
Speedups and Energy Savings of Microprocessor Platforms with a

Coarse-Grained Reconfigurable Data-Path

Michalis D. Galanis, Gregory Dimitroulakos, and Costas E. Goutis
VLSI Design Laboratory, Electrical & Computer Eng. Dept., University of Patras, Greece

e-mail: {mgalanis, dhmhgre, goutis}@ece.upatras.gr

Abstract

This paper presents the performance improvements
and the energy reductions by coupling a high-
performance coarse-grained reconfigurable data-path
with a microprocessor in a generic platform. The data-
path has been previously introduced by the authors. It is
composed by computational units able to realize complex
operations which aid in improving the performance of
time critical application parts, called kernels. A design
flow is proposed for mapping high-level software
descriptions to the microprocessor system. Eight real-life
applications are mapped on three different instances of
the system. Significant overall application speedups,
relative to a software-only solution, ranging from 1.74 to
3.94 are reported being close to theoretical speedup
bounds. Average energy savings of 59% are achieved,
while the reduction in the system energy-delay product
ranges from 66% to 92%.

1. Introduction

Embedded systems have been proposed that extend the

computational capabilities of a microprocessor core by
coupling it with reconfigurable logic [1]-[8].

Reconfigurable hardware is used to implement

computational intensive parts of the applications, called

kernels. The microprocessor core executes non-critical

sequential code parts and provides software

programmability. The spatial parallelism present in

kernels is exploited by the abundant Processing Elements

(PEs) of the reconfigurable hardware, resulting in

performance improvements. There is a growing interest in

reconfigurable systems from designers, especially with

the introduction of commercial devices that combine
reconfigurable logic with one or more instruction-set

processors [3], [4].

Reconfigurable hardware has been widely associated

with Field Programmable Gate Arrays (FPGAs). An

FPGA consists of an array of programmable logic cells,

executing bit-level operations, with a grid of interconnect

lines running among them. Both the function and

interconnection among the logic cells can be programmed

after fabrication. FPGAs are more effective in realizing

bit-level operations. However FPGAs are not the only

type of reconfigurable logic. Several coarse-grained

reconfigurable architectures have been introduced and

successfully built [1], [5], [6], [7], [8]. They consist of a

large number of PEs with word-level data bit-widths (like

16-bit ALUs) connected with a reconfigurable

interconnect network. The coarse-grained PEs exploit

better the word-level parallelism of many DSP

applications than the FPGAs do. Their coarse granularity

greatly reduces the delay, area, power consumption and
reconfiguration time relative to FPGA logic at the

expense of flexibility [1].

 In this work, we propose the coupling of

microprocessor cores with a high-performance coarse-

grained reconfigurable data-path previously presented in

[9]. The computational resources of the Reconfigurable

Data Path (RDP) are able to implement complex

arithmetic structures. Research in High-Level Synthesis

(HLS) [10], [11] and in Application Specific Instruction

Processors (ASIPs) [12], [13] have proven that the use of

complex computational structures, called templates or
clusters, instead of using only primitive ones (like a single

ALU) in data-paths improves performance. A template

may be a specialized hardware unit or a group of chained

units. Chaining is the removal of the intermediate

registers between the primitive units improving the total

delay of the combined units. The ability of the considered

RDP to realize complex operations aids in improving

performance as it was shown in [9]. A design flow is

introduced for efficiently mapping applications described

in C language to the reconfigurable system. The flow

consists of the following steps: (a) a profiling procedure,

(b) Intermediate Representation (IR) creation of the kernel
code, (c) optimizations to the IR, (d) mapping of the

kernels to the RDP, and (e) compilation of the non-critical

segments to the microprocessor. Parts of the design flow

have been implemented as prototype tools.

Design flows for systems integrating coarse-grained

reconfigurable logic have been presented [1]. However,

few of those works consider the mapping of realistic

applications and examine the performance and energy

consumption improvements. Research activities that

consider the mapping of real-life applications on coarse-

grained reconfigurable based systems are overviewed. In
[8], a PipeRench architecture clocked at 100MHz and

composed by 8-bit PEs and 53 128-bit stripes, improved

on average the execution time by 12% and 7.2% for the

Pretty Good Privacy (PGP) data encryption algorithm and

This work was partially funded by the Alexander S. Onassis Public

Benefit Foundation

1-4244-0910-1/07/$20.00 ©2007 IEEE

for JPEG, respectively, relative to the execution on an

UltraSparcII running at 300 MHz. The compilation

framework of [14] achieved the acceleration of a wavelet

compression and Prewitt detection on the MorphoSys

architecture over the execution on a Pentium III machine.

