(b), N2). Instead of rout-
ing all connections from the net driver to each load in
the netlist individually, merged net pins require only
one connection to the LB pin (Figure 1(b), (3)) – the
connections to each cell pin are local to the LB.
Todays FPGAs have increasingly complex LB ar-

chitectures with support for shift registers, carry chain
logic, large multiplexers etc. This often requires pack-
ing of specific cells to ensure routability, since not all re-
source pins in a LB are connected to the switch blocks.
In this paper we present a mapping algorithm which
automatically packs cells that must be connected with
local routes in one LB. Thus we avoid special design
rules for describing packing.

2.1 Mapping Variants and Reconfiguration
Costs

The mapping variant chosen by the device mapper
has a direct impact on the routing configuration. As
discussed before, a cell can be mapped to different re-
sources in a LB. Consequently, the nets will be routed
using different LB pins. However in our tool flow we
assume that matching edges in the tasks can be routed
using the same switch block configuration, hence the

LUTX FFX:Reg2

FFXLUTX:Lut1

LUTY FFY

FFY:Reg1LUTY

Reg1

Reg2

Lut1

LUTX:Lut1 FFX:Reg1

LUTY FFY:Reg2

(b) Mapped Netlist 1 (c) Mapped Netlist 2

(a) Netlist

N2
N1

N2

N1

N1

N2

(3)

Figure 1: A simple circuit and some mapping variants

same routes, in the FPGA. One objective of the map-
per is to select the mapping variants that map match-
ing connections to the same LB pins for matching cells
in the given tasks.
Consider the example given in Figure 2: We assume

a given mapping for the cells A–C in task 1. The cells
A–C in task 2 shall match the corresponding cells in
task 1. The architecture allows two mapping variants
for cell C in task 2. Obviously, the routing of matching
routes (bold lines) is static if variant 2(b) is chosen
meanwhile variant 2(a) causes routing reconfiguration
for similar connections.

A A

Task 1 Task 2(a) Task 2(b)

C C

C

A

B BB

Figure 2: A given mapping for task 1 and possible map-
ping variants for task 2. Bold lines are matching edges
in the cell netlist. Depending on the chosen mapping
of cell C (task 2(a) or 2(b)), some routes require recon-
figuration (task 2(a)) or can remain static (task 2(b)).

2.2 Logic Block Generation

In this section we describe our approach for a map-
ping algorithm that automatically maps cells to LB
resources and packs the cells so that first routability
inside the LB and second the mapping of locally con-
nected cells to a single LB is enforced. The major ad-
vantage of the algorithm is the independence from any

specific target architecture. The mapping algorithm is
described in Figure 3 and works as follows:

1 for all c ∈ Ci
2 for all mc ∈ Mc

3 initialize empty black list, routable list
4 initialize edif queue with c as initial element
5 create empty LB l
6 while edif queue not empty
7 ck := front(edif queue)
8 for all mck ∈ Mck

9 if (((c = ck and mc = mck) or c! = ck). . .
and lb type(mc) = lb type(mck))

10 l′ := l
11 ok = map ck to l

′ according to the rules mck
12 if (ok and ck adds new local routes) or c = ck
13 l := l′

14 if l routable
15 add l to routable list
16 exit loop (8)
17 if ck was mapped to l
18 add edif instances connected with ck . . .

to back of edif queue
19 else
20 add ck to black list
21 remove ck from edif queue
22 add front(routable list) and back(routable list)
to Li

