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Abstract 

This paper presents the performance improvements 
and the energy reductions by coupling a high-
performance coarse-grained reconfigurable data-path 
with a microprocessor in a generic platform. The data-
path has been previously introduced by the authors. It is 
composed by computational units able to realize complex 
operations which aid in improving the performance of 
time critical application parts, called kernels. A design 
flow is proposed for mapping high-level software 
descriptions to the microprocessor system. Eight real-life 
applications are mapped on three different instances of 
the system. Significant overall application speedups, 
relative to a software-only solution, ranging from 1.74 to 
3.94 are reported being close to theoretical speedup 
bounds. Average energy savings of 59% are achieved, 
while the reduction in the system energy-delay product 
ranges from 66% to 92%.  

1. Introduction 

Embedded systems have been proposed that extend the 

computational capabilities of a microprocessor core by 
coupling it with reconfigurable logic [1]-[8]. 

Reconfigurable hardware is used to implement 

computational intensive parts of the applications, called

kernels. The microprocessor core executes non-critical 

sequential code parts and provides software 

programmability. The spatial parallelism present in 

kernels is exploited by the abundant Processing Elements 

(PEs) of the reconfigurable hardware, resulting in 

performance improvements. There is a growing interest in 

reconfigurable systems from designers, especially with 

the introduction of commercial devices that combine 
reconfigurable logic with one or more instruction-set 

processors [3], [4].   

Reconfigurable hardware has been widely associated 

with Field Programmable Gate Arrays (FPGAs). An 

FPGA consists of an array of programmable logic cells, 

executing bit-level operations, with a grid of interconnect 

lines running among them. Both the function and 

interconnection among the logic cells can be programmed 

after fabrication. FPGAs are more effective in realizing 

bit-level operations. However FPGAs are not the only 

type of reconfigurable logic. Several coarse-grained 

reconfigurable architectures have been introduced and 

successfully built [1], [5], [6], [7], [8]. They consist of a 

large number of PEs with word-level data bit-widths (like 

16-bit ALUs) connected with a reconfigurable 

interconnect network. The coarse-grained PEs exploit 

better the word-level parallelism of many DSP 

applications than the FPGAs do. Their coarse granularity 

greatly reduces the delay, area, power consumption and 
reconfiguration time relative to FPGA logic at the 

expense of flexibility [1]. 

 In this work, we propose the coupling of 

microprocessor cores with a high-performance coarse-

grained reconfigurable data-path previously presented in 

[9]. The computational resources of the Reconfigurable 

Data Path (RDP) are able to implement complex 

arithmetic structures. Research in High-Level Synthesis 

(HLS) [10], [11] and in Application Specific Instruction 

Processors (ASIPs) [12], [13] have proven that the use of 

complex computational structures, called templates or 
clusters, instead of using only primitive ones (like a single 

ALU) in data-paths improves performance. A template 

may be a specialized hardware unit or a group of chained 

units. Chaining is the removal of the intermediate 

registers between the primitive units improving the total 

delay of the combined units. The ability of the considered 

RDP to realize complex operations aids in improving 

performance as it was shown in [9]. A design flow is 

introduced for efficiently mapping applications described 

in C language to the reconfigurable system. The flow 

consists of the following steps: (a) a profiling procedure, 

(b) Intermediate Representation (IR) creation of the kernel 
code, (c) optimizations to the IR, (d) mapping of the 

kernels to the RDP, and (e) compilation of the non-critical 

segments to the microprocessor. Parts of the design flow 

have been implemented as prototype tools.   

Design flows for systems integrating coarse-grained 

reconfigurable logic have been presented [1]. However, 

few of those works consider the mapping of realistic 

applications and examine the performance and energy 

consumption improvements. Research activities that 

consider the mapping of real-life applications on coarse-

grained reconfigurable based systems are overviewed. In 
[8], a PipeRench architecture clocked at 100MHz and 

composed by 8-bit PEs and 53 128-bit stripes, improved 

on average the execution time by 12% and 7.2% for the 

Pretty Good Privacy (PGP) data encryption algorithm and 
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for JPEG, respectively, relative to the execution on an 

UltraSparcII running at 300 MHz. The compilation 

framework of [14] achieved the acceleration of a wavelet 

compression and Prewitt detection on the MorphoSys 

architecture over the execution on a Pentium III machine. 