In [15], it is shown that a hybrid architecture composed by
an ARM926EJ-S and an 8x8 Reconfigurable Array

similar to MorphoSys [5], executes 2.2 times faster an

H.263 encoder than a single ARM926EJ-S processor. The

mapping flow for the reconfigurable ADRES architecture

was applied to an MPEG-2 decoder in [16]. The kernel

and the overall application speedup over an 8-issue VLIW

processor were 4.84 and 3.05, respectively. In [7], an

H.264/AVC decoder was mapped on an 8x8 array

achieving application speedup of 1.88. To our knowledge,

the only work that studies the effect in the energy by

extending a RISC core with a coarse-grained

reconfigurable unit is the one in [17]. The experiments
showed that the performance is improved 2.5 times on

average while the energy-delay product is 60% on

average smaller than the one of the baseline RISC. The

power consumption of the reconfigurable logic is

estimated using the Wattch power estimation framework

that mainly targets superscalar processors.

This work presents the performance improvements as

well as the energy reductions by executing time critical

kernels of realistic benchmarks on the coarse-grained

RDP. Eight real-world DSP applications are mapped on

three systems employing 32-bit ARM processors. The
applications’ execution times are estimated using the

proposed design flow. Typical power values are

considered for the ARM processors. The RDP is

described in synthesizable VHDL and its power

consumption is estimated using commercial tools.

Important application speedups are reported as the design

flow accelerates each application close to ideal speedups.

The performance improvements lead in significant energy

savings, while the energy-delay product values are

substantially reduced over an all-software execution.

The rest of the paper is organized as follows: section 2

presents the architecture of the microprocessor platform
and the proposed RDP architecture. Section 3 describes

the design flow and outlines the mapping procedure for

the reconfigurable data-path. Experimental results are

given in section 4, while section 5 concludes this paper.

2. System architecture

2.1. Platform description

Figure 1 shows an overview of the microprocessor

platform considered in this work. The System-on-Chip

(SoC) architecture includes an embedded microprocessor,

Reconfigurable Logic (RL) and system RAM. The RL is

composed by a Coarse-Grained Reconfigurable Data Path
(RDP) introduced in [9] and a set of memory-mapped

coprocessor data registers for exchanging data with the

microprocessor. The system RAM stores data,

instructions for the microprocessor execution and

configurations for the RL. The RDP acts as a coprocessor

to the microprocessor and accelerates time critical

software parts of an application by exploiting the
Instruction Level Parallelism (ILP) of these parts. The

microprocessor, typically a RISC like an ARM, executes

control-dominant software parts.

Micro-

processor

System

RAM

Coarse-

Grained

RDP
RL

registers
Data

Bus

Figure 1. Diagram of the microprocessor SoC platform.

Data communication between the Coarse-Grained

Reconfigurable Data Path and the CPU uses shared-

memory mechanism. The shared memory is comprised of

the shared system RAM and the memory-mapped

coprocessor registers within the reconfigurable logic.

Scalar variables, either live-in or live-out ones, are

identified utilizing data-flow analysis and they are

exchanged via the shared registers. Global variables and
data arrays are allocated in the system RAM. Both the

microprocessor and the RDP have access to the shared

memory. The communication process used by the

processor and the RDP preserves data coherency by

requiring the execution of the processor and the RDP to

be mutually exclusive. The mutual exclusive execution

simplifies the programming since complicated analysis

and synchronization procedures are not required. The

system architecture is also simpler with the mutual

exclusive execution because the processor and the RDP

will never access simultaneously the same data memory.

A software kernel is replaced with code that enables
the reconfigurable logic. When a kernel is reached in

software, the RDP is activated and the proper

configuration is loaded for executing the critical code.

Furthermore, the live-in local variables are transferred to

the shared data registers in the reconfigurable logic. Then,

the microprocessor enters a low-power state. After the

completion of the kernel execution, the RDP informs the

processor waking-up from its low-power state, writes the

live-out variables in the shared registers, and writes global

variables and array data located in the shared RAM. Then,

the execution of the software is continued on the CPU and
the RDP enters a low-power idle state for reducing system

energy. It is mentioned that waking-up a microprocessor

for its power-down sleep mode requires from few cycles

to a few dozen, depending on the microprocessor. In

either situation, these cycles are only consumed after a

kernel on the RDP completes (and not at every iteration of

the kernel) and so it is typically insignificant compared to

the thousand of cycles required for the kernel execution.

2.2. RDP architecture

An outline of the data-path is shown in Figure 2. The

considered high-performance coarse-grained

reconfigurable data-path and the respective mapping

methodology have been introduced in [9]. The proposed

coarse-grained RDP consists of a set of word-level

hardwired Coarse-Grained Components (CGC) units, a

reconfigurable interconnection network, a register bank,

configuration RAMs (CR), Address Generation Units
(AGUs) and a control unit. The data-width of the RDP is

typically 16-bits, although different word-level bit-widths

are supported.

