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Abstract

In this paper, we consider the fault diagnosis problem
in MANETs, i.e. the problem of identifying faulty hosts by
fault-free ones. The diagnosis scheme that we consider
is that based on the comparison approach, where hosts
transmit test tasks to their neighbors and the outcomes are
compared. By comparing the received outcomes fault-free
hosts are able to diagnose the fault status of the network.
We propose an adaptive distributed diagnosis algorithm
that uses an adaptable spanning tree to disseminate the
local diagnosis views throughout the ad-hoc network. The
protocol allows all fault-free hosts to correctly identify all
faulty ones, and it constitutes a viable addition to existing
self-diagnosis protocols.

1. Introduction

Mobile ad-hoc networks (MANETs) are self-organizing,
rapidly-deployable, and require no fixed infrastructure.
Their main components are wireless mobile hosts, which
can be deployed anywhere, that cooperate in order to dy-
namically establish communications. Mobile hosts in a
MANET may be highly mobile, or stationary, and may
vary widely in terms of their characteristics, uses, and ca-
pabilities. That is, they may differ in terms of their com-
munication transmission ranges, processing, storage, and
power capabilities, exhibiting hence varying degree of re-
liability. Consequently, the design of dependable MANETs
is gaining much more importance in the research commu-
nity [3, 10, 13].

An important problem in designing dependable
MANETs that are subject to the failure of mobile hosts
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is the distributed self-diagnosis problem. In distributed
self-diagnosis each working (fault-free) mobile host must
maintain correct information about the status (working or
failed) of each mobile host in its neighborhood. Moreover,
for some MANETs’ applications each mobile host should
be able to diagnose the state of all mobiles in the network.
In fact, a faulty mobile host that is not in the neighborhood
of a mobile host, say u, might sooner become one of
u’s neighbors, since the mobile hosts are moving with
varying speeds. In this paper, we consider the problem of
achieving diagnosis despite the occurrence of soft faults.
That is, under the assumption that faulty mobiles continue
to operate and to communicate with corrupted behaviors.

The distributed diagnosis problem has been extensively
studied by the distributed systems’ community [2, 4, 5, 11,
15, 16, 17]. The elegant diagnosis algorithms that have been
devised consider mainly wired networks. In addition, var-
ious diagnosis approaches have been used based either on
invalidation models, such as the PMC model, or comparison
models, such as the broadcast comparison model [5]. The
most promising practical diagnosis approach is the compar-
ison approach. In this approach, a set of jobs is assigned
to the system’s nodes, and their outputs are compared. The
agreements and disagreements among the nodes are used to
diagnose their status. For wireless and ad-hoc networks few
works using the comparison approach have been done. The
seminal work of Chessa and Santi [6] adapted the compar-
ison approach to the wireless environment. They presented
a distributed diagnosis algorithm that allows any fault-free
mobile to diagnose the fault status of all mobiles in its
neighborhood and in the network. Recently, in [7, 8] two
self-diagnosis protocols have been introduced.

In this paper, we present an adaptive distributed self-
diagnosis protocol to solve the diagnosis problem in
MANETs. The organization of this paper is as follows: ba-
sic concepts are described in Section 2. Section 3 details the
comparison-based diagnostic model. The distributed self-
diagnosis protocol is presented in Section 4. Next, we prove
that our protocol is correct and complete, i.e., it allows fault-
free mobiles to identify all faulty hosts, and provide a com-



parison with related work in Section 6. Section 7 concludes
the paper.

2. Preliminaries

The system we consider is composed of n mobile hosts,
henceforth called mobiles, with unique identifiers, that com-
municate via packet radio network. Packet radio network,
also called mobile ad-hoc network (MANET), can be de-
scribed by directed graph Gt = (V, Lt), called the commu-
nication graph, where V is the set of mobiles and Lt is the
set of logical links at time t. A logical link, lu→v ∈ Lt

between nodes u, v ∈ V , means that the transmitter of u
can reach the receiver of node v. Without loss of generality,
we will assume from now on that the communication graph
Gt is undirected, i.e., for any lu→v ∈ Lt, lv→u ∈ Lt. We
indicate as one-hop neighbors two hosts that are connected
by a logical link. If two hosts are neighbors, then they can
receive from one another.

We assume that a link level protocol is responsible for
providing a 1-hop reliable broadcast primitive [14], called
rb(·). The set of mobiles reachable from a node u ∈ V

at time t is called the neighborhood set and is denoted by
Nt(u). In order to simplify our notation, the subscript t
will be dropped when it is clear from the context. kG is the
connectivity of G, i.e., minimum number of nodes whose
removal results in a disconnected graph.

