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Abstract 
 

Optical Multistage Interconnection Networks (MINs) 
suffer from optical-loss during switching and crosstalk 
problem in the switches. The crosstalk problem is solved 
by routing messages using time division multiplexing 
(TDM) approach. This paper focuses on minimizing the 
number of groups (time slots) required to realize a 
permutation. Many researchers concentrated on this NP-
hard problem and concluded that AI algorithms perform 
better than the heuristic algorithms. They also showed 
that majority of the times the performance of Genetic 
Algorithm (GA) was better than Simulated Annealing 
Algorithm (SAA). In this research, we implement a new 
approach to minimize the number of passes required for 
scheduling a given permutation. A combinational method 
is developed which comprises the use of Bayesian 
inference method on GA and SAA to always guarantee the 
best solution, instead of only using either GA or SAA. 
Simulations are performed in java using multiple threads 
to run SA and GAA in parallel and to evaluate the 
performance of the new method. The results are then 
compared to those obtained from GA and SAA. 
 
 
1. Introduction 
 

The most commonly used networks for switching and 
communication applications are the Multistage 
Interconnection Networks (MINs), and these are used in 
the telecommunications industry and also in parallel 
computing systems for many years. The network has N 
inputs, and N outputs [15]. This network consists of n 
stages (n = log2N) composed of N/2 switching elements 
(SEs) in each stage. Each SE has four terminals; two for 
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the inputs and two for the outputs connected in a certain 
pattern. The most widely used MINs are the electronic 
MINs, where the signals are transmitted by varying the 
voltage for logic 1 and logic 0 [10]. With ever growing 
networks, the demand for bandwidth is increasing, and 
optical technology is used to implement interconnection 
networks [14] and switches as this technology supports 
high bandwidth and speed [9, 12]. In optical MINs 
(OMIN) light is used to transmit the messages through 
fiber-optic cable [14]. 

The electronic MINs and the optical MINs have many 
similarities [10, 15], but there are some fundamental 
differences between them such as the optical-loss during 
switching [10] and the crosstalk problem in the switches 
[11].  

In this research, we consider the Omega network 
pattern for the MIN, which has a shuffle-exchange 
connection pattern [12].  It has N inputs, N outputs and n 
stages where n = log2N.  To transfer messages from a 
source address to a destination address on an optical 
Omega network without crosstalk, we need to divide the 
messages into several groups and then, deliver the 
messages using one time slot (pass) for each group, which 
is called the time division multiplexing (TDM) [11].  In 
each group, the paths of the messages going through the 
network are crosstalk free.  So, from the performance 
aspect, we want to separate the messages into groups such 
that no message conflicts arise with each other in the 
same group as well as we want to reduce the total number 
of the groups [12].  In other words, the fewer passes the 
transfer has, the better the performance of the optical 
network. Many researchers concentrated on this problem 
of routing the messages using the minimum number of 
passes, and came up with many different ways of 
scheduling the messages. The most popular methods are 
the heuristic algorithms such as the sequential increasing 
algorithm (SIA), sequential decreasing algorithm (SDA), 
degree increasing algorithm (DIA), degree descending 



 

algorithm (DDA), and artificial intelligence (AI) methods 
such as the genetic algorithm (GA) [3, 8]and simulated 
annealing algorithm (SAA) [2, 3, 7]. The research results 
proved that out of the heuristic algorithms the DDA 
performance was better than the other algorithms [6]. The 
results concluded that the performance of both the GA 
and SAA was better than the heuristic algorithms. Out of 
the AI algorithms GA performed slightly better than the 
SAA in terms of the number of passes calculated, where 
as GA took long time than SAA to schedule the messages 
in groups without conflicts [6]. The researchers concluded 
that SAA is better than GA as it takes lesser time; 
although GA beat it in terms of the average number of 
passes obtained [6]. 