In [15], it is shown that a hybrid architecture composed by 
an ARM926EJ-S and an 8x8 Reconfigurable Array 

similar to MorphoSys [5], executes 2.2 times faster an 

H.263 encoder than a single ARM926EJ-S processor. The 

mapping flow for the reconfigurable ADRES architecture 

was applied to an MPEG-2 decoder in [16]. The kernel 

and the overall application speedup over an 8-issue VLIW 

processor were 4.84 and 3.05, respectively. In [7], an 

H.264/AVC decoder was mapped on an 8x8 array 

achieving application speedup of 1.88. To our knowledge, 

the only work that studies the effect in the energy by 

extending a RISC core with a coarse-grained 

reconfigurable unit is the one in [17]. The experiments 
showed that the performance is improved 2.5 times on 

average while the energy-delay product is 60% on 

average smaller than the one of the baseline RISC. The 

power consumption of the reconfigurable logic is 

estimated using the Wattch power estimation framework 

that mainly targets superscalar processors.  

This work presents the performance improvements as 

well as the energy reductions by executing time critical 

kernels of realistic benchmarks on the coarse-grained 

RDP. Eight real-world DSP applications are mapped on 

three systems employing 32-bit ARM processors. The 
applications’ execution times are estimated using the 

proposed design flow. Typical power values are 

considered for the ARM processors. The RDP is 

described in synthesizable VHDL and its power 

consumption is estimated using commercial tools. 

Important application speedups are reported as the design 

flow accelerates each application close to ideal speedups. 

The performance improvements lead in significant energy 

savings, while the energy-delay product values are 

substantially reduced over an all-software execution.  

The rest of the paper is organized as follows: section 2 

presents the architecture of the microprocessor platform 
and the proposed RDP architecture. Section 3 describes 

the design flow and outlines the mapping procedure for 

the reconfigurable data-path. Experimental results are 

given in section 4, while section 5 concludes this paper.    

2. System architecture 

2.1. Platform description  

Figure 1 shows an overview of the microprocessor 

platform considered in this work. The System-on-Chip 

(SoC) architecture includes an embedded microprocessor, 

Reconfigurable Logic (RL) and system RAM. The RL is 

composed by a Coarse-Grained Reconfigurable Data Path 
(RDP) introduced in [9] and a set of memory-mapped 

coprocessor data registers for exchanging data with the 

microprocessor. The system RAM stores data, 

instructions for the microprocessor execution and 

configurations for the RL. The RDP acts as a coprocessor 

to the microprocessor and accelerates time critical 

software parts of an application by exploiting the 
Instruction Level Parallelism (ILP) of these parts. The 

microprocessor, typically a RISC like an ARM, executes 

control-dominant software parts.     
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Figure 1. Diagram of the microprocessor SoC platform. 

Data communication between the Coarse-Grained 

Reconfigurable Data Path and the CPU uses shared-

memory mechanism. The shared memory is comprised of 

the shared system RAM and the memory-mapped 

coprocessor registers within the reconfigurable logic. 

Scalar variables, either live-in or live-out ones, are 

identified utilizing data-flow analysis and they are 

exchanged via the shared registers. Global variables and 
data arrays are allocated in the system RAM. Both the 

microprocessor and the RDP have access to the shared 

memory. The communication process used by the 

processor and the RDP preserves data coherency by 

requiring the execution of the processor and the RDP to 

be mutually exclusive. The mutual exclusive execution 

simplifies the programming since complicated analysis 

and synchronization procedures are not required. The 

system architecture is also simpler with the mutual 

exclusive execution because the processor and the RDP 

will never access simultaneously the same data memory. 

A software kernel is replaced with code that enables 
the reconfigurable logic. When a kernel is reached in 

software, the RDP is activated and the proper 

configuration is loaded for executing the critical code. 