Figure 3: Pseudo code for the generic LB generation
algorithm

Let us assume that the netlist of task i comprises
a set Ci of cells c. There is a set Mc of variants mc
to map cell c to LB resources. We will generate a set
Li of LBs l such that connected cells in the netlist are
implemented on a single LB and routability inside the
LBs is ensured.
First, for each c ∈ Ci (1) the set Mc of possible

mappings to resources of a LB (2) are determined by
using a greedy algorithm. Two lists (3) and a queue (4)
are introduced for controlling the following operations.
The mapping procedure starts from one mapping ver-
sion mc ∈ Mc of cell c ∈ Ci to LB resources, where c
is called initial cell. For this case, the edif queue con-
tains all cells connected to the initial cell c. For each
cell ck in the edif queue, all possible mapping variants
mck ∈ Mck to resources of a current LB l are investi-
gated in sequential (8), until a valid mapping for each
cell is found. Condition (9) determines which map-
pings for ck are investigated: For the initial cell, the
only mapping mc is allowed; For all other cells, any
mapping to the same type of LB as for mc can be cho-
sen. A mapping is valid, if the LB has free resources to

map the cell according to mck – and – if the mapping
leads to any new route inside the LB (12). Condition
(12) also skips the local route condition for the initial
cell c mapped to the LB resources as well. After this
mapping procedure the LB l is generated. If the LB l
is routable, it is stored temporarily in routable list. In
line (18), we add all cells that are loads or drivers of ck
to the back of edif queue. If one cell of the edif queue
could not be mapped to resources of the current LB, it
is inserted into black list (20), a list of cells that will
not be inserted into edif queue again.

If loop (6) is finished, the first and last element of
routable list are added to the set Li of generated LBs.

This procedure is repeated for all cells c ∈ Ci and
their corresponding mapping versions mc ∈ Mc.

The result of the mapping algorithm can be sum-
marized in a relation R for task i, where the elements
(cj , lk) describe the mapping of cell cj ∈ Ci to the gen-
erated LB lk ∈ Li.

The presented algorithm generates all mapping vari-
ants for each initial cell and ensures routability of the
generated LBs by packing all cells that lead to local
routes. However, the logic packing is only performed
in a greedy manner, hence there is only one feasable
mapping variant investigated for each cell connected
with the initial cell. This reduces the amount of LBs
generated but results still in a variety of different LBs
for each cell. Note that this algorithm does not perform
packing of unconnected cells, this separate problem is
discussed e.g. in [5].

2.3 Logic Block Selection

In this section, all functions A ⊂ R will be selected
for task i, where Lmi denotes the range of A. The
functions A assign each cell ci ∈ Ci exactly one LB.
We give an integer linear program (ILP) formulation of
the problem that will be extended in Section 3 to select
optimal LBs for reconfiguration. The ILP formulation
of this problem is straightforward. For each LB li, we
define a binary variable Sli that is 1 if the LB li is
element of the range of a function A or 0 if not. To
select a function the following constraint for each cell
ci is used:

1 =
∑
li∈Lic

Sli,

where the subset Lic ⊂ Li of generated LBs denotes
the set of LBs implementing cell ci.

3 Reconfiguration Aware Logic Block
Selection

In this section we extend our LB selection problem
to optimize reconfiguration costs. The objective is to
reduce the number of routed nets that need to be re-
configured between tasks, since routing configuration
is the major cost factor in fine grained architectures.

3.1 Cost Function: Minimal Route Reconfigu-
ration

The synthesis netlists and the map netlists are mod-
elled as a digraph here. In the following, we distinguish
edges from the synthesis and map netlists by net edges
and route edges, respectively. A net edge can occur as
route edge in the map netlist as follows:

• a LB local route edge, not being routed in the
fabric but inside the LB only

• a LB external route edge, being routed from/to
LB pins through the FPGA fabric

Due to logic packing it is also possible that more than
one net edges are merged into a single route edge. The
cells are then connected internally to the same LB pin.
For task i the number Ei of net edges in the synthesis
netlist translates to:

Ei = R
local
i +Rexternali +Rmergedi .

