
Optimization and evaluation of parallel I/O in BIPS3D parallel irregular
application

Rosa Filgueira, David E. Singh, Antonio Garcı́a Loureiro
Florin Isaila and Jesús Carretero

Departement of Computer Science Department of Electronics and Computer Science
University Carlos III of Madrid - Spain Universidad de Santiago de Compostela - Spain

{rosaf,desingh,florin,jcarrete}@arcos.inf.uc3m.es antonio@dec.usc.es

Abstract

This paper presents the optimization and evaluation of
parallel I/O for the BIPS3D parallel irregular application,
a 3-dimensional simulation of BJT and HBT bipolar de-
vices. The parallel version of BIPS3D employs Metis, a
library for partitioning graphs, finite element meshes, or
sparse matrices. First, we show how the partitioning infor-
mation provided by Metis can be used in order to improve
the performance of parallel I/O. Second, we propose a novel
technique, called Interval Data Grouping (IDG), which ex-
ploits the data replication of mesh nodes for optimizing the
scheduling of the parallel file operations. Finally, we eval-
uate the parallel I/O version of BIPS3D for various existing
parallel I/O techniques and present an in-depth analysis of
the IDG performance.

1 Introduction

The performance of applications accessing large data
sets is often limited by the speed of I/O subsystems. Ad-
ditionally, the gap between the processor performance on
the one hand and the memory and I/O performance keeps
increasing at a high rate. Consequently, accessing large
amounts of data may cause bottlenecks or underutilization
of the computing resources.

For this reason, a lot of research has targeted the im-
provement of the parallel I/O performance of the data-
intensive applications. In this paper, we present the par-
allelization and optimization of the file system accesses of
BIPS3D [7], an irregular parallel scientific application.

We introduce a novel parallel I/O optimization strategy,
IDG, by means of which, we demonstrate that, for certain
access patterns, the data access locality may play a more

important role than load balance.
The paper is structured as follows. Section 2 briefly

overviews the BIPS3D application. Section 3 presents par-
allel I/O systems, optimizations and interfaces. Section 4
contains implementation details of the parallel I/O version
of IDG. The novel locality-based parallel I/O technique
IDG is described in section 5. The experimental results are
presented in section 6. Finally, we summarize in section 7.

2 BIPS3D

In this section we give an overview of the BIPS3D ap-
plication. Throughout the paper we will give more details
about the particular application phases.

BIPS3D is a 3-dimensional simulation of BJT and HBT
bipolar devices. The goal of the 3D simulation is to relate
electrical characteristics of the device with its physical and
geometrical parameters [1],[2]. The basic equations to be
solved are Poisson’s equation and electron and hole conti-
nuity, in a stationary state.

Finite element methods are applied in order to discretize
the Poisson equation, hole and electron continuity equations
by using tetrahedral elements. The result is an unstructured
mesh in which we place more nodes in the areas of union
between different areas of the transistor.

Using the METIS library [4], this mesh is divided into
sub-domains, in such a manner that one sub-domain corre-
sponds to one processor. The next step is decoupling the
Poisson equation, hole and electron continuity equations,
and linearize them using the Newton method. Then we
construct, for each sub-domain, in a parallel manner, the
part corresponding to the associated linear system. Each of
these systems is solved using domain decomposition meth-
ods. Finally, the results are written to a file.

1-4244-0910-1/07/$20.00 ©2007 IEEE

3 Parallel I/O background

The compute nodes of a parallel application may write
the data to a file system in parallel. However, if the file
system manages a single disk, the parallel accesses are seri-
alized. This is the case with the NFS distributed file system
[9] exporting a local file system. A true parallel disk access
can be obtained from parallel file systems such as PVFS [6]
or GPFS [10], which employ in parallel several I/O severs
or mount parallel disks.

The processes of a parallel application frequently access
a common data set by issuing a large number of small non-
contiguous I/O requests. Collective I/O addresses this prob-
lem by merging small individual requests into larger global
requests in order to optimize the network and disk perfor-
mance. Depending on the place where the request merging
occurs, one can identify two collective I/O methods. If the
requests are merged at the I/O nodes the method is called
disk-directed I/O [5, 11]. If the merging occurs at inter-
mediary nodes or at compute nodes the method is called
two-phase I/O [2, 1]. Two-phase I/O is in ROMIO [12], an
implementation of MPI-IO interface.