Furthermore, the live-in local variables are transferred to 

the shared data registers in the reconfigurable logic. Then, 

the microprocessor enters a low-power state. After the 

completion of the kernel execution, the RDP informs the 

processor waking-up from its low-power state, writes the 

live-out variables in the shared registers, and writes global 

variables and array data located in the shared RAM. Then, 

the execution of the software is continued on the CPU and 
the RDP enters a low-power idle state for reducing system 

energy. It is mentioned that waking-up a microprocessor 



for its power-down sleep mode requires from few cycles 

to a few dozen, depending on the microprocessor. In 

either situation, these cycles are only consumed after a 

kernel on the RDP completes (and not at every iteration of 

the kernel) and so it is typically insignificant compared to 

the thousand of cycles required for the kernel execution.    

2.2. RDP architecture  

An outline of the data-path is shown in Figure 2. The 

considered high-performance coarse-grained 

reconfigurable data-path and the respective mapping 

methodology have been introduced in [9]. The proposed 

coarse-grained RDP consists of a set of word-level 

hardwired Coarse-Grained Components (CGC) units, a 

reconfigurable interconnection network, a register bank, 

configuration RAMs (CR), Address Generation Units 
(AGUs) and a control unit. The data-width of the RDP is 

typically 16-bits, although different word-level bit-widths 

are supported. 
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Figure 2. Outline of a CGC-based data-path. 

The control unit manages the execution of the RDP 

every cycle by configuring the interconnect, the AGUs, 
the register bank and the CGCs. The microprocessor sets 

the control unit for proper execution of a kernel on the 

data-path. The interconnection network provides full 

connectivity among the CGCs and connectivity to the 

register bank. For a small number of CGC units (up to 

four units) present in the data-path, a full crossbar is used. 

When a large number of CGCs is employed, a 

hierarchical network is utilized. The register bank stores 

intermediate values among computations and data fetched 

from the system RAM of the SoC. The AGUs enable the 

data accesses to the system RAM.  
The configuration (context) RAMs stores few context 

words locally. During the execution of a kernel, the 

configuration RAMs of the CGCs are indexed by a central 

Configuration Pointer, set by the control unit of the RDP, 

and a proper configuration word is loaded allowing 

dynamic reconfiguration of each CGC within a cycle. The 

configuration word defines the functionality of the CGC. 

Each CGC can be configured to execute a different 

complex operation in a cycle according to the contexts 

stored in the configuration RAM. The contexts can also 

be loaded from the system RAM at the cost of extra delay, 

if the configuration RAMs are not large enough to store 

the configurations of a kernel. The control unit manages 

the loading of the contexts from the system RAM. The 

system RAM stores the whole configuration for setting up 

the RDP for the execution of the kernels. At the 

initialization phase of the RDP, the contexts are loaded 
from the system RAM into the configuration RAMs 

similar as in FPGAs.  

A CGC unit is an nxm array of Processing Elements 

(PEs), where n is the number of rows and m the number of 

columns. In Figure 3a, such a CGC (called hereafter as 

2x2 CGC) with 2 PEs per row and 2 PEs per column is 

illustrated. The PEs in the first row are connected to the 

second row PEs with multiplexer-based flexible 

connections.  Each CGC PE contains a word-level ALU-

multiplier unit. The ALU part performs shifting, 

arithmetic (add/subtract), and logical operations. At each 

cycle, the ALU-multiplier unit is properly configured to 
perform either a multiplication or an ALU operation. The 

four inputs (in1, in2, in3, in4) are connected to the register 

bank, the four additional inputs (A, B, C, D) are connected 

to the register bank or to another CGC, the two outputs 

(out1, out2) are also connected to the register bank or to 

another CGC, and the two outputs (out3, out4) store their 

values in the register bank. An nxm CGC has an 

analogous structure. A local configuration register stores 

the configuration word broadcasted from the 

corresponding Configuration RAM of the CGC. It is 

mentioned that for a 2x2 CGC, a context word of 36-bit is 
adequate for configuring it, whereas for a 3x2 CGC the 

word has size of 62 bit. 
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Figure 3. (a) Architecture of the 2x2 CGC, (b) Examples 

of complex operations realized by the 2x2 CGC. 

The flexible connections among the PEs inside a CGC 

allows in easily realizing any desired operation 
combination, as the ones proposed in [10]-[13], by 

properly configuring the multiplexers of the CGC. 