In this research, we implement a new approach to 
improve the performance on the number of passes 
required for scheduling a given permutation. For some 
permutation if GA leads to a better result than SAA, and 
if we only use SAA to schedule the messages, we are 
going to miss the best solution. Instead it will be better if 
we start running both the algorithms in parallel using 
multiple threads. Using the Bayesian inference criterion 
[13], after a specific point during the algorithms execution 
we decide on which algorithm should be continued to run 
for scheduling the messages, and the other algorithm will 
be terminated. Based on Bayesian inference, at that 
instant of time if SAA is continued to run till the end we 
save time on the scheduling and still get a better result on 
the number of passes required, or otherwise we proceed 
with running GA by terminating SA. With this approach 
we can always guarantee the best solution with a fairly 
acceptable run time. We developed a combinational 
method which comprises the use of Bayesian inference 
method [13] on the AI algorithms (GA & SAA) to always 
guarantee the best solution, instead of only using either 
GA or SAA. Simulations are performed to evaluate the 
performance of the new method, and the results are 
compared to those obtained from GA and SAA. 
 
2. Optical Multistage Interconnection 
Network 
 

The new method is implemented on an Omega 
network, as this was the network model used by other 
researchers. A typical illustration of the Omega network 
with 8 inputs, 8 outputs, 3 stages and 4 switching 
elements per stage is shown in Figure 1 [12, 14]. 

 

 
 

Figure 1. An 8 × 8 Omega network 
 
2.1 Crosstalk in OMIN 
 

Crosstalk [11] occurs when two signal channels 
interact with each other.  When crosstalk occurs, a small 
fraction of the input signal power may be detected at 
another output although the main signal is injected at the 
right output.  For this reason, the input signal will be 
distorted at the output due to the loss and crosstalk 
introduced on the path [12]. The channels carrying the 
signals could cross each other in order to embed a 
particular topology. Each switching element can be in one 
of the two connecting schemes as shown in Figure 2 [11]. 
 

 
 
 
 
 

Straight connection              Cross connection 
Figure 2. Two types of switching connections 

 
Since the two ways shown in Figure 2 will cause 

crosstalk, what we need to do is to avoid these situations 
to happen in all the switching elements. 
 
2.2 Approaches to avoid Crosstalk 
 

To reduce the negative effect of crosstalk, we can use a 
2N × 2N regular MIN to provide the N × N connection 
[10, 12]. But half the inputs and outputs are wasted in this 
approach.  Another more efficient solution is to route the 
traffic through an N × N optical network to avoid coupling 
two signals within each switching element. This can be 
implemented using the TDM approach [12]. Figure 3 
shows the different combinations a switch can allow data 
to avoid crosstalk. 

 



 

 
Figure 3. Different ways of passing data 
through a Switch to avoid crosstalk 

 
To avoid crosstalk, we use the TDM approach [11], 

which is to partition the set of messages into several 
groups [6] such that the messages in each group can be 
sent simultaneously through the network without any 
crosstalk. That is, to route all the inputs [4] in several 
groups (passes), such that no crosstalk will be caused in 
each pass. Since we can only pass a message in a 
switching element in one of the four ways shown in 
Figure 3, we can see that there is no way to realize a 
permutation in a single pass through a optical network 
without crosstalk. The reason is at least the two input 
links on an input switch or the two output links on an 
output switch cannot be active in the same pass [10].  So, 
we need to use at least two or more passes to realize a 
permutation [5].  

For this research the permutations are generated 
randomly, which have random source addresses and 
random destination addresses. The goal of this research is 
to minimize the  number of passes required to route all the 
inputs to the outputs without crosstalk by using the 
Bayesian inference method on the GA & SAA. 
 
3. Existing Routing Algorithms 
 

The purpose of the routing algorithms is to schedule 
the messages in different passes in order to avoid the 
switch conflicts in the network [5, 6]. The more efficient 
the algorithm is, the less passes it will generate. The order 
of the messages to be picked for scheduling is an essential 
cause for generating the different results [6].  

The heuristic routing algorithm SIA selects a message 
sequentially in increasing order of the message source 
address. The heuristic routing algorithm SDA selects a 
message sequentially in decreasing order of the message 
source address. The heuristic routing algorithm DIA 
selects a message based on the order of the increasing 
degree of conflicts with other messages. The heuristic 
routing algorithm DDA selects a message based on the 
order of the decreasing degree of conflicts with other 
messages [6]. The DDA performs better out of these four 
heuristic algorithms. 

The AI algorithms GA and SAA outperform the 
heuristic algorithms. Out of the AI algorithms the GA 
performs slightly better than the SAA in terms of the 
number of passes, where as the SAA performance in 
terms of the time is much better than the GA. Hence 
previously researchers have concluded keeping time in 

mind; SAA would be a better option for scheduling the 
messages for the routing problem [6].  
 