Faults can be classified either as hard or soft. A hard-
faulted mobile is unable to communicate with the rest of the
system. Whereas, a soft-faulted mobile continues to operate
and to communicate, with the other mobiles, with altered
behavior. If faults are allowed to occur during the execution
of the diagnosis algorithm, then the faults are assumed to be
dynamic. Whereas, static faults are not assumed to occur
during the diagnosis phase. In this paper, we consider only
static permanent faults that can be of either types: hard or
soft.

The comparison approach assumes that instead of testing
one node by another, the same job (or task) is assigned to
a pair of distinct nodes and the results are compared. The
outcome of such a comparison test can be 0 (matching re-
sults) or 1 (mismatching results). It is assumed that two
fault-free nodes give matching results, while a faulty and
a fault-free node provide mismatching outcomes. Based
on the outcomes of comparison tests involving two faulty
nodes, two diagnostic models have been studied: symmetric
and asymmetric [2]. In the symmetric model, both compar-
ison outcomes are possible in this case (0 or 1). Whereas,
in the asymmetric model (see Table 1) two faulty nodes al-
ways give mismatching outputs, and hence, the comparison
outcome is 1. Several generalizations of the comparison ap-
proach have been studied by considering that the compar-
ison tests are carried by the nodes themselves [5, 12, 15].

Table 1. Asymmetric comparison outcomes
Faulty mobiles under comparison

Comparator None One Both
Fault-free 0 1 1

Faulty 0 or 1 0 or 1 0 or 1

Recall that a MANET is called σ-self-diagnosable if ev-
ery fault-free mobile participates and correctly diagnoses
the state of all mobiles in the MANET, provided the num-
ber of faulty mobiles does not exceed σ. Chessa and Santi
provided in [6] an upper bound for σ. They proved that the
maximum number of faulty mobiles that can be tolerated in
a diagnosis session is kG − 1, i.e., σ ≤ kG − 1. The ratio-
nal behind this is that when more than kG − 1 mobiles fail
simultaneously, the MANET might be disconnected.

An Example of an Emergency Preparedness
and Response Class of Applications

Due to their ease of deployment, MANETs are an attrac-
tive choice for scenarios where the fixed network infrastruc-
ture is non-existent or unusable. Examples of applications
include search and rescue, crisis management services ap-
plications, such as in disaster recovery, digital battlefield,
and convert military operations. Figure 1 shows an exam-
ple of a search and rescue application that comprises six
rescuers and four trucks, all equipped with radio transmit-
ters/receivers. The MANET’s topology at the time of this
snapshot is shown in dark lines. Note that kGt = 3, and
hence, the MANET is 2-self-diagnosable.

3. Diagnostic Model for Ad-Hoc Networks

The comparison-based diagnostic model that is used
for wireless and ad-hoc networks has been developed by
Chessa and Santi [6]. Their model uses the comparison ap-
proach as a basis in order to help mobile hosts self-diagnose
each other in a distributed fashion. The Chessa and Santi’s
model is rather an extension to the generalized comparison
model [15] devised originally for wired networks. It ex-
ploits the shared nature of the communication in wireless
networks by allowing each fault-free mobile u to test its
neighbors by sending them a test request. Based on the re-
sponses provided by u’s neighbors, mobile nodes can be di-
agnosed as faulty or fault-free using the comparison-based
invalidation rules described in Table 1.

In this work, we assume that the network topology does
not change during the testing phase. This means that if
node u transmits its test request at time t, and given Tout



Figure 1. A search and rescue application

as the timeout time, then Nt(u) = Nt′ (u) for any t ≤ t
′ ≤

t + Tout. Note that this assumption does not mean that the
hosts are static, rather than its topology does not change dur-
ing diagnosis. Mobiles are allowed to move without quit-
ting their neighbors’ transmission ranges. Although rather
stringent, this assumption is realistic in many applications,
especially for wireless mesh networks.