The number Ei of net edges is constant, while the num-
ber of local route edges Rlocali , external route edges

Rexternali and merged route edges Rmergedi depends on
the selected LBs for task i. The external route edges
can be divided into matched and unmatched route
edges, both depending on the LB selection in task i
and task j:

Rexternali = Rmatchedij +Runmatchedij

The LBs must be selected such that the number of un-
matched route edges is minimized, which reduces costs
for routing reconfiguration. Since Ei is constant, the
problem is equivalent to maximizing the other terms:

minRunmatchedij =̂ max (Rmatchedij +Rlocali +Rmergedi).
(1)

The terms Rlocali and Rmergedi can be directly calcu-
lated from the LB selection for each task i:

Rlocali =
∑
li∈Li

olocalli Sli

and
Rmergedi =

∑
li∈Li

omergedli Sli

with olocalli is equal to the number of local connections

inside a LB and omergedli the number of LB internal pins
using the same LB external pin.
However the term Runmatchedij describes only the re-

configuration costs when replacing task j by task i. In
the general case, reconfiguration can occur between a
set of I different tasks. In that case the objective func-
tion is given by:

min
∑
i∈I

∑
j �=i j∈I

Runmatchedij

The number of matched route edges is symmetric,
hence Rmatchedij = Rmatchedji so the objective function
can be written as:

max [2
∑
i∈I

∑
j<i j∈I

Rmatchedij +(I−1)
∑
i∈I

(Rlocali +Rmergedi)].

Observe that, in order to minimize routing reconfigu-
ration we can maximize the use of LB internal rout-
ing and/or increase matching route edges between the
tasks.

3.2 Logic Block Matching

The similarity of tasks can be given in terms of
matching cells [7]. Each cell in a task may have one
matching cell in one or more other tasks. For task i and
task j matching cells are selected such that as many
connecting net edges as possible between the cells in
task i can also be found between the matching cells in
task j. Consider the example in Figure 4: (c) shows
matching cells for the synthesis netlists in (a,b).

(a) Netlist 1 (b) Netlist 2 (c) Matching

1

4 5

2

3 4

3

5 8

6

9

7

2

1

7 8

69

Figure 4: Example for matching cells: (a), (b) cell
netlists with cells (circles) mapped to LBs (boxes).
Matching net edges are drawn black. (c) cells con-
nected are matching cells.

The mapping process must translate the information
on matching cells to matching LBs. Matching LBs are
placed at the same physical site by our placement tool.
The route edges that describe the same connections

between LBs in tasks i, j can now be routed using the
same switch box configuration in those tasks. Thus
reconfiguration costs can be reduced.
The LB generation algorithm treats all tasks inde-

pendently, without matching information. Each LB of
task i contains one or more cells. The cells can have
matching cells in another task j. Since the LBs in task
j are generated independently from task i, the match-
ing cells are not necessarily packed into a single LB as
in task i. I.e. in Figure 4 the cells (9,6) are packed to
one LB in netlist 2 but the matching counterparts (3,2)
in netlist 2 are mapped to separate LBs. The purpose
of LB matching is to find those LBs that retain most of
the structural similarity defined by the matching cells.
The conditions for LB matching are described more
formally in the following.
A setMC

i,j = {. . . , (cni, cnj), . . . | cni ∈ Ci , cnj ∈ Cj}
of matching cells is given for the tasks i, j, see [7]. Since
every cell cni can initially mapped to any LB in Lic
and cnj to any LB in Ljc respectively, the setMLB of
possible matching LBs is given by:

MLB =
⋃

(ci,cj)∈MC
i,j

Mcicj .

withMcicj = Lic × Ljc

The solution to the LB matching problem is a subset
MLB,m ⊂MLB that fulfills the following conditions:

• li ∈ Lmi and lj ∈ Lmj

• for each li there exists not more than one (li, lj) ∈
MLB,m and vice versa

In the ILP we introduce a binary variable Sli,lj that
is set to one if (li, lj) ∈ MLB,m. The following con-
straints ensure the conditions stated above:

Sli ≥
∑
lj∈Lmj

Sli,lj (2)

Slj ≥
∑
li∈Lmi

Sli,lj (3)

3.3 Route Edge Matching

The matching route edges are given by the LB
matching. However, to formulate the cost function
completely, it is required to evaluate the number of
matching route edges for any set of matching LBs. In
[7] we extracted the edge matching from completely
matched graphs. Here we introduce the notion of
matching pairs in order to define constrains for the ILP
program.