Reconfigurable interconnect

Register

bank

Configuration pointer

From/to

RAM

... CGC CGCCGCAGUTo

 RAM

Control

unit

From/to

CPU

CR CR CR
Configuration word

Figure 2. Outline of a CGC-based data-path.

The control unit manages the execution of the RDP

every cycle by configuring the interconnect, the AGUs,
the register bank and the CGCs. The microprocessor sets

the control unit for proper execution of a kernel on the

data-path. The interconnection network provides full

connectivity among the CGCs and connectivity to the

register bank. For a small number of CGC units (up to

four units) present in the data-path, a full crossbar is used.

When a large number of CGCs is employed, a

hierarchical network is utilized. The register bank stores

intermediate values among computations and data fetched

from the system RAM of the SoC. The AGUs enable the

data accesses to the system RAM.
The configuration (context) RAMs stores few context

words locally. During the execution of a kernel, the

configuration RAMs of the CGCs are indexed by a central

Configuration Pointer, set by the control unit of the RDP,

and a proper configuration word is loaded allowing

dynamic reconfiguration of each CGC within a cycle. The

configuration word defines the functionality of the CGC.

Each CGC can be configured to execute a different

complex operation in a cycle according to the contexts

stored in the configuration RAM. The contexts can also

be loaded from the system RAM at the cost of extra delay,

if the configuration RAMs are not large enough to store

the configurations of a kernel. The control unit manages

the loading of the contexts from the system RAM. The

system RAM stores the whole configuration for setting up

the RDP for the execution of the kernels. At the

initialization phase of the RDP, the contexts are loaded
from the system RAM into the configuration RAMs

similar as in FPGAs.

A CGC unit is an nxm array of Processing Elements

(PEs), where n is the number of rows and m the number of

columns. In Figure 3a, such a CGC (called hereafter as

2x2 CGC) with 2 PEs per row and 2 PEs per column is

illustrated. The PEs in the first row are connected to the

second row PEs with multiplexer-based flexible

connections. Each CGC PE contains a word-level ALU-

multiplier unit. The ALU part performs shifting,

arithmetic (add/subtract), and logical operations. At each

cycle, the ALU-multiplier unit is properly configured to
perform either a multiplication or an ALU operation. The

four inputs (in1, in2, in3, in4) are connected to the register

bank, the four additional inputs (A, B, C, D) are connected

to the register bank or to another CGC, the two outputs

(out1, out2) are also connected to the register bank or to

another CGC, and the two outputs (out3, out4) store their

values in the register bank. An nxm CGC has an

analogous structure. A local configuration register stores

the configuration word broadcasted from the

corresponding Configuration RAM of the CGC. It is

mentioned that for a 2x2 CGC, a context word of 36-bit is
adequate for configuring it, whereas for a 3x2 CGC the

word has size of 62 bit.

PE

1

PE

2

PE

3

PE

4

In 1 In 2 In 3 In 4

Out 3 Out 4

B C C DBA

Out 1
Out 2

(a)

C
o

n
fi

g
u

ra
ti

o
n

 r
e
g

is
te

r

C
o

n
fi

g
u

ra
ti

o
n

 w
o

rd

fr
o

m
 C

o
n

fi
g

u
ra

ti
o

n
 R

A
M

(b)

+

+

-

+

+

+

+

*

*

+

+ >>

* *

+ +

*<<

*

-

Figure 3. (a) Architecture of the 2x2 CGC, (b) Examples

of complex operations realized by the 2x2 CGC.

The flexible connections among the PEs inside a CGC

allows in easily realizing any desired operation
combination, as the ones proposed in [10]-[13], by

properly configuring the multiplexers of the CGC.

Examples of complex operations (templates) realized by

the 2x2 CGC are shown in Figure 3b. Thus, since a CGC

can implement templates by properly configuring the

connections inside the CGC, high-performance is

achieved. In [9], it was shown that an average

performance improvement of 44%, relative to existing

high-performance data-path, was accomplished with

CGC-based data-paths. This improvement is due to the

exploitation of chaining of operations inside the CGCs

(intra-CGC chaining) and inter-CGC chaining due to the

direct connections among the CGCs.

3. Design flow

The flow for mapping applications, described in C, on

the processor/RDP architecture is illustrated in Figure 4.

Initially, a profiling procedure outputs the kernels and the

non-critical parts of the source code. For performing

profiling, standard debugger/simulator tools of the

development environment of a specific processor can be

utilized. For example, for the ARM processors, the

instruction-set simulator (ISS) of the ARM RealView

Developer Suite (RVDS) can be typically used. Kernels
are considered those code segments that contribute more

than a certain amount to the total application’s execution

time on the processor. For instance, parts of the code that

account 10% or more for the application’s time can be

characterized as kernels.