The main rules to which the mobile hosts should con-
form during a self-diagnosis session, and that constitute the
fixed topology comparison protocol, are as follows:

R1) Test generation: In order to test its neighbors
each mobile generates a message of type TEST. The
test message is identified by a sequence number i and
carries a test task Ti. Mobile u performs also the test
task by itself, and generates the result Ru

i it expects
from its neighbors, i.e., N(u). Hence, node u sends
the message mu =< TEST, i, Ti > at time t, and ini-
tiates a timer to Tout. Mobile u expects to receive all
its neighbors’ responses within this bound. The ratio-
nal behind the use of a timeout is that neighbors that
suffer from hard faults are unable to respond within
the bounded time. The timeout Tout must be chosen
such that all u’s fault-free neighbors, which are able to
communicate with u since it still in their transmission
ranges, are guaranteed to respond to the test request
within at most that time.

R2) Test reception: Let v ∈ N(u). Upon receiv-
ing the test request mu =<TEST, i, Ti >, mobile v
proceeds as follows. First, it executes the test task Ti

and generates the result Rv
i . Mobile v sends next a

response message to all its neighbors N(v). That is,

it transmits mv =<RESPONSE, u, i, Rv
i > at time t

′
,

with t < t
′
< t+Tout. Note that the pair (u, i) is used

to uniquely identify the test task and its originator.

R3) Response reception: Upon the reception of
mv =<RESPONSE, u, i, Rv

i >, node w ∈ N(v) pro-
ceeds as follows:

� Case 1: w = u. This means that w is the testing unit
itself. In this case, node w compares Rw

i and Rv
i , i.e.,

the expected result and that produced by its neighbor
v. If Rw

i = Rv
i , then node v is considered as fault-free;

Otherwise, it is considered as faulty.
� Case 2: w �= u. In this situation, the relation be-
tween both mobiles w and u can help deduce the fault
status of either mobile w or v. In other words, we need
to check whether w is one of u’s neighbors:
� w ∈ N(u): In this case, we have w ∈ N(u)∩N(v),
i.e., mobiles w and u (the tester node) share at least
one neighbor. Since w ∈ N(u) this means that w has
already generated the result Rw

i for u’s test Ti. It fol-
lows that w is able to diagnose v since it holds Rw

i and
Rv

i (v’s outcome for the same test Ti). Node v will
be diagnosed as fault-free if Rw

i = Rv
i , and as faulty

otherwise.

� w /∈ N(u): In this case, we have v ∈ N(u) ∩
N(w), i.e., mobiles u and w have at least one neigh-
bor in common. Having a single common neighbor
does not help deducing v’s status. Thus, the message
mv =<RESPONSE, u, i, Rv

i > will be stored until mo-
bile w receives another outcome for the same test Ti.
In fact, we need at least two mobiles in common in
order to be able to determine the fault status of each
mobile. Consider now the scenario in which mobiles
u and w have a second neighbor in common, say z,
from which node w received its test outcome Rz

i . It
follows that mobile w is able to diagnose the status of
units v and z. Hence, if Rz

i = Rv
i , then both nodes

are diagnosed as fault-free since we are dealing with
asymmetric invalidation rules; Otherwise, if mobile w
knows already that either v or z is fault-free, then it
can deduce that the other mobile is faulty. For exam-
ple, if v ∈ FFw, i.e., w knows already that the node v
is fault-free, then it can infer that the mobile z is faulty.

R4) Timeout occurrence: After sending its test mes-
sage, mobile u initiates a timer to Tout in order to
guarantee that its neighbors will respond within that
bound. Once this time bound expires, i.e., the mobile
u receives a message of type TIMEOUT, it diagnoses
its neighbors that did not respond within the bounded
time, i.e., N(u) − {Fu ∪ FFu}, as faulty. At this
stage, mobile u knows about the status of all its neigh-
bors, that is, u maintains two sets: FFu, the set that
contains all u’s fault-free neighbors, and the set Fu



including all u’s neighbors diagnosed as faulty, i.e.,
Fu = Fu ∪ {N(u) − (Fu ∪ FFu)}.

In the following, we propose an adaptive distributed self-
diagnosis protocol, based on this diagnostic model and on
the use of a spanning tree, that allow any fault-free mobile to
diagnose the fault status of all the mobiles in the MANET.

4. An Adaptive Self-Diagnosis Protocol

The adaptive distributed self-diagnosis protocol
(Adaptive-DSDP) is called so because it uses a spanning
tree (ST) that is initially configured with the MANET,
and that is adapted then to any faulty situation that might
affect any of its internal nodes. The ST is self-maintained
connected while mobiles are moving, and it is used to dis-
seminate the local diagnosis views throughout the network.
The protocol proceeds in five phases: the self-maintaining
phase, the testing phase, the gathering phase, the self-
repairing phase, and the disseminating phase. Initially, a
pre-configured ST is initialized with the MANET. In the
following, each of these phases is described.