Circuit 2Circuit 1Circuit 1 Circuit 2

1

2
1
1
1

1
1

1

1,2

1,0

2,0

2,1

1,0

0,1

0

1
2

2

0

1

2

1

0

0

1
2

(d) Edge Matching

(a) Circuit 1 (b) Circuit 2

(c) LB Matching

Figure 5: LB matching example: (a,b) example map
netlists, (c) matching for LBs, (d) graph showing pos-
sible matching pairs and the number of possible route
edge matches. Black edges in (c,d) highlight a feasible
solution.

We investigate the route edges between each pair of
LB (l1i, l2i) in task i and compare those route edges to
any pair of matching LBs (l1j , l2j) in task j. The num-
ber of matching route edges is given by omatchedl1i,l2i,l1j,l2j

.

The LB matching determines the LBs that must be
placed at the same physical resource during placement.
Consequently, route edges that connect equal pins of
matching LBs in the given tasks are matching route
edges.

Consider the example in Figure 5: given are the cir-
cuits 1 and 2. From all possible matching LBs, we select
MLB,m = {(0, 0), (1, 2), (2, 1)} denoted by black edges
in Figure 5(c). In Figure 5(d) all pairs of LBs with at
least one route edge are given as nodes for each circuit
separately. The number of matching route edges for
all possible matching pairs is annotated to the edges of
the graph in Figure 5(d). In correlation with the given
matching in Figure 5(c), the resulting matching pairs
are: ((1, 0), (2, 0)) and ((1, 2), (2, 1)), thus leading to a
total of 3 matching route edges.

In the ILP we introduce another binary variable
that holds the information about matching pairs.
Sl1i,l2i,l1j,l2j shall be one if (l1i, l1j), (l2i, l2j) ∈M

LB,m.
Therefore the following constraints must be true:

Sl1i,l1j ≥ Sl1i,l2i,l1j,l2j (4)

Sl2i,l2j ≥ Sl1i,l2i,l1j,l2j (5)

The ILP formulation is concluded with the cost term
for matched routes:

Rmatchedij =
∑

(l1i,l1j),(l2i,l2j)∈MLB,m

omatchedl1i,l2i,l1j,l2j
Sl1i,l2i,l1j,l2j .

4 Reconfiguration Aware Mapping
Tool

We integrated the methods described in Sections 2
and 3 into a unique reconfiguration aware mapping
tool. The tool maps simultaneously a complete task
set and takes advantage of their structural similarity.
This approach can be seen complementary to the com-
mercial tools like Xilinx PlanAhead [8] and Atmel Fi-
garo (for FPSLIC Devices) [1]. PlanAhead supports
only physical design partitioning and module manage-
ment. Figaro does only support bitstream compression
by treating different tasks as contexts. Design parti-
tioning into static and reconfigurable areas must be
solved by the designer. Our tool focuses on the recon-
figuration aware design flow that reduces reconfigura-
tion costs by mapping, placement and routing strate-
gies.
Our tool acts in four main stages: at first, the for-

mal architecture description, the mapping rules and
the synthesis netlists are read in; secondly, it generates
the set of LBs for the designs independently accord-
ing to the algorithm in Section 2; from those, the tool
selects the LBs for each task, as well as the LB match-
ing that guarantees minimum routing reconfiguration
between the given tasks. This is achieved by automat-
ically generating the ILP as described in Section 3 and
using the commercial ILP solver Ilog CPLEX. At last,
the mapped tasks are written to separate map netlists
files. The tool also produces a file that describes the
matching of LBs and route edges, which is used as an
input to the place and route tool.