Examples of complex operations (templates) realized by 

the 2x2 CGC are shown in Figure 3b. Thus, since a CGC 

can implement templates by properly configuring the 

connections inside the CGC, high-performance is 

achieved. In [9], it was shown that an average 

performance improvement of 44%, relative to existing 

high-performance data-path, was accomplished with 

CGC-based data-paths. This improvement is due to the 



exploitation of chaining of operations inside the CGCs 

(intra-CGC chaining) and inter-CGC chaining due to the 

direct connections among the CGCs.  

3. Design flow 

The flow for mapping applications, described in C, on 

the processor/RDP architecture is illustrated in Figure 4. 

Initially, a profiling procedure outputs the kernels and the 

non-critical parts of the source code. For performing 

profiling, standard debugger/simulator tools of the 

development environment of a specific processor can be 

utilized. For example, for the ARM processors, the 

instruction-set simulator (ISS) of the ARM RealView 

Developer Suite (RVDS) can be typically used. Kernels 
are considered those code segments that contribute more 

than a certain amount to the total application’s execution 

time on the processor. For instance, parts of the code that 

account 10% or more for the application’s time can be 

characterized as kernels. 

The kernels are moved for execution on the RDP. The 

Intermediate Representation (IR) of the kernel source 

code is created using a compiler front-end. A 

representation widely used in reconfigurable systems is 

the Control Data Flow Graph (CDFG). In this work, we 

utilize a hierarchical CDFG for modeling data and 
control-flow dependencies. The control-flow structures, 

like branches and loops, are modeled through the 

hierarchy, while the data dependencies are modeled by 

Data Flow Graphs (DFGs). For generating the CDFG IR 

from C source code, we have utilized the 

SUIF2/MachineSUIF compiler infrastructures. Existing 

and custom-made compiler passes are used for the CDFG 

creation.  
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Figure 4. Design flow for the processor/RDP system. 

Optimizations are applied to the kernels for efficient 

mapping on the RDP. Examples of optimizations used in 

the flow are dead code elimination, common sub-

expression elimination and constant propagation. 
Additionally, operations inside the kernels that cannot be 

directly executed on the PEs of the CGC units are 

transformed into series of supported operations. The 

divisions are transformed to shifts, while a square root 

computation can be performed by the CGCs using a 

method, like the Friden algorithm [18] that has been 

implemented in the proposed flow. MachineSUIF 

compiler passes have been developed for the automatic 
application of the optimizations on a kernel’s CDFG.  

The optimized kernels are mapped on the RDP, for 

improving performance, utilizing the algorithm outlined 

in section 3.1 which is the core of the design flow. A

prototype tool in C++ has been developed for 

implementing the mapping procedure. The second input 

to the mapping process is a description of the RDP. The 

mapping tool outputs the execution cycles and the 

configuration of the CGC-based data-path. A feedback 

script is included in the flow for optimizing the 

performance of the kernels executed on the RDP.  

The non-critical source code is compiled using a 
compiler for the specific processor. The system’s 

performance is estimated via simulation having as inputs 

the software binary of the processor and the configuration 

of the RDP. The dark grey boxes in Figure 4 represent the 

automatic procedures modified or created by the authors 

for the specific flow, while the light grey boxes the 

external tools used.   

The total execution time required for executing an 

application on the generic system is:  

Timesystem = Timeproc + TimeRDP                  (1) 
where Timeproc represents the time for executing non-

critical software parts on the processor, and TimeRDP

corresponds to the execution time of the kernels on the 

RDP. The communication time between the processor and 

the RDP is included in the Timeproc and in the TimeRDP.

3.1. RDP mapper 

The flow of the mapping method for the CCG data-

path is shown in Figure 5. The input is the CDFG of a 

kernel decided by the detection procedure to be executed 

on the coarse-grained reconfigurable hardware. The 

proposed mapping procedure traverses the kernel’s CDFG 

and maps one DFG at a time. A DFG is scheduled using 

the developed scheduler for the CGC data-path. In our 

case, scheduling is a resource-constrained problem with 

the goal of execution cycle count minimization, since the 

number and type of CGCs (e.g. three 2x2 CGCs) in the 
data-path is constant and input to the mapping procedure. 

A proper list-based scheduler has been developed. The 

priority function of the scheduler is derived by properly 

labeling the DFG operations. Particularly, the operations 

are labeled with weights of their longest path to the sink 

operation of the DFG, and they are ordered by decreasing 

weight. The most urgent operations are scheduled first. 