4.1. Self-Maintenance of the Tree

As specified earlier we assume that there exists a tree
that spans all mobiles in the MANET. The ST can be con-
structed as described in [8], or by using much more efficient
algorithms.such as [1]. A minimum ST would also be more
appropriate in this case. Once configured, the ST should be
maintained connected while the mobiles are moving. That
is, when a parent migrates out the transmission range of
some of its children, then these children should be recon-
nected to the ST. Or, when a child moves away from its
parent, a new parent should be reassigned to this mobile to
keep it connected to the ST. In addition, we assume that
this tree is rooted at a node called the initiator, and that the
nodes maintain the set of their children in the ST.

In order to maintain a connected ST, mobiles should pe-
riodically check whether they are still connected to the ST
or not. If a mobile notices that it has lost its parent, caused
either by the parent moving away from it or by the mobile
migrating outside the transmission range of its parent, then
it should ask its neighbors to be reconnected to the ST. That
is, it seeks for a new parent connected to the ST. Further-
more, if a mobile notices that the initiator is now in its
transmission range, i.e., it is one of its neighbors, then it
should trigger the self-maintenance procedure to reconnect
itself to the initiator. This will reduce the depth of the ST,
and hence, the latency of the diagnosis, which can be de-
fined as the elapsed time between the inception and end of
the diagnosis session. Another heuristic that could be used
also to reduce the tree’s depth is to let each node maintain

its depth in the tree in a variable. Once a mobile seeks for
a new parent, neighbors that are connected to the ST will
respond by proposing their depths in the tree. The mobile
will hence choose the parent with the lowest depth.

Let Childrenu denote the children of mobile u in the ST
at a given point of time. Periodically, every mobile, includ-
ing the initiator, updates its knowledge about its children
using the formula: Childrenu = Childrenu∩N(u). That
is, children of mobile u can only be a subset of its neigh-
bors. Those that migrated out of its transmission range are
no longer its children.

The self-maintaining phase can be summarized by two
main scenarios. The first one describes the behavior of a
mobile that discovers that it can reach the initiator directly.
Whereas, the second scenario occurs when a mobile finds
out that its parent is no longer in its transmission range. In
this case, the mobile triggers the maintenance phase.

If the first scenario occurs, then the procedure CON-
NECTTOINITIATOR, provided below, is performed. When
the mobile is reconnected to the ST, the variable
ConnectedToST is re-initialized to TRUE. For a mobile
u to declare the initiator as a new parent, it needs first to
inform its actual parent, if it still in its transmission range,
about this change by transmitting a message of type RE-
MOVECHILD. Second, it should inform the initiator that
from now on it is one of its children. This is accomplished
by sending an ADDCHILD message to the initiator. Note
that this message can be piggybacked with the first one.

Procedure CONNECTTOINITIATOR () {
// ConnectedToST: initially TRUE. Set to FALSE if

// mobile u discovers that it is not connected to the ST.

1. if ((initiator ∈ N(u)) AND (Parentu �= initiator)) {
2. rb(< REMOVECHILD , u, Parentu >);
3. Parentu = initiator;
4. rb(< ADDCHILD , u, initiator >);
5. ConnectedToST = TRUE; }}

In the second scenario, the procedure RECONNECT-
TOST, given below, is executed and triggers the self-
maintaining phase. If a mobile discovers that it has lost its
parent (line 1), it sends a RECONNECT request if it has not
done yet (lines 2-4). The term α0 has no impact at this stage
since Fu = ∅, but will be useful in the self-repairing phase.

Procedure RECONNECTTOST () {
1. if (Parentu /∈ N(u)−Fu︸︷︷︸

α0

)

2. if (ConnectedToST == TRUE) {
3. ConnectedToST = FALSE;
4. rb(< RECONNECT , u >); }}