4.1 Interface to FPGA Vendor Tools

Currently, our tool supports data files that are com-
patible to Xilinx ISE design flow. Hence, the steps in
the ISE flow can be replaced selectively by our tools.
The synthesis netlist is read in edif format, which is
also supported by other commercial tools. The map
netlist is written in the proprietary Xilinx description
language (.xdl), which can be converted to the binary
.ncd format. However, the internal representation in
our tools is not dependent on Xilinx devices and other
file formats could be easily adapted.

4.2 Mapping Rules

In our approach, the architecture description is sep-
arated from the mapping rules, which enables the tool
to read the vendor provided architecture description1

1e.g. generated with Xilinx xdl

and the mapping rules independently. The architec-
ture description consists of definitions for all types of
LBs (e.g. I/O blocks, LUT logic and function macros)
supported by the device. Each LB type is composed of
discrete functional elements, configurable multiplexers
and LB internal wires. The mapping rules describe all
binding variants for the cells to resources in a LB. A
routing subroutine in the mapping tool can automati-
cally route nets to LB pins using wire and configurable
multiplexer definitions taken from the architecture de-
scription.

5 Experimental Results

We run our reconfiguration aware mapping tool on a
number of example tasks. We used a set of tasks (bxx)
from the itc’99 benchmarks [4]. Tasks add8, sub8 con-
tain an 8bit add and subtract circuit with registered
outputs, respectively. Tasks int, motion are introduced
in [6]. Tasks opb add and opb sub are also reconfig-
urable IP cores, see [3]. The task sets have been ana-
lyzed with our matching tool.
In Table 1, we run the mapping tool for each task

separately, without LB matching. The results show the
number of cells in the synthesis netlist and the num-
ber of generated LBs. On average, there are two valid
mapping variants for each cell. The results show that
about one third of the generated LBs form the set of
selected LBs. The solution to the LB selection problem
requires only small execution time when compared to
the reconfiguration aware LB selection.

Task Cells Generated LB Selected LB

b01 30 70 21
b02 14 30 10
b06 29 62 21

b03 174 424 141
b08 95 218 74
b10 119 265 95

add8 58 71 32
sub8 60 74 33

int 932 1629 555
motion 985 1801 578

opb add 300 614 262
opb sub 300 614 262

Table 1: Mapping results from LB generation and LB
selection

The results for the task sets are given in Table 2.
Task set 1 and set 2 contain similar sized netlists from
the itc’99 benchmark suite. The tasks in these task sets
have very little similarity. The purpose is to demon-
strate our method on task sets with more than two

tasks. The task sets 3–5 have a very similar structure
and are ideal test cases for our method. In Table 2
the results for net edges, route edges LBs and pins are
shown for the task sets. The numbers given are the sum
of edges, pins and LBs for all tasks in each set. For each
parameter, the total and the amount of equal entities is
given. The difference between total and equal edges or
pins is a quantitative measure for the amount of routing
that requires reconfiguration. Task set 6 contains data
derived from the Xilinx implementation flow as it has
been used in [6]. The differences between the results for
set 5 and set 6 highlight the advantages of our recon-
figuration aware design flow: from the same netlists,
our mapping tool creates a map netlist with fewer LB
pins, which requires less routing for the tasks. Fur-
thermore, the difference between total pins and equal
pins is much less for set 5, which means there are less
routes to be reconfigured between those tasks. An in-
teresting fact is that the Xilinx tool performs a more
aggressive packing and maps the cells to considerable
less LBs. Nevertheless, the matched implementation
flow leads to map netlists with many more total and
different pins which causes more reconfiguration over-
head when compared to our approach.