The kernels are moved for execution on the RDP. The

Intermediate Representation (IR) of the kernel source

code is created using a compiler front-end. A

representation widely used in reconfigurable systems is

the Control Data Flow Graph (CDFG). In this work, we

utilize a hierarchical CDFG for modeling data and
control-flow dependencies. The control-flow structures,

like branches and loops, are modeled through the

hierarchy, while the data dependencies are modeled by

Data Flow Graphs (DFGs). For generating the CDFG IR

from C source code, we have utilized the

SUIF2/MachineSUIF compiler infrastructures. Existing

and custom-made compiler passes are used for the CDFG

creation.

C description

Profiling

Optimizations Compilation

CDFG

Non critical codeKernel code

Configuration Software binary

Simulation

Execution time

RDP mapper
RDP

description

Front-end

Figure 4. Design flow for the processor/RDP system.

Optimizations are applied to the kernels for efficient

mapping on the RDP. Examples of optimizations used in

the flow are dead code elimination, common sub-

expression elimination and constant propagation.
Additionally, operations inside the kernels that cannot be

directly executed on the PEs of the CGC units are

transformed into series of supported operations. The

divisions are transformed to shifts, while a square root

computation can be performed by the CGCs using a

method, like the Friden algorithm [18] that has been

implemented in the proposed flow. MachineSUIF

compiler passes have been developed for the automatic
application of the optimizations on a kernel’s CDFG.

The optimized kernels are mapped on the RDP, for

improving performance, utilizing the algorithm outlined

in section 3.1 which is the core of the design flow. A

prototype tool in C++ has been developed for

implementing the mapping procedure. The second input

to the mapping process is a description of the RDP. The

mapping tool outputs the execution cycles and the

configuration of the CGC-based data-path. A feedback

script is included in the flow for optimizing the

performance of the kernels executed on the RDP.

The non-critical source code is compiled using a
compiler for the specific processor. The system’s

performance is estimated via simulation having as inputs

the software binary of the processor and the configuration

of the RDP. The dark grey boxes in Figure 4 represent the

automatic procedures modified or created by the authors

for the specific flow, while the light grey boxes the

external tools used.

The total execution time required for executing an

application on the generic system is:

Timesystem = Timeproc + TimeRDP (1)
where Timeproc represents the time for executing non-

critical software parts on the processor, and TimeRDP

corresponds to the execution time of the kernels on the

RDP. The communication time between the processor and

the RDP is included in the Timeproc and in the TimeRDP.

3.1. RDP mapper

The flow of the mapping method for the CCG data-

path is shown in Figure 5. The input is the CDFG of a

kernel decided by the detection procedure to be executed

on the coarse-grained reconfigurable hardware. The

proposed mapping procedure traverses the kernel’s CDFG

and maps one DFG at a time. A DFG is scheduled using

the developed scheduler for the CGC data-path. In our

case, scheduling is a resource-constrained problem with

the goal of execution cycle count minimization, since the

number and type of CGCs (e.g. three 2x2 CGCs) in the
data-path is constant and input to the mapping procedure.

A proper list-based scheduler has been developed. The

priority function of the scheduler is derived by properly

labeling the DFG operations. Particularly, the operations

are labeled with weights of their longest path to the sink

operation of the DFG, and they are ordered by decreasing

weight. The most urgent operations are scheduled first.

The arithmetic resource constraints for the scheduler are

determined by the total number of PEs at the first rows of

all the CGCs in the data-path. If there are p nxm CGCs in

the data-path, there are p ⋅ m PEs in the first rows, since

each CGC row consists of m PEs. Thus, p ⋅ m primitive

operations (ALU and/or multiplications) can be executed

in parallel at each clock cycle of the schedule. For

example, if there are three 2x2 CGCs in the data-path, six

operations can be executed in parallel at every cycle of
the schedule.

Scheduling

CDFG

Binding

Configuration

and type

of CGCs

Figure 5. Mapping procedure for the RDP.

The input to the binding step is the scheduled DFG.
The pseudo-code of the binding algorithm is shown in

Figure 6. After binding, the overall execution delay of the

DFG is measured in clock cycles having period TCGC. This

period is set for having unit execution delay for the CGCs.