The arithmetic resource constraints for the scheduler are 

determined by the total number of PEs at the first rows of 

all the CGCs in the data-path. If there are p nxm CGCs in 



the data-path, there are p ⋅ m PEs in the first rows, since 

each CGC row consists of m PEs. Thus, p ⋅ m primitive 

operations (ALU and/or multiplications) can be executed 

in parallel at each clock cycle of the schedule. For 

example, if there are three 2x2 CGCs in the data-path, six 

operations can be executed in parallel at every cycle of 
the schedule. 

Scheduling

CDFG

Binding

Configuration

# and type 

of CGCs

Figure 5. Mapping procedure for the RDP. 

The input to the binding step is the scheduled DFG. 
The pseudo-code of the binding algorithm is shown in 

Figure 6. After binding, the overall execution delay of the 

DFG is measured in clock cycles having period TCGC. This 

period is set for having unit execution delay for the CGCs. 

The CGC binding algorithm maps row-wise the DFG 

operations to the CGC PEs. A term called CGC_index is 

defined that it is related to the clock period TCGC after the 

binding is performed. This term represents the current row 

of CGC’s PEs that bind the DFG operations. The 

CGC_index takes the values from 0 and n-1, since a CGC 

consists of n rows of PEs. The algorithm covers the 

scheduled operations for CGC_index equal to 0 or until 
there are no DFG operations left uncovered. Then, it 

proceeds to the next value of CGC_index till equal to n-1, 

if there are any uncovered operations left. This procedure 

is repeated for every CGC in the data-path. A CGC is not 

utilized, when they are no uncovered operations left. Also, 

a CGC is partially utilized when there is no sufficient 

number of operations left and the mapping to CGC 

process (map_to_CGC) has already been started for this 

CGC. The mapper outputs the execution cycles of the 

kernel and the configuration of the CGC-based RDP. For 

more detailed description about the mapping method, the 
reader is referred to [9]. 

while (the DFG is not covered) 

for the number of CGCs 

for (CGC_index=0; CGC_index <n; CGC_index ++) 

while (col_idx <  number of ops in a row &&

               col_idx < number of DFG nodes not covered)

        map_to_CGC(DFG_node, CGC_index, col_idx)

end while;

   end for;

  end for;

end while;

Figure 6. CGC binding pseudocode. 

4. Results 

This section presents the performance improvements 

and the energy savings by employing the CGC-based 

data-path on microprocessor systems.  

4.1. Platform’s processing units 

 The CGC-based RDP has a data-width of 16-bit and it 

is composed by three 2x2 CGCs. In our previous work [9] 

it was inferred that a small number of CGCs with a value 

of 2 ≤ n ≤ 3 and 2 ≤ m ≤ 3 are adequate for improving 
performance. The local configuration RAMs are 

implemented as SRAMs and the size of each of them is 32 

contexts of 36-bit. The register bank has a size of 32 

words of 16-bit. The RDP was described in register-

transfer level (RTL) VHDL. For the SRAMs, optimized 

components from TSMC 0.13µm SRAM generators of 

Artisan Components [22] were used. The Synopsys 

synthesis and power estimation tools were utilized to 

obtain delay, area and power estimates for a 130nm 
standard cell TSMC CMOS library. It was found that the 

critical path delay allows the maximum clock frequency 

to be 150MHz. However, we set the frequency of the 

RDP to be 100MHz for reducing energy consumption. 

The average power consumption of the RDP was 

estimated using simulation vectors from kernels of the 

applications used in the experiments. It was reported that 

the RDP consumes 0.72mW/MHz at 1.2V. Thus, the 

power consumption of the RDP is 72.0 mW at 100 MHz.  

The embedded CPU used in the platform is an ARM 

RISC core. Three different architectures of 32-bit ARM 
cores are coupled each time with the 4x4 CRA. These 

processors are: (a) an ARM7 clocked at 100 MHz, (b) an 

ARM9 clocked at 200 MHz, and (c) an ARM10 having 

clock frequency of 300 MHz. These frequencies can be 

supported by the considered ARM processors. So, the 

CPUs are clocked at integer multiples of the operating 

frequency of the CRA for simpler synchronization 

between the CPU and the CRA. The bus in each system is 

an AMBA AHB bus [19].   