6 Conclusion

In this paper we presented a new reconfiguration
aware design flow. The major objective of the design
flow is an implementation of tasks with minimal re-
configuration costs. The tools achieve minimum costs
by treating the given tasks concurrently in contrast to
existing approaches. We described the mapping tool
in detail. The tool constructs a set of mapping vari-
ants for each task. From those variants, the tool selects
one for each task than minimizes reconfiguration costs
between all tasks in the set.
In our experiments we have shown the application

to relevant tasks, such as reconfigurable hardware ac-
celerators. We have shown that our tool implements
tasks with less overhead than previous solutions.
Currently, the mapper does not perform logic pack-

ing of unconnected cells. Hence, only logic that leads to
a local route inside an LB is packed. The results often
in low utilization of the logic inside an LB. However, we
believe the results can be improved by adding suitable
packing heuristics that result in more local or merged
route edges. The mapper can be extended by estab-
lished algorithms, e.g. [5], to perform more aggressive
packing. However the proposed reconfiguration aware
logic block selection can still be applied.
Our mapper generates a number of mapping variants

for each initial cell and adds connected cells to the LB

Task Tasks Net Edges Route Edges LBs Pins
Set total equal diff. total equal diff. total equal diff.

set1 b01, b02, b06 184 72 112 170 47 123 52 234 58 176
set2 b03, b08, b10 1211 378 833 1173 213 960 310 1547 224 1323
set3 add8, sub8 220 216 4 92 88 4 65 171 168 3
set42 opb add, opb sub 1938 1402 536 1374 1268 106 524 2342 1716 626
set52 int, motion 7279 5598 1681 4586 3708 878 1133 6511 4120 2391
set63 int, motion 776 7293 4594 2699

2ILP optimization aborted after a valid solution was found.
3Results from Matched Implementation Flow using Xilinx guide mode, see [6].

Table 2: Reconfiguration aware map – results

chosing one variant only. We believe that it is not rea-
sonable to provide all mapping variants of connected
cells, even if the algorithm would allow it with minor
modifications. The huge increase in mapping variants
for each cell could render to the logic block selection
problem hardly solvable. One approach might be to
implement a problem specific optimization algorithm
in this case.
In the future we plan to complete the placement tool

and to develop a reconfiguration aware router. These
tools will enable us to compare reconfiguration costs
at bitstream level with implementations from vendor
tools.

References

[1] Atmel Corp. Figaro: www.atmel.com/products/fpslic.
[2] V. Betz and J. Rose. VPR:a new packing, placement
and routing tool for fpga research. In Int. Workshop
on Field-Programmable Logic and Applications, pages
213–222, 1997.

[3] C. Claus, F. Müller, and W. Stechele. Combitgen: A
new approach for creating partial bitstreams in virtex-II
pro devices. In International Conference on Architec-
ture of Computing Systems – Workshop on Dynamically
Reconfigurable Systems, ARCS 2006, GI Lecture Notes
in Informatics, pages 122–131, March 2006.

[4] F. Corno, M. S. Reorda, and G. Squillero. RT-Level
ITC99 benchmarks and first ATPG results. IEEE De-
sign and Test of Computers, pages 44–53, July–August
2000.

[5] A. Marquardt, V. Betz, and J. Rose. Using cluster-
based logic blocks and timing-driven packing to improve
FPGA speed and density. In ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays,
pages 37–46, Monterey, CA, February 1999.

[6] M. Rullmann and R. Merker. Design and implementa-
tion of reconfigurable tasks with minimum reconfigura-
tion overhead. In Dynamically Reconfigurable Architec-
tures Workshop at 19th International Conference Ar-
chitecture of Computing Systems (ARCS 2006), pages
132–141, Frankfurt/Main, Germany, March 2006.

[7] M. Rullmann and R. Merker. Maximum edge matching
for reconfigurable computing. In Reconfigurable Archi-
tectures Workshop at 13th IEEE International Paral-
lel & Distributed Processing Symposium (IPDPS 2006),
Rhodes, Greece, April 2006.

[8] Xilinx, Inc. Planahead: www.xilinx.com/planahead.