The CGC binding algorithm maps row-wise the DFG

operations to the CGC PEs. A term called CGC_index is

defined that it is related to the clock period TCGC after the

binding is performed. This term represents the current row

of CGC’s PEs that bind the DFG operations. The

CGC_index takes the values from 0 and n-1, since a CGC

consists of n rows of PEs. The algorithm covers the

scheduled operations for CGC_index equal to 0 or until
there are no DFG operations left uncovered. Then, it

proceeds to the next value of CGC_index till equal to n-1,

if there are any uncovered operations left. This procedure

is repeated for every CGC in the data-path. A CGC is not

utilized, when they are no uncovered operations left. Also,

a CGC is partially utilized when there is no sufficient

number of operations left and the mapping to CGC

process (map_to_CGC) has already been started for this

CGC. The mapper outputs the execution cycles of the

kernel and the configuration of the CGC-based RDP. For

more detailed description about the mapping method, the
reader is referred to [9].

while (the DFG is not covered)

for the number of CGCs

for (CGC_index=0; CGC_index <n; CGC_index ++)

while (col_idx < number of ops in a row &&

 col_idx < number of DFG nodes not covered)

 map_to_CGC(DFG_node, CGC_index, col_idx)

end while;

 end for;

 end for;

end while;

Figure 6. CGC binding pseudocode.

4. Results

This section presents the performance improvements

and the energy savings by employing the CGC-based

data-path on microprocessor systems.

4.1. Platform’s processing units

 The CGC-based RDP has a data-width of 16-bit and it

is composed by three 2x2 CGCs. In our previous work [9]

it was inferred that a small number of CGCs with a value

of 2 ≤ n ≤ 3 and 2 ≤ m ≤ 3 are adequate for improving
performance. The local configuration RAMs are

implemented as SRAMs and the size of each of them is 32

contexts of 36-bit. The register bank has a size of 32

words of 16-bit. The RDP was described in register-

transfer level (RTL) VHDL. For the SRAMs, optimized

components from TSMC 0.13µm SRAM generators of

Artisan Components [22] were used. The Synopsys

synthesis and power estimation tools were utilized to

obtain delay, area and power estimates for a 130nm
standard cell TSMC CMOS library. It was found that the

critical path delay allows the maximum clock frequency

to be 150MHz. However, we set the frequency of the

RDP to be 100MHz for reducing energy consumption.

The average power consumption of the RDP was

estimated using simulation vectors from kernels of the

applications used in the experiments. It was reported that

the RDP consumes 0.72mW/MHz at 1.2V. Thus, the

power consumption of the RDP is 72.0 mW at 100 MHz.

The embedded CPU used in the platform is an ARM

RISC core. Three different architectures of 32-bit ARM
cores are coupled each time with the 4x4 CRA. These

processors are: (a) an ARM7 clocked at 100 MHz, (b) an

ARM9 clocked at 200 MHz, and (c) an ARM10 having

clock frequency of 300 MHz. These frequencies can be

supported by the considered ARM processors. So, the

CPUs are clocked at integer multiples of the operating

frequency of the CRA for simpler synchronization

between the CPU and the CRA. The bus in each system is

an AMBA AHB bus [19].

The eight applications were compiled to generate

binary files for the ARM processors using the highest

level of software optimizations. The ARM RealView
Developer Suite (RVDS) (version 2.2) was used for

calculating the execution time of application parts for

each one of the three processors. Typical average

mW/MHz values are considered for the ARM processors

in 130 nm at 1.2V [19]. These are: 0.20 mW/MHz for the

ARM7, 0.45 mW/MHz for the ARM9 and 0.60

mW/MHz. Thus, the power consumption for the ARM7 is

20.0mW at 100MHz, for the ARM9 is 90.0mW at

200MHz, while for the ARM10 is 180.0mW at 300MHz.

4.2. Benchmarks and profiling results

The eight real-world DSP applications, described in C

language, used in the experiments are given in Table 1. A

brief description of each application is given in the second

column, while in the third one the input sequence used is

presented.

Table 1. Applications’ characteristics

Application Description Input

JPEG enc. Still-image JPEG

encoder
256x256 byte image

OFDM

trans.

IEEE 802.11a

OFDM transmitter
4 payload symbols

Compressor Wavelet-based

image compressor
512x512 byte image

Cavity det. Medical imaging

technique
640x400 byte image

Edge det. Edge detection in

images
128x128 byte image

JPEG dec. Still-image JPEG

decoder
227x149 byte image

GSM enc. Speech encoder clinton.pcm

GSM dec. Speech decoder clinton.pcm.run.gsm

The results from profiling the eight applications on the

ARM7 processor, using the ARM RVDS tool, are

presented in Table 2. The threshold for detecting kernels

was set to the 10% of the total application’s execution

time. It was observed that a threshold smaller than 10%

leads to trivial additional improvements when the

identified kernels are mapped on the CGC data-path. The

Total size corresponds to the application’s static size in

terms of instructions bytes, while the % size to the
percentage of the kernels’ contribution to the total static

size. The % time is the percentage of the execution time

spent in the kernels. The Ideal speedup is the theoretical

maximum speedup, according to Amdahl’s law, if the

application’s kernels were ideally executed on the CGC-

based RDP in zero time. The ideal speedup equals 100 /

(100 - %time). The number of the kernels detected in each

application is also given. The kernels of the eight

applications are innermost loops and they consist of word-

level operations (ALU, multiplications, shifts) that match

the granularity (data bit-width) of the PEs in the CGCs.