During the self-maintaining phase the messages of type
REMOVECHILD, ADDCHILD, and RECONNECT are han-
dled. A formal description of the self-maintenance phase is
provided below, and it describes the steps performed by the
mobile u. Handling REMOVECHILD and ADDCHILD are



simple, and need no more clarifications. However, process-
ing messages of type RECONNECT needs to be clarified.
Note that the terms α1 (line 6), α2 and α3 (lines 8 and 14)
have no impact since Fu = ∅, and will be pertinent only
for the self-repairing phase (see Section 4.3). Recall that
a RECONNECT message is sent once a mobile, say v, dis-
covers that it is no longer connected to the ST. In this case
the mobile should seek for a new neighbor, say u, that is
connected to the ST. When mobile u receives the RECON-
NECT message, two scenarios might be happened. In the
first scenario, mobile v is not the parent of u. In this case, if
u is connected to the ST, then it adopts v as a new child by
transmitting a message of type ADDPARENT (line 12). The
second scenario occurs when the mobile u is the parent of
v, that is, both mobiles u and v have lost connection to the
ST. In this case, mobile u needs to find a new parent con-
nected to the ST by forwarding the RECONNECT message
to its neighbors (line 11). Handling ADDPARENT messages
requires also some explanations. First, note that mobile u
might receive many ADDPARENT messages from its neigh-
bors. Only one parent is selected in this case. Note also that
nodes can include their depth in the ST with ADDPARENT
messages. This will allow the receivers to select the parent
with the lowest depth, hence reducing the number of mes-
sages that will be exchanged during the diagnosis session.
Once a mobile has selected a parent it should inform it by
transmitting an ADDCHILD message (line 17). In addition,
it should inform its neighbors that it is now connected to
the ST by transmitting an ADDPARENT message (line 17).
These two messages can be piggybacked.

Procedure SELFMAINTAININGPHASE () {
do{
1.Receive(msg); //received from mobile v ∈ N(u)

2. case msg.Type of {
3. REMOVECHILD: //msg =<REMOVECHILD, v, Parentv >

4. if (u == Parentv)
Childrenu = Childrenu − {v};

5. ADDCHILD://msg =<ADDCHILD, v, w >

6. if ((u == w) AND (v /∈ Fu)︸ ︷︷ ︸
α1

)

Childrenu = Childrenu ∪ {v};
7. RECONNECT: //msg =<RECONNECT, v >

8. if (ConnectedToST == TRUE AND (v /∈ Fu)︸ ︷︷ ︸
α2

)

9. if (Parentu == v) {
10. ConnectedToST = FALSE;
11. rb(< RECONNECT , u >);

} else
12. rb(< ADDPARENT , u >);
13. ADDPARENT: //i.e. msg =<ADDPARENT, v >

14. if ((ConnectedToST == FALSE)
AND (v /∈ Fu)︸ ︷︷ ︸

α3

){

15. ConnectedToST = TRUE;
16. Parentu = v;
17. rb(< ADDCHILD , u, v >, < ADDPARENT , u >);
}}}}

Note that the execution of the self-maintaining phase ter-
minates when a diagnosis session has been initiated, i.e.,
no mobile will ask to be reconnected to the ST if it finds
out that a diagnosis session has been initiated. In addi-
tion, some instructions, i.e., α0 (line 1 of procedure RE-
CONNECTTOST), α1, α2, and α3 (lines 6, 8, and 14 of
procedure SELFMAINTAININGPHASE) have been added to
this phase so that it can be transformed easily into a self-
repairing phase during a diagnosis session. During the self-
maintaining phase these instructions have no impact since
Fu = ∅. However, once the testing and gathering phases are
completed, these instructions will guide the self-repairing
phase by selecting only those mobiles that are fault-free.

From now on, we will assume that using the self-
maintenance procedure all mobiles are maintained con-
nected to the ST. That is, once a diagnosis session is initi-
ated each mobile knows its parent and its children in the ST.
However, Since mobiles forming the ST might be faulty, it
follows that the ST should be repaired once nodes discover
during the diagnosis phase that their parent or children are
faulty. This step is accomplished during the self-repairing
phase that is described in Section 4.3.

4.2. Testing and Gathering Phases

Either periodically or once an altered behavior of the
MANET is detected, a self-diagnosis session is initiated
by starting the testing phase. The triggering of the testing
phase by mobile u is done by sending a message of type
TEST to its neighbors, i.e., it sends mu =<TEST, i, Ti >
to each neighbor v ∈ N(u) . Any other mobile v upon re-
ceiving, for the first time, a TEST or RESPONSE message
from one of its neighbors, it performs the following steps.
First, it generates its own test request mv =<TEST, j, Tj >
if not done yet, and transmits it to its own neighbors,
i.e., N(v). Then, it initiates a timer to Tout. If the re-
ceived message is a test request Ti it replies by transmitting
mv =<RESPONSE, u, i, Rv

i > to all v’s neighbors. Second,
it enters the gathering phase.