The eight applications were compiled to generate 

binary files for the ARM processors using the highest 

level of software optimizations. The ARM RealView 
Developer Suite (RVDS) (version 2.2) was used for 

calculating the execution time of application parts for 

each one of the three processors. Typical average 

mW/MHz values are considered for the ARM processors 

in 130 nm at 1.2V [19]. These are: 0.20 mW/MHz for the 

ARM7, 0.45 mW/MHz for the ARM9 and 0.60 

mW/MHz. Thus, the power consumption for the ARM7 is 

20.0mW at 100MHz, for the ARM9 is 90.0mW at 

200MHz, while for the ARM10 is 180.0mW at 300MHz.   

     



4.2. Benchmarks and profiling results 

The eight real-world DSP applications, described in C 

language, used in the experiments are given in Table 1. A 

brief description of each application is given in the second 

column, while in the third one the input sequence used is 

presented. 

Table 1. Applications’ characteristics

Application Description Input 

JPEG enc. Still-image JPEG 

encoder
256x256 byte image 

OFDM 

trans. 

IEEE 802.11a 

OFDM transmitter 
4 payload symbols

Compressor Wavelet-based 

image compressor 
512x512 byte image

Cavity det. Medical imaging 

technique 
640x400 byte image

Edge det. Edge detection in 

images 
128x128 byte image 

JPEG dec. Still-image JPEG 

decoder 
227x149 byte image 

GSM enc. Speech encoder  clinton.pcm 

GSM dec. Speech decoder clinton.pcm.run.gsm 

The results from profiling the eight applications on the 

ARM7 processor, using the ARM RVDS tool, are 

presented in Table 2. The threshold for detecting kernels 

was set to the 10% of the total application’s execution 

time. It was observed that a threshold smaller than 10% 

leads to trivial additional improvements when the 

identified kernels are mapped on the CGC data-path. The 

Total size corresponds to the application’s static size in 

terms of instructions bytes, while the % size to the 
percentage of the kernels’ contribution to the total static 

size. The % time is the percentage of the execution time 

spent in the kernels. The Ideal speedup is the theoretical 

maximum speedup, according to Amdahl’s law, if the 

application’s kernels were ideally executed on the CGC-

based RDP in zero time. The ideal speedup equals 100 / 

(100 - %time). The number of the kernels detected in each 

application is also given. The kernels of the eight 

applications are innermost loops and they consist of word-

level operations (ALU, multiplications, shifts) that match 

the granularity (data bit-width) of the PEs in the CGCs. 

We mention that the detected loops are also kernels for 
the ARM9 and ARM10 processors.  

Table 2. Results from profiling the benchmarks on ARM7

Application Total 

size 

%

size 

%

time 

Ideal 

speedup 

# of 

kernels 

JPEG enc. 36,592 10.4 74.7 3.96 4 

OFDM  trans. 15,579 9.0 71.8 3.54 4 

Compressor 12,835 4.8 60.2 2.51 4 

Cavity det. 12,039 7.4 58.0 2.38 4 

Edge det. 9,771 10.6 61.9 2.61 2 

JPEG dec. 56,987 2.3 76.0 4.17 4 

GSM enc. 125,383 1.1 67.2 3.05 2 

GSM dec. 113,383 0.9 64.5 2.82 1 

Average   5.8 66.8 3.13 

Geo. mean 4.1 66.5 3.07 

From these results, it is inferred that an average of 

5.8% of the code size, representing the kernels’ static size, 

contributes 66.8% on average to the total execution time. 

The geometrical means of the % size and % time are also 

given. Furthermore, the average ideal speedup for the 

ARM7 systems equals 3.13. Thus, it is deduced that 
important overall application speedups will come from 

accelerating few small kernels.  

4.3. Speedups  

The execution times and the overall application 

speedups for the eight applications are presented in Table 

3. Timesw represents the software execution time of the 

whole application on a specific microprocessor (Proc.). 
The ideal speedup (Ideal sp.) is the application speedup 

that would ideally be achieved, according to Amdahl’s 

Law, if application’s kernels were executed on the RDP in 

zero time. Timesystem corresponds to the execution time of 

the application when executing the critical code on the 
CGC data-path. All execution times are normalized to the 

software execution times on the ARM7. The Sp. is the 

estimated application speedup, after utilizing the 

developed design flow, over the execution of the 

application on the microprocessor. The estimated speedup 

is calculated as:  

Sp= Timesw / Timesystem             (2) 

The average values, as well as, the geometrical means of 

the speedups are also illustrated.  