4. Bayesian Inference method 
 

Bayesian inference is statistical inference in which 
evidence or observations are used to update or to newly 
infer the probability that a hypothesis may be true [1]. 
Bayesian statisticians believe that Bayesian inference uses 
aspects of the scientific method, which involves collecting 
evidence that is meant to be consistent or inconsistent 
with a given hypothesis. They say that as evidence 
accumulates, the degree of belief in a hypothesis changes. 
With enough evidence, it will often become very high or 
very low. Bayesian statisticians also believe that Bayesian 
inference is a suitable logical basis to discriminate 
between conflicting hypotheses. Hypotheses with a very 
high degree of belief should be accepted as true; those 
with a very low degree of belief should be rejected as 
false [13]. 

An example of Bayesian inference is: For billions of 
years, the sun has risen after it has set. The sun has set 
tonight. With very high probability (or I strongly believe 
that or it is true that) the sun will rise tomorrow. With 
very low probability (or I do not at all believe that or it is 
false that) the sun will not rise tomorrow [13]. 

Bayesian inference usually relies on degrees of belief, 
or subjective probabilities, in the induction process and 
does not necessarily claim to provide an objective method 
of induction [13]. Bayes’ theorem adjusts probabilities 
given new evidence in the following way: 
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where H0 represents a hypothesis, called a null 

hypothesis, which was inferred before new evidence, E, 
became available.  

P(H0) is called the prior probability of H0. 
P(E | H0) is called the conditional probability of seeing 

the evidence E given that the hypothesis H0 is true. It is 
also called the likelihood function when it is expressed as 
a function of H0 given E. 

P(E) is called the marginal probability of E: the 
probability of witnessing the new evidence E under all 
mutually exclusive hypotheses. It can be calculated as the 
sum of the product of all probabilities of mutually 
exclusive hypotheses and corresponding conditional 
probabilities [∑ )()|( ii HPHEP ]. P(H0 | E) is called 
the posterior probability of H0 given E. The factor P(E | 
H0) / P(E) represents the impact that the evidence has on 
the belief in the hypothesis. If it is likely that the evidence 
will be observed when the hypothesis under consideration 



 

is true, then this factor will be large. Multiplying the prior 
probability of the hypothesis by this factor would result in 
a large posterior probability of the hypothesis given the 
evidence. Under Bayesian inference, Bayes’ theorem 
therefore measures how much new evidence should alter a 
belief in a hypothesis. Multiplying the prior probability 
P(H0) by the factor P(E | H0) / P(E) will never yield a 
probability that is greater than 1. Since P(E) is at least as 
great as P(E ∩ H0), which equals P(E | H0).P(H0), 
replacing P(E) with P(E ∩ H0) in the factor P(E | H0) / 
P(E) will yield a posterior probability of 1. Therefore, the 
posterior probability could yield a probability greater than 
1 only if P(E) were less than P(E ∩ H0) which is never 
true [13].  

The marginal probability, P(E), can also be 
represented as the sum of the product of all probabilities 
of mutually exclusive hypotheses and corresponding 
conditional probabilities: P(E | H0)P(H0) + P(E | not 
H0)P(not H0). As a result, we can rewrite Bayes’ theorem 
as: 
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With two independent pieces of evidence E1 and E2, 

Bayesian inference can be applied iteratively. We could 
use the first piece of evidence to calculate an initial 
posterior probability, and then use that posterior 
probability as a new prior probability to calculate a 
second posterior probability given the second piece of 
evidence. Bayes’ theorem applied iteratively implies: 
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This iteration of Bayesian inference could be extended 

with more independent pieces of evidence. Bayesian 
inference is used to calculate probabilities for decision 
making under uncertainty [13].  
 
4.1. Simple example of Bayesian Inference - From 
which bowl is the cookie? 
 

To illustrate, suppose there are two bowls full of 
cookies. Bowl #1 has 10 chocolate chip and 30 plain 
cookies, while bowl #2 has 20 of each. Our friend Fred 
picks a bowl at random, and then picks a cookie at 
random. We may assume there is no reason to believe 
Fred treats one bowl differently from another, likewise for 
the cookies. The cookie turns out to be a plain one. How 
probable is it that Fred picked it out of bowl #1? [13] 

Intuitively, it seems clear that the answer should be 
more than a half, since there are more plain cookies in 
bowl #1. The precise answer is given by Bayes’ theorem. 