Many existing file systems’ interfaces are based on the
Portable Operating System Interface(POSIX) [3]. The main
limitation of POSIX is that it is not addressing the require-
ments of high-performance parallel applications. In 2005,
a working group has started to work at a POSIX I/O API
extension, with the goal to make the POSIX I/O API more
friendly to HPC, clustering, parallelism, and high concur-
rency applications. However, the proposal is in work and it
has not been widely adopted yet. List I/O [13] is an interface
for describing non contiguous accesses both in file and in
memory. Non-contiguous accesses are specified through a
list of offsets of contiguous memory or file regions and a list
of lengths. MPI-IO [8] is a standard interface for MPI-based
parallel I/O. MPI data types are used by MPI-IO for declar-
ing views and for performing non-contiguous accesses. A
view is a contiguous window to potentially non-contiguous
regions of a file. After declaring a view on a file, a process
may see and access non-contiguous regions of the file in a
contiguous manner.

4 Implementation of parallel I/O in BIPS3D

As many parallel scientific applications, BIPS3D con-
sists of separate compute and I/O phases. In the first phase,
based on the input distribution, the Metis library is used for
providing a data distribution that would load balance the ex-
ecution. Using this information, the data mesh is distributed
over the processors. Subsequently, the computation is per-
formed on the data. Finally, the data is written to the file
system.

0 1

0 1

30 1 4 52

0 3 1 2 54

Number of partition

Node of mesh

NodeList

Computer node 0 Computer node 1

Computer node 0

Nodopart
Nodopart

MPI_Send

MPI_Recv

Figure 1. Data distribution example

An important observation is that the final data format is
similar to the initial one. In other words, the partitioning
provided by Metis can be used as well for the parallel I/O
phase. In the initial BIPS3D version, in the final I/O phase,
the results were gathered at a root node, which stored the
data sequentially to the file system.

In the remainder of this section we describe the details
of the parallel implementation.

The result of Metis mesh partitioning are the parame-
ters of the data distribution over a given number of proces-
sors. The distribution is represented as an array of structures
distrib.

Each element of the distrib array represents a com-
pute node and contains, among other information, a vec-
tor of structures called nodelist, representing the mesh
nodes assigned to the respective compute node by Metis.

The node structure contains the following informa-
tion: an identifier of the mesh position (id), the num-
ber of assigned vertices nr_of_vertices, the ver-
tex list vertices, the corresponding compute node
processor, and a variable-sized vector load represent-
ing the physical parameters corresponding to the materials
at each mesh node.

Initially, the program distributes to each compute node
the corresponding distrib vector element, as shown in
the example from Figure 1.

Subsequently, the computation is performed over the
load vector. Finally, the data is stored to disk either se-
quentially or in parallel. The following I/O configurations
are possible:

• sequential I/O over NFS

• sequential I/O over PVFS

• parallel I/O over PVFS

• parallel I/O over PVFS with two-phase I/O

• parallel I/O over PVFS with list I/O

The sequential I/O is the original one and was explained
in the first paragraph of this section. In our configuration
NFS or PVFS file systems can be used.

2

V0 0 0 1 1 0 0 00 1 1 0 0 1 1 1011 0 0 1 1 0 0 0 1 1 1

1 2 5 6 7 8 1211 17 19 22 2413 23

3 4 9 10 14 15 1816 21 25 2620 27

P0

P1

Figure 2. Mesh distribution example.

4

1

7

5

2
3

6

0
Partition 1

Partition 0

Figure 3. Example of a Mesh.

In the parallel I/O, each compute node uses the distri-
bution information initially obtained from Metis and con-
structs a view on the file. The view is based on an MPI data
type. One example of a mesh distributed over two compute
nodes is illustrated in Figure 2. The vector v0 shows to
which of the two processors the data is assigned. The first
and second entries correspond to compute node 0, the third
to compute node 1, and so on. The vectors p0 and p1 con-
tain the file positions where each of the elements of compute
node 0 and 1 are to be stored. In order to achieve the MPI
data type MPI_Type_Indexed is used. This data type
represents non-contiguous lying data of equal sizes and with
different displacements between consecutive elements.