While in the gathering phase, a mobile collects response
messages and diagnoses the status of the senders as faulty
or fault-free based on their outputs, as described in the rule
R3. Upon receiving a message of type TIMEOUT, a mo-
bile terminates its gathering phase, and diagnoses its neigh-
bors, that did not reply to the test request within the bounded
limit, as faulty. At the end of the gathering phase, each mo-
bile knows about the fault status of its neighbors. Hence,
we need the disseminating phase during which the mo-
biles exchange their local diagnostic views, allowing hence
each mobile to diagnose the state of the whole MANET. In
our Adaptive-DSDP, the dissemination phase is performed
based on the tree that spans all the fault-free mobiles. It
follows that the ST maintained during the self-maintaining



phase should be repaired in order to exclude faulty mobiles.

4.3. Self-Repair of the Spanning Tree

Once the diagnosis session has been initiated and after
performing the testing and gathering phases, mobiles are
able to check whether they are still connected to the ST via
a fault-free parent. In fact, at the end of the gathering phase
each mobile u knows which neighbors are fault-free and
which are faulty. In Adaptive-DSDP, we assume that each
mobile should respond to all the test requests it receives.
Hence, we are making sure that each mobile knows about
the fault status of its neighbors and especially its parent at
the end of the gathering phase. Thus, if a mobile finds out
that its parent is faulty, it needs to initiate the self-repairing
phase during which a new fault-free parent is found and it
replaces the faulty one.

The self-repairing phase is triggered at the end of the
gathering phase by running the RECONNECTTOST proce-
dure, and it is quite identical to the self-maintaining phase.
In fact, in the self-maintaining phase we connect mobiles
that have lost their parents to new ones. However, in the
self-repairing phase we reconnect mobiles that have faulty
parents to new fault-free ones. The difference is that in
the self-repairing phase only fault-free mobiles should in-
tervene. It follows that once a diagnosis session is initiated,
mobiles stop maintaining the ST and start the testing and
gathering phases. At the end of the gathering phase, the
self-maintaining phase is resumed, but since at this stage
mobiles know who is faulty and who is not it turns out
to be a self-repairing phase rather than a self-maintaining
one. Note that in our implementation, α0 (line 1 of RECON-
NECTTOST), α1, α2, and α3 (lines 6, 8, and 14 of SELF-
MAINTAININGPHASE) are the key instructions since dur-
ing the self-repairing phase Fu is nonempty. Hence, only
replies transmitted by fault-free ones will be considered.

4.4. Disseminating Phase

Once the ST has been repaired, the disseminating phase
starts. All leaves of the ST send their local diagnosis
views to their parents, using a message of type LOCAL-
DIAGNOSTIC. Each parent u has to wait until it col-
lects all its children’s diagnostics. Once collected the par-
ent combines all of them with its own local diagnostic
into a unique diagnostic message containing all the iden-
tities of all the faulty nodes adjacent to at least one fault-
free mobile in the subtree rooted at u. It then transmits
the aggregated diagnostic message to its parent in the ST,
and so on. The initiator collects all the local diagnos-
tics, and it disseminates the final message minitiator =<
GLOBALDIAGNOSTIC, Finitiator , FFinitiator > down the
tree to all fault-free mobiles. At this stage, the distributed

diagnosis session terminates, and each fault-free node cor-
rectly diagnoses not only the state of all its neighbors, but
also those of all mobiles in the MANET.

5. Correctness Proof of Adaptive-DSDP

In this section, we prove that Adaptive-DSDP provide
correct and complete diagnosis, i.e., each fault-free mo-
bile correctly diagnoses, at the end of the diagnosis session,
the state of all mobiles in the σ-self-diagnosable MANET.
The correctness proof of Adaptive-DSDP can be done in
four main steps. First, we need to prove that the self-
maintenance phase maintains a tree spanning all the mo-
biles. That is, before a diagnosis session starts the ST is al-
ready constructed. Second, we need to show that at the end
of the gathering phase each fault-free mobile correctly iden-
tifies the states of all its neighbors, and its fault-free status
is known to all its neighbors. Third, we have to show that
the self-repairing phase terminates in a finite time and that it
repairs the ST. Finally, we have to prove that the disseminat-
ing phase terminates in a finite time. Let G = (V, L) denote
the communication graph of a σ-self-diagnosable MANET.

Lemma 1 (Self-Maintenance Correctness) If G is con-
nected, then the self-maintaining phase maintains a tree
that spans all mobiles in the MANET.