Let H1 correspond to bowl #1, and H2 to bowl #2. It is 
given that the bowls are identical from Fred’s point of 
view, thus P(H1) = P(H2), and the two must add up to 1, 
so both are equal to 0.5. The datum D is the observation 
of a plain cookie. From the contents of the bowls, we 
know that P(D | H1) = 30/40 = 0.75 and P(D | H2) = 20/40 
= 0.5. Bayes’ formula then yields: 
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Before observing the cookie, the probability that Fred 

chose bowl #1 is the prior probability, P(H1), which is 
0.5. After observing the cookie, we revise the probability 
to P(H1|D), which is 0.6. 

It’s worth noting that our belief that observing the 
plain cookie should somehow affect the prior probability 
P(H1) has formed the posterior probability P(H1 | D), 
increased from 0.5 to 0.6. This reflects our intuition that 
the cookie is more likely from the bowl 1, since it has a 
higher ratio of plain to chocolate cookies than the other 
[13]. The decision is given as a probability, which is 
different from classical statistics. 
 
5. Appling Bayesian Inference on GA and 
SAA 
 

We first start by running GA and SAA in parallel using 
multiple threads on a given permutation. The optimum 
parameters for crossover, mutations etc. for GA and 
starting temperature, final temperature etc. for SAA are 
chosen from the works performed by other researchers 
[6]. After a specific point during the algorithms execution 
we decide on which algorithm should be continued to run 
for scheduling the messages, and which one should be 
terminated by applying the rules of Bayesian inference as 
specified in section 4. The GA works on the basis of 
generating new populations (for this problem it will be the 
ordering of messages) by applying crossover and 
mutation operations [3]. After a new population is 
generated we evaluate its fitness (number of passes 
required for routing) and based on the fitness we accept or 
reject the population. After 50 generations we stop the 
GA and then calculate the final fitness. For every new 
permutation we keep repeating this process. In case of 
SAA we generate a solution and evaluate its fitness at a 
given temperature. According to the annealing schedule 
the temperature is decreased for the next iteration and the 
fitness is evaluated [3, 7]. This process is repeated until 
we reach the final temperature, at which point the final 
fitness is calculated. Normally we chose the parameters 
for SA such that we are going to have 1000 different 



 

temperature values between the starting and final 
temperatures. These are the optimum values for the 
algorithms based on existing research works [6]. After 5 
generations for the GA and 100 temperature values for 
SA we apply the Bayesian inference rules on the so far 
obtained results from GA and SAA, and then decide 
which algorithm is going to run till the end. The value of 
5 generations for GA and 100 temperature iterations for 
SAA is based on the fact that GA runs 20 times slower 
than SA. This conclusion was obtained on the existing 
results by previous works [6]. This method of applying 
Bayesian inference on GA and SAA will be illustrated 
with an example. 

The values for the example are random values, and 
Table 1 shows the results of the simulations performed. 
The approach we followed is similar to the approach used 
in section 4.1. The probability of generating a better 
solution in terms of GA is little better than that of SAA, 
but the time taken by GA to find the solution was very 
high compared to SAA according to the results published 
[6]. Hence researchers concluded that SAA is better than 
GA taking all the factors into consideration. In this 
approach instead of blindly accepting SAA as the best 
solution we use the Bayesian inference method where by 
assigning probabilities to the GA and SAA methods. We 
assign a high probability to SAA compared to that of GA 
as SAA was very close to GA in terms of the number of 
passes generated, but with time in play was the best [6].  

We consider P(H1) = P(GA) = 0.495 and P(H2) = 
P(SAA) = 0.505, where P(GA) and P(SA) are the 
probabilities of accepting the GA or SAA method for the 
Bayesian inference. From the simulations performed, for 
a particular run after 5 generations of GA, GA produced 
an average number of 4.236 passes and SA produced an 
average number of 4.241 passes after 100 temperature 
iterations for a network size of 32 (32×32). We can now 
use the following Bayesian inference equation on these 
values. 
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P(D|H1) is the probability of GA compared to SAA, 

and P(D|H2) is the probability of GA compared to SAA, 
and can be calculated by using the average number of 
passes obtained. 
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P(H1|D) is the probability of deciding whether GA or 
SAA should be run until the end, as both the algorithm are 
running in parallel on different threads. If the calculated 
probability value is greater than 0.5 SAA will be 
terminated, and GA will produce the final order for 
scheduling the messages, otherwise GA will be 
terminated. To find the value of P(H1|D) we substitute 
these values into the above equation: 
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In this case the probability value is less than 0.5, so 