Once the view on the common file is declared, the com-
pute nodes may write the data to its corresponding file part
either independently or collectively, as chosen by the user.

5 IDG description

In this section we present a novel technique for improv-
ing the I/O performance. This technique, called Interval
Data Grouping (IDG), exploits the data replication of mesh
nodes for scheduling disk accesses in order to improve the
performance of the parallel output operation. The goal of
IDG is grouping data for I/O in order to increase the locality
of data, as opposed to the Metis-based approach presented
in the previous section, in which the goal was to improve
the load balance.

As many other finite element applications, BIPS3D uses
tetrahedral meshes for simulating the semiconductor de-
vices. These meshes are distributed among the compute
nodes using a pre-defined policy which tries to balance the
computational load and decrease the communication. On
one hand, the work load is associated to each mesh node 1

1Each mesh node contains values of different physical measures of the

thus load balance can be expressed as distributing the mesh
in close-equal portions. On the other hand, communica-
tion is performed between neighboring mesh nodes (con-
nected through an edge) possibly assigned to different com-
puting nodes. Minimizing the communications is equiva-
lent to minimizing the number of edges cut by the partitions.
BIPS3D uses Metis mesh partitioner for reaching both req-
uisites. Figure 3 shows an example of a mesh with 8 nodes
and 12 edges.

Once the mesh is partitioned and distributed its nodes
are classified into two classes: local and shared. A local
node is exclusively assigned to one specific partition and
is not replicated. All its neighboring nodes are assigned to
the same partition and its associated edges are not cut by
the partitions. In contrast, a shared node has at least one
edge cut, thus at least one neighboring node is assigned to
other partition. Due to boundary conditions, shared nodes
are replicated among the neighboring partitions. In the ex-
ample of Figure 3, nodes {0, 3} are local to partition 0; node
{6} is local to partition 1 and nodes {1, 2, 4, 5, 7} are shared
among these two partitions.

Note that the complete information of a shared node
is replicated, and is computed with redundancy by the
BIPS3D application. Note also that after the compute
phase, both node replicas contain valid information, and,
consequently, can be indistinctly used for performing the
output disk operation. IDG algorithm exploits this property
for choosing the most appropriate shared nodes for perform-
ing the disk access. The criterion used by IDG is increasing
data locality for reducing the overall disk write time.

Figure 4 shows the IDG pseodocode. It consists of two
stages: node classification and disk access scheduler. The
node classification phase analyzes the mesh structure (using
the mesh topology file) and the Metis distribution for clas-
sifying mesh nodes into local or shared. This stage works
as follows: using the mesh topology, for each node, all its
neighboring nodes are retrieved (L1 label). This stage re-
turns a data structure (called partition list) with as many
rows as number of nodes. Each row contains the partition
to which the specific node is assigned. In case of being a lo-
cal node, the row will have one entry corresponding to the
Metis partition (L2). In contrast, a shared node will have as
many entries as partitions, in which is replicated. These par-
titions are obtained by analyzing all neighbors (L3). Then,
their assigned partition is compared with the one associated
to the considered node (L4). In case of all being the same,
we conclude that the node is local. Otherwise, the node is
shared and a new partition is added to the list (L5). For the
example from Figure 3, the resulting data structure is shown

semiconductor discrete element that represents. This information is read,
analyzed and processed by BIPS3D, representing the application compu-
tational load. Consequently, we can say that the work load associated with
a mesh (or portion) is linearly dependent on the number of nodes that con-
tains.

3

Begin algorithm IDG:

input: mesh Mesh topology
metis_distr Metis node distribution

input: idg_distr IDG node distribution

NODE CLASSIFICATION
for each node ∈ Meshtopology

L1 neighbor list = take neighbors(mesh, node)
L2 add partition(partition list, node, metis distr(node))
L3 for each neighbor ∈ neighbor list

L4 if(metis distr(node) �= metis distr(neighbor))
L5 add partition(partition list, node, metis distr(neighbor))

end if
end for

end for

DISK ACCESS SCHEDULER
for each node ∈ Meshtopology

L7 if (number partitions(partition list, node) = 1