Table 3. Execution times and application speedups 

Processor/RDP 

Application Proc. Timesw
Ideal  

sp. 
Timesystem Sp.

ARM7 1.000 3.96 0.272 3.68 

ARM9 0.461 3.24 0.148 2.93 JPEG enc. 

ARM10 0.301 3.16 0.092 2.67 

ARM7 1.000 3.54 0.305 3.28 

ARM9 0.485 3.43 0.146 3.13 
OFDM 

trans. 
ARM10 0.344 3.23 0.089 3.13 

ARM7 1.000 2.51 0.450 2.22 

ARM9 0.424 2.32 0.197 2.02 Compressor 

ARM10 0.283 2.21 0.132 1.75 

ARM7 1.000 2.38 0.493 2.03 

ARM9 0.480 2.29 0.241 1.87 Cavity det. 

ARM10 0.355 2.17 0.166 1.74 

ARM7 1.000 2.61 0.407 2.46 

ARM9 0.498 2.54 0.198 2.36 Edge det. 

ARM10 0.367 2.49 0.132 2.27 

ARM7 1.000 4.17 0.254 3.94 

ARM9 0.418 3.85 0.108 3.64 JPEG dec. 

ARM10 0.273 3.64 0.067 3.32 

ARM7 1.000 3.05 0.348 2.87 

ARM9 0.426 2.93 0.145 2.77 Gsm enc. 

ARM10 0.295 2.88 0.090 2.67 

ARM7 1.000 2.82 0.364 2.75 

ARM9 0.422 2.77 0.146 2.71 Gsm dec. 

ARM10 0.292 2.74 0.089 2.67 

Average   2.96 2.70 

Geo. mean   2.90 2.64 



From the results given in Table 3, it is evident that 

significant overall performance improvements are 

achieved when critical software parts are mapped on the 

CGCs. These speedups range from 1.74 to 3.94. It is 

noticed from Table 3 that the largest overall application 

performance gains are achieved for the ARM7-based 
architectures as the ARM7 has the lowest clock frequency 

and exhibits the highest Cycles Per Instruction (CPI) 

among the three ARM-based systems. The average 

application speedup of the eight DSP benchmarks for the 

ARM7 systems is 2.90, for the ARM9 is 2.68, while for 

the ARM10 systems is 2.53. Thus, even when the CGC-

based data-path is coupled with a modern embedded 

processor, as the ARM10, which is clocked at a higher 

clock frequency, the application speedup over the 

execution on the processor core is significant.   

The average overall application speedup for all the 

microprocessor systems is 2.70. Such amounts of 
application speedups were also considered as important in 

previous works considering a processor coupled with a 

coarse-grained reconfigurable logic as in [7], [15], [16]. 

From Table 3, it is also inferred that the reported speedups 

for each application and for each processor type are close 

to theoretical speedup bounds, especially for the case of 

the ARM7 systems. Specifically, the average estimated 

speedup for all the systems is 8.8% smaller than the 

average ideal speedup. Thus, the proposed design flow 

quite effectively utilized the processing capabilities of the 

CGC-based data-path for improving the overall 
performance of the applications near to the ideal 

speedups.  

While experimenting with the benchmarks of this 

paper, we found that that few parts of each application can 

be executed in parallel on the processor and on the RDP. 

A marginal performance increase relative to the mutual 

exclusive execution was also reported. Such minor 

improvements cannot offset the benefits of the simpler 

programming of the system architecture due to the 

exclusive execution.   