GA will be terminated and SAA will produce the final 
order for scheduling the messages. In this case GA 
produced an average number of 4.236 passes, where as 
SA produced 4.21. We can see that GA is better than 
SAA in terms of the average number pf passes, but 
according to the Bayesian inference principle we 
conclude that SAA will be better in this case to produce 
the final order for scheduling the messages. 

Let’s consider one more example. In this case P(H1) = 
P(GA) = 0.495 and P(H2) = P(SAA) = 0.505. After 5 
generations of GA, GA produced an average number of 
4.162 passes and SA produced an average number of 
4.288 passes after 100 temperature iterations for a 
network size of 32 (32×32). 
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In this case the probability value is greater than 0.5, so 

SAA will be terminated and GA will produce the final 
order for scheduling the messages. In this example the 
average number of passes produced by GA was lower 
than SAA, and also applying the Bayesian inference 
principle also resulted in GA to be continued to produce 
the final order for scheduling the messages.  
 
6. Simulation Results 
 

The simulations were performed using code written in 
JAVA programming language on a 3.4 GHz Intel Pentium 



 

IV PC with hyper-threading running Microsoft Windows 
XP with 1GB of RAM and a 250GB hard disk. We used 
the multi-threading approach for running the algorithms 
in parallel. For this comparison purpose we used single 
point crossover, with the number of rounds set at 1000, 
the number of generations set at 50, the population size 
set at 2, and the mutation probability set at 0.1 for GA. 
For SAA the number of rounds was set at 1000, starting 
temperature at 1000, final temperature at 0.325, cooling 
rate at 0.992 and the number of iterations per temperature 
at 20. These values were considered to be the optimum 
values for these algorithms [6]. Since our problem is to 
apply the Bayesian inference method to decide on the 
particular algorithm to be used for scheduling we simply 
considered these values instead of again performing 
simulations for these values. Table 1 shows the simulation 
results on different size networks. 

From Table 1, we see the decision produced by the 
Bayesian inference method. Except for network sizes of 
32 and 128 Bayesian inference method produced a 
decision of terminating the GA. It is clearly evident from 
the tabular results that GA takes a long time to schedule 
the messages compared to SAA. Also from the tabular 
results we see that the difference in the number of passes 

produced by SAA compared to that of GA is minimal 
where the Bayesian inference method decided to 
terminate the GA and continued to run SAA for 
scheduling the messages. 
 
7. Conclusion 
 

In this research we used a combinational method 
which comprises the use of Bayesian inference method on 
the AI algorithms (GA & SAA) to always guarantee the 
best solution for scheduling the messages in an OMIN, 
instead of only using either GA or SAA. Initially GA and 
SAA algorithms are executed in parallel using multiple 
threads. In the middle of the execution, Bayesian 
inference method decided on which algorithm should be 
terminated. The simulations results proved that the 
Bayesian Inference method improved the performance of 
scheduling the messages instead of only using either GA 
or SAA. The big advantage of using this approach is that 
it’s does not comprise the advantages provided by either 
GA or SAA, as we get a better scheduling using GA, 
otherwise we save time and still get a good scheduling 
order by using SAA. 

 
Table 1. Results of applying the Bayesian Inference on GA and SAA 

 

Network 
Size P(GA) P(SA) 

GA 
PASSES

SAA 
PASSES 

Final 
Probability Decision 

Time 
(Sec) 

4 0.495 0.505 2 2 0.495 SAA 0.018 
8 0.495 0.505 2.538 2.536 0.494802937 SAA 0.022 

16 0.495 0.505 3.296 3.311 0.496135072 SAA 0.027 
32 0.495 0.505 4.118 4.229 0.501649315 GA 4.591 
64 0.495 0.505 5.012 5.109 0.499791997 SAA 0.641 
128 0.495 0.505 5.487 5.632 0.501520569 GA 68.846 
256 0.495 0.505 6.352 6.418 0.497584057 SAA 29.542  
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