Proof: We can prove by induction that any discon-
nected node, say u, will be reconnected to the ST at a given
point of time before the diagnosis phase starts. Let Nd(u)
denote the set of mobiles given by: N1(u) = N(u) and

Nd+1(u) =
( ⋃

v∈Nd(u)

Nd(v)
)
− Nd(u). Note that d is

bounded for any graph. Let d denote this bound on d. It
follows that for any mobile u,

⋃
d=1···d

Nd(u) = V . Since

the graph G is connected, it follows that for any neighbor
v of u, i.e., v ∈ N(u), with u ∈ Nd(initiator), either
v ∈ Nd′(initiator), d′ ≤ d, or v ∈ Nd+1(u). In addition,
if u ∈ Nd(initiator) then N(u) ⊆ ⋃

d′≤d

Nd′(u).

If a mobile u is in the neighborhood of the initiator, i.e.,
u ∈ N1(initiator) and given that mobiles check periodi-
cally whether they are still connected to the ST, then u will
run the procedure CONNECTTOINITIATOR, and hence, will
be reconnected to the ST in a finite time.
Now assume that mobiles in Nd(initiator) reconnect to the
ST in a bounded time and let us show that any mobile in
Nd+1(initiator) will be reconnected to the ST in a finite
time. Any mobile u ∈ Nd+1(initiator) that discovers that
its initial parent is no longer in its transmission range runs
the procedure RECONNECTTOST. That is, it transmits a
message of type RECONNECT to every mobile v ∈ N(u). If
v ∈ N(u) ∩ Nd(initiator), then mobile v will reply to u’s



request with an ADDPARENT message, and hence recon-
nects u to the ST. If however, v ∈ N(u) − Nd(initiator),
i.e., v ∈ Nd+1(initiator), then v forwards the RECON-
NECT message to its neighbors, and so on until the mes-
sage reaches a mobile w that is connected to the ST, i.e.,
w ∈ Nd′≤d(initiator). Note that since we are assuming
that the MANET is σ-self-diagnosable, then in the worst
case every mobile has at least one fault-free neighbor from
which it will be reconnected to the ST.

The lemma 2 shows the correct local diagnosis that each
mobile should satisfy.

Lemma 2 (Correct Local Diagnosis) Let u ∈ V and N(u)
denote u’s neighbors during the diagnosis session. If u is
fault-free, then at the end of the gathering phase mobile u
will correctly diagnose the state of all its neighbors N(u).

The proof of Lemma 2 follows logically from rules R1-
R4 of the fixed topology comparison protocol (see Section
3). In fact, given that a fault-free mobile will generate a
test request at a given point of time t, then all its neighbors
that replied using a response message will be diagnosed ei-
ther as faulty or fault-free depending on their test outputs,
and those neighbors that did not respond within the bounded
time Tout will be diagnosed as faulty.

At this stage, we have to show now that the self-repairing
phase terminates in a finite time and that it repairs the ST.

Lemma 3 (Self-Repair Correctness) If G is connected,
then the self-repairing phase terminates in a finite time and
repairs the ST, i.e., at the end of the self-repairing phase the
ST spans only all fault-free mobiles.

As stated earlier, the self-repairing phase is identical to
the self-maintaining phase. The main difference is that in
the self-repairing phase only fault-free neighbors are con-
sidered. 1 Hence, the correctness proof of the self-repairing
phase follows logically from that of the self-maintaining
phase, i.e., Lemma 1. Once repaired, the ST is used next to
disseminate the local diagnostic views as described in Sec-
tion 4.4. The correctness proof of the disseminating phase
is given by Lemma 4.

Lemma 4 (Correct Dissemination) Let F be the set of
faulty mobiles such that |F| ≤ σ. If ST is the spanning
tree constructed at the end of the self-repairing phase, and
if ST is used to disseminate the local diagnostic views, then
the disseminating phase terminates in a finite time.

Proof: The proof follows logically from that of lem-
mas 1, 2, and 3. In fact, by lemmas 1 and 3 we know

1See α0, in line 1 of the procedure RECONNECTTOST, and α1, α2

and α3 in lines 6, 8, and 15 of the procedure SELFMAINTAININGPHASE,
in Section 4.1.

that the tree initialized with the MANET spans all fault-free
nodes. Given that mobiles are able to verify whether their
are leaves of the ST, it follows that all leaf mobiles will start
the disseminating phase at some point of time. Let u denote
a leaf mobile. Mobile u triggers the disseminating phase
by sending a local diagnostic message to its parent in the
ST. u’s parent collects all its children local diagnostics, and
transmits a unique diagnostic message to the upper layer in
the ST in a finite time. The initiator receives the local diag-
noses of all the nodes in a finite time. Finally, the initiator
broadcasts the complete diagnosis down the tree, which is
received in finite time by any fault-free mobile.