4.4. Energy savings 

The energy savings by employing a coarse-grained 
RDP in a microprocessor system are presented next. For 

estimating the total energy of the system the following 

formula is used: 

_total proc RDP mem iconE E E E= + +

_ _proc proc active proc RDP idle procE Time P Time P= × + ×

_ _0.25idle proc active procP P= ×

_ _RDP RDP active RDP proc idle RDPE Time P Time P= × + ×

_ _0.10idle RDP active RDPP P= ×

_ _mem icon system mem iconE Time P= ×

system proc RDPTime Time Time= +      

Timeproc is the time of non-critical software parts on the 

microprocessor, TimeRDP is the execution time of the 

kernels on the RDP, Pproc is the power of the 

microprocessor, PRDP is the power of the RDP and 

Pmem_icon is the power consumption of the system RAM 

and of the system interconnection buses. In the above 
formulas, it is considered that the low-power idle mode 

(standby) of the RDP consumes 10% of the power of its 

active state as in standby mode the power is primarily due 

to current leakage. In contemporary CMOS processes, 

leakage can account for 10% to 30% of the active power 

[20]. The active power is when the logic (either 

microprocessor or reconfigurable hardware) evaluates. 

The power-down mode of the microprocessor dissipates 

25% of its power when it is active as in [21]. It is assumed 

that the systems have Pmem_icon of 180 mW. This value was 

estimated from commercial [19] and academic 

microprocessor platforms implemented at 130nm as well 
as from commercial SRAM modules [22] since the 

system RAM is considered to be a multi-banked SRAM. 

The values of Pproc and of PRDP are given in section 4.1. 

The formula for the total energy represents a weighted 

average of the system energy during software execution 

and the system energy during hardware execution.  

Figure 7 illustrates the normalized energy 

consumptions for the three ARM-based platforms. The 

energy values are normalized to the software-only 

execution of each application on the microprocessor. 

From the presented results it is inferred that significant 
energy savings are achieved by executing critical kernels 

on the proposed CGC-based RDP. The largest energy 

reductions are reported for the JPEG decoder. 

Additionally, the energy is reduced by an average of 62% 

for the ARM7 systems. The savings are slightly smaller 

for the ARM9 and ARM10-based platforms due to the 

smaller application speedups relative to the ARM7 

systems as these are shown in Table 3. More specifically, 

the system energy is smaller by an average of 59% 

relative to the all-software solution for the ARM9 

systems, while for the ARM10 systems the energy is 

reduced by 57%. Thus, besides the significant 
performance improvements derived by adopting the CGC-

based data-path, an important reduction in system energy 

is also reported. 
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Figure 7. Normalized energy consumption. 



The energy-delay product, which is an important 

design parameter in embedded systems, is presented in 

Figure 8. In particular, the normalized energy-delay 

values in respect to the software-only execution of each 

application are given. It is observed that the ARM/RDP 

systems achieve considerably better energy-delay product 
values than the all-microprocessor solution. These 

improvements in the energy-delay product, ranging from 

66% to 92%, are due to the achieved application speedups 

and due to the system energy reductions relative to the all-

microprocessor solutions. The largest reductions are again 

accomplished for the ARM7 systems as the average 

decrease is 86%. For the ARM9/RDP platform an average 

reduction of 83% is reported, while for the ARM10 

systems the average reduction is 80%.   

Figure 8. Normalized energy-delay product. 

In order to provide an insight into the area cost of 

coupling a CGC data-path with a microprocessor, we note 

that the area at 130nm for ARM7 is 2.4mm2, for ARM9 is 

3.2mm2, while for ARM10 is 6.9mm2. The synthesized 

VHDL description of the RDP occupied an area of 
0.82mm2 at 130nm. So, the area of the processing units of 

the platform increases by an average of 23% for the three 

ARM-based systems, with a minimum value of 12% for 

the ARM10 systems and a maximum value of 34% for the 

ARM7/RDP platforms. Thus, important speedups and 

energy savings have been achieved with a small area 

overhead by using a coarse-grained reconfigurable 

coprocessor.  

5. Conclusions 

The integration of a Coarse-Grained Reconfigurable 

Data-Path in a generic single-chip microprocessor system 
was presented. A design flow was also proposed for 

mapping complete applications on the system. The ability 

of the computational resources of the RDP to realize 

complex arithmetic structures resulted in improving the 

performance of time critical application segments. 

Thorough experimentation showed that significant overall 

speedups, with average value of 2.70, were accomplished. 

Besides the speedups, important savings in system energy, 

ranging from 42% to 72%, were reported. Significant 

energy-delay product reductions are illustrated relative to 

the software-only executions, while the overhead in 

system area is small. 
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