We mention that the detected loops are also kernels for
the ARM9 and ARM10 processors.

Table 2. Results from profiling the benchmarks on ARM7

Application Total

size

%

size

%

time

Ideal

speedup

of

kernels

JPEG enc. 36,592 10.4 74.7 3.96 4

OFDM trans. 15,579 9.0 71.8 3.54 4

Compressor 12,835 4.8 60.2 2.51 4

Cavity det. 12,039 7.4 58.0 2.38 4

Edge det. 9,771 10.6 61.9 2.61 2

JPEG dec. 56,987 2.3 76.0 4.17 4

GSM enc. 125,383 1.1 67.2 3.05 2

GSM dec. 113,383 0.9 64.5 2.82 1

Average 5.8 66.8 3.13

Geo. mean 4.1 66.5 3.07

From these results, it is inferred that an average of

5.8% of the code size, representing the kernels’ static size,

contributes 66.8% on average to the total execution time.

The geometrical means of the % size and % time are also

given. Furthermore, the average ideal speedup for the

ARM7 systems equals 3.13. Thus, it is deduced that
important overall application speedups will come from

accelerating few small kernels.

4.3. Speedups

The execution times and the overall application

speedups for the eight applications are presented in Table

3. Timesw represents the software execution time of the

whole application on a specific microprocessor (Proc.).
The ideal speedup (Ideal sp.) is the application speedup

that would ideally be achieved, according to Amdahl’s

Law, if application’s kernels were executed on the RDP in

zero time. Timesystem corresponds to the execution time of

the application when executing the critical code on the
CGC data-path. All execution times are normalized to the

software execution times on the ARM7. The Sp. is the

estimated application speedup, after utilizing the

developed design flow, over the execution of the

application on the microprocessor. The estimated speedup

is calculated as:

Sp= Timesw / Timesystem (2)

The average values, as well as, the geometrical means of

the speedups are also illustrated.

Table 3. Execution times and application speedups

Processor/RDP

Application Proc. Timesw
Ideal

sp.
Timesystem Sp.

ARM7 1.000 3.96 0.272 3.68

ARM9 0.461 3.24 0.148 2.93 JPEG enc.

ARM10 0.301 3.16 0.092 2.67

ARM7 1.000 3.54 0.305 3.28

ARM9 0.485 3.43 0.146 3.13
OFDM

trans.
ARM10 0.344 3.23 0.089 3.13

ARM7 1.000 2.51 0.450 2.22

ARM9 0.424 2.32 0.197 2.02 Compressor

ARM10 0.283 2.21 0.132 1.75

ARM7 1.000 2.38 0.493 2.03

ARM9 0.480 2.29 0.241 1.87 Cavity det.

ARM10 0.355 2.17 0.166 1.74

ARM7 1.000 2.61 0.407 2.46

ARM9 0.498 2.54 0.198 2.36 Edge det.

ARM10 0.367 2.49 0.132 2.27

ARM7 1.000 4.17 0.254 3.94

ARM9 0.418 3.85 0.108 3.64 JPEG dec.

ARM10 0.273 3.64 0.067 3.32

ARM7 1.000 3.05 0.348 2.87

ARM9 0.426 2.93 0.145 2.77 Gsm enc.

ARM10 0.295 2.88 0.090 2.67

ARM7 1.000 2.82 0.364 2.75

ARM9 0.422 2.77 0.146 2.71 Gsm dec.

ARM10 0.292 2.74 0.089 2.67

Average 2.96 2.70

Geo. mean 2.90 2.64

From the results given in Table 3, it is evident that

significant overall performance improvements are

achieved when critical software parts are mapped on the

CGCs. These speedups range from 1.74 to 3.94. It is

noticed from Table 3 that the largest overall application

performance gains are achieved for the ARM7-based
architectures as the ARM7 has the lowest clock frequency

and exhibits the highest Cycles Per Instruction (CPI)

among the three ARM-based systems. The average

application speedup of the eight DSP benchmarks for the

ARM7 systems is 2.90, for the ARM9 is 2.68, while for

the ARM10 systems is 2.53. Thus, even when the CGC-

based data-path is coupled with a modern embedded

processor, as the ARM10, which is clocked at a higher

clock frequency, the application speedup over the

execution on the processor core is significant.