Theorem 1 states the correctness of our Adaptive-DSDP
and its proof follows from lemmas 1, 2, 3, and 4. In fact,
by Lemma 2 we showed that the fault-free status of any
mobile is known to all its fault-free neighbors. In lemmas
1 and 3, we proved that all fault-free mobiles are connected
to each others via the ST, and that no faulty mobile is part
of this tree. Finally, Lemma 4 showed that the mobiles can
transmit their local diagnostic views upward the tree to the
initiator, which it aggregates the global view and sends it
back downward the tree in a finite time. Hence, at the end
of the diagnosis session all fault-free mobiles have a global
view the fault status of the MANET.

Theorem 1 (Adaptive-DSDP Correctness) Adaptive-
DSDP is correct and complete, i.e., the output of Adaptive-
DSDP at each fault-free mobile u satisfies Fu = F, where
F and Fu denote, respectively, the actual set of faulty
mobiles in the MANET, and the set of faulty mobiles output
by adaptive-DSDP.

6. Discussion and Comparison with Related
Work

In [6], Chessa and Santi developed a distributed self-
diagnosis protocol for ad-hoc networks based on the fixed
topology comparison protocol. In addition to the testing and
gathering phases, they used a flooding-based disseminating
phase since their main design objective was to minimize the
diagnosis latency. We will refer the Chessa and Santi’s pro-
tocol as static-DSDP. In a more recent work [8], Elhadef,
Boukerche, and Elkadiki developed a more efficient DSDP,
known as Dynamic-DSDP, that uses a ST-based disseminat-
ing phase where the ST is built during the diagnosis session.
Whereas, in Adaptive-DSDP the ST is reconfigured with the
MANET and then repaired during the diagnosis session. It
has been shown in [9] that the communication complexities
of our Adaptive-DSDP and that of Dynamic-DSDP largely
outperform that of the self-diagnosis algorithm of Chessa
and Santi. However, this improvement is counterbalanced
by an increase in the diagnosis latency. Nevertheless, we



believe that both Dynamic-DSDP and Adaptive-DSDP will
on the average outperform the Chessa and Santi’s algo-
rithm. Moreover, our Adaptive-DSDP will perform better
than both. However, in other cases Adaptive-DSDP is ex-
pected to perform better since the repairing of the ST will
take less time than building a new one. To better com-
pare these algorithms extensive simulations are being con-
ducted on various topologies using the network simulator
NS-2. Besides, the strategy for building the ST could be
improved to take into account balancing the workload be-
tween the MANET’s mobiles. The definition of alternative
approaches to construct the ST and the analytic and simula-
tive evaluation are matter of ongoing studies.

It should be observed that the results stated so far rely on
the main assumption that mobiles are static during the test-
ing phase, i.e., the MANET topology does not change dur-
ing the testing phase. This assumption is realistic for some
ad-hoc applications in stable systems and wireless mesh
networks. However, in highly dynamic MANETs such
an assumption is inconceivable. For these time-varying
topology MANETs a new self-diagnosis approach, called
Mobile-DSDP, has been devised in [7], where the fixed
topology comparison diagnostic model has been updated
first to deal with these dynamic systems. Mobile-DSDP as-
sumes that each mobile includes the test task with the re-
sponse message. Hence, the state of each mobile will be
either diagnosed by the mobile that originated the test, or
by any other mobile that receives its response message.

7. Conclusion

We have presented in this paper a new adaptive fault
identification protocol, called Adaptive-DSDP, for fixed-
topology MANETs. The diagnosis is based on the com-
parison approach and accomplishes a correct and complete
fault identification. Adaptive-DSDP uses a spanning tree in
order to disseminate the local diagnosis views gathered sep-
arately by the mobiles. The spanning tree is initially con-
figured with the MANET, and then adapted to any faulty
situation that might affect any of its internal nodes.

In future work, we are investigating dynamic fault iden-
tification solutions that will be able to tolerate the occur-
rence of faults during the diagnosis session. We are also
investigating a self-diagnosis approach that would be more
appropriate for sensor networks. Last but not least, we aim
the development of new adaptive failure detector that can be
used by MANETs’ applications or routing protocols in or-
der collect information on the fault status of the MANETs.
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