The average overall application speedup for all the

microprocessor systems is 2.70. Such amounts of
application speedups were also considered as important in

previous works considering a processor coupled with a

coarse-grained reconfigurable logic as in [7], [15], [16].

From Table 3, it is also inferred that the reported speedups

for each application and for each processor type are close

to theoretical speedup bounds, especially for the case of

the ARM7 systems. Specifically, the average estimated

speedup for all the systems is 8.8% smaller than the

average ideal speedup. Thus, the proposed design flow

quite effectively utilized the processing capabilities of the

CGC-based data-path for improving the overall
performance of the applications near to the ideal

speedups.

While experimenting with the benchmarks of this

paper, we found that that few parts of each application can

be executed in parallel on the processor and on the RDP.

A marginal performance increase relative to the mutual

exclusive execution was also reported. Such minor

improvements cannot offset the benefits of the simpler

programming of the system architecture due to the

exclusive execution.

4.4. Energy savings

The energy savings by employing a coarse-grained
RDP in a microprocessor system are presented next. For

estimating the total energy of the system the following

formula is used:

_total proc RDP mem iconE E E E= + +

_ _proc proc active proc RDP idle procE Time P Time P= × + ×

_ _0.25idle proc active procP P= ×

_ _RDP RDP active RDP proc idle RDPE Time P Time P= × + ×

_ _0.10idle RDP active RDPP P= ×

_ _mem icon system mem iconE Time P= ×

system proc RDPTime Time Time= +

Timeproc is the time of non-critical software parts on the

microprocessor, TimeRDP is the execution time of the

kernels on the RDP, Pproc is the power of the

microprocessor, PRDP is the power of the RDP and

Pmem_icon is the power consumption of the system RAM

and of the system interconnection buses. In the above
formulas, it is considered that the low-power idle mode

(standby) of the RDP consumes 10% of the power of its

active state as in standby mode the power is primarily due

to current leakage. In contemporary CMOS processes,

leakage can account for 10% to 30% of the active power

[20]. The active power is when the logic (either

microprocessor or reconfigurable hardware) evaluates.

The power-down mode of the microprocessor dissipates

25% of its power when it is active as in [21]. It is assumed

that the systems have Pmem_icon of 180 mW. This value was

estimated from commercial [19] and academic

microprocessor platforms implemented at 130nm as well
as from commercial SRAM modules [22] since the

system RAM is considered to be a multi-banked SRAM.

The values of Pproc and of PRDP are given in section 4.1.

The formula for the total energy represents a weighted

average of the system energy during software execution

and the system energy during hardware execution.

Figure 7 illustrates the normalized energy

consumptions for the three ARM-based platforms. The

energy values are normalized to the software-only

execution of each application on the microprocessor.

From the presented results it is inferred that significant
energy savings are achieved by executing critical kernels

on the proposed CGC-based RDP. The largest energy

reductions are reported for the JPEG decoder.

Additionally, the energy is reduced by an average of 62%

for the ARM7 systems. The savings are slightly smaller

for the ARM9 and ARM10-based platforms due to the

smaller application speedups relative to the ARM7

systems as these are shown in Table 3. More specifically,

the system energy is smaller by an average of 59%

relative to the all-software solution for the ARM9

systems, while for the ARM10 systems the energy is

reduced by 57%. Thus, besides the significant
performance improvements derived by adopting the CGC-

based data-path, an important reduction in system energy

is also reported.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JPEG enc. OFDM trans. Compressor Cavity det. Edge det. JPEG dec. Gsm enc. Gsm dec. Average

Application

N
o

rm
a
li

z
e
d

 E
n

e
r
g
y

software ARM7/RDP ARM9/RDP ARM10/RDP

0.
38

1
0.

40
7

0.
43

2

Figure 7. Normalized energy consumption.

The energy-delay product, which is an important

design parameter in embedded systems, is presented in

Figure 8. In particular, the normalized energy-delay

values in respect to the software-only execution of each

application are given. It is observed that the ARM/RDP

systems achieve considerably better energy-delay product
values than the all-microprocessor solution. These

improvements in the energy-delay product, ranging from

66% to 92%, are due to the achieved application speedups

and due to the system energy reductions relative to the all-

microprocessor solutions. The largest reductions are again

accomplished for the ARM7 systems as the average

decrease is 86%. For the ARM9/RDP platform an average

reduction of 83% is reported, while for the ARM10

systems the average reduction is 80%.

Figure 8. Normalized energy-delay product.

In order to provide an insight into the area cost of

coupling a CGC data-path with a microprocessor, we note

that the area at 130nm for ARM7 is 2.4mm2, for ARM9 is

3.2mm2, while for ARM10 is 6.9mm2. The synthesized

VHDL description of the RDP occupied an area of
0.82mm2 at 130nm. So, the area of the processing units of

the platform increases by an average of 23% for the three

ARM-based systems, with a minimum value of 12% for

the ARM10 systems and a maximum value of 34% for the

ARM7/RDP platforms. Thus, important speedups and

energy savings have been achieved with a small area

overhead by using a coarse-grained reconfigurable

coprocessor.

5. Conclusions

The integration of a Coarse-Grained Reconfigurable

Data-Path in a generic single-chip microprocessor system
was presented. A design flow was also proposed for

mapping complete applications on the system. The ability

of the computational resources of the RDP to realize

complex arithmetic structures resulted in improving the

performance of time critical application segments.

Thorough experimentation showed that significant overall

speedups, with average value of 2.70, were accomplished.

Besides the speedups, important savings in system energy,

ranging from 42% to 72%, were reported. Significant

energy-delay product reductions are illustrated relative to

the software-only executions, while the overhead in

system area is small.

6. References

[1] R. Hartenstein, “A Decade of Reconfigurable Computing: A

Visionary Retrospective”, in Proc. of ACM/IEEE DATE ’01, pp.
642-649, 2001.
[2] S. Hauck et al., “The Chimaera Reconfigurable Functional
Unit”, in IEEE Trans. on VLSI, vol. 12, no.2, pp. 206-217, Feb.
2004.
[3] Xilinx Inc., Virtex 4 User Guide, September 2005,
www.xilinx.com/virtex4.
[4] Altera Corp., Stratix II Device Handbook, July 2005,

www.altera.com.
[5] H. Singh et al., “MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Communication-Intensive
Applications”, in IEEE Trans. on Computers, vol. 49, no. 5, pp.
465-481, May 2000.
[6] J. Becker and A. Thomas, “Scalable Processor Instruction
Set Extension”, in IEEE Design & Test of Computers, vol. 22,
no. 2, pp. 136-148, 2005.

[7] B. Mei et al., “Mapping an H.264/AVC Decoder Onto the
ADRES Reconfigurable Architecture”, in Proc. of FPL ’05, pp.
622-625, 2005.
[8] S. C. Goldstein et al., “PipeRench: A Coprocessor for
Streaming Multimedia Acceleration”, in Proc. of International
Symposium on Computer Architecture (ISCA), pp. 28-39, 1999.
[9] M. D. Galanis et al., “A Reconfigurable Coarse-Grain Data-Path

for Accelerating Computational Intensive Kernels”, in Journal of

Circuits, Systems and Computers (JCSC), World Scientific

Publishers, vol. 14, no. 9, pp. 877-893, August 2005.

[10] M. R. Corazao et al., “Performance Optimization Using
Template Mapping for Datapath-Intensive High-Level
Synthesis”, in IEEE Trans. on CAD, vol.15, no. 2, pp. 877-888,
August 1996.

[11] N. Cheung et al., “INSIDE: Instruction
Selection/Identification & Design Exploration for Extensible
Processors”, in IEEE/ACM ICCAD ‘03, pp. 291-297, 2003.
[12] J. Cong et al., “Application-Specific Instruction Generation
for Configurable Processor Architectures”, in Proc. of the ACM
FPGA, pp. 183-189, 2004.
[13] R. Kastner et al., “Instruction Generation for Hybrid
Reconfigurable Systems”, in ACM TODAES, vol. 7, no.4, pp.

605-627, October 2002.
[14] G. Venkataramani et al., “Automatic Compilation to a
Coarse-Grained Reconfigurable System-on-Chip”, in ACM
TECS, vol. 2, no. 4, pp. 560-589, Nov. 2003.
[15] Y. Kim et al., “Design and Evaluation of a Coarse-Grained
Reconfigurable Architecture”, in Proc. of ISOCC ’04, pp. 227-
230, 2004.
[16] B. Mei, et al., “Mapping methodology for a Tightly

Coupled VLIW/Reconfigurable Matrix Architecture, A Case
Study”, in Proc. of ACM/IEEE DATE ’04, pp. 1224-1229, 2004.
[17] F. Barat et al., “Low Power Coarse-Grained Reconfigurable
Instruction Set Processor”, in Proc. of FPL ’03, LNCS 2778,
Springer, pp. 230-239, 2003.
[18] J. W. Crenshaw, “MATH Toolkit for Real-Time
Programming”, CMP Books, 2000.
[19] ARM Corp., www.arm.com, 2006.

[20] D. G. Chinnery and K. Keutzer, “Closing the Power Gap
between ASIC and Custom: An ASIC Perspective”, in Proc. of
Design Automation Conference (DAC), pp. 275-280, 2005.
[21] Intel StrongARM 1110 processor, www.intel.com.
[22] Artisan Components, www.artisan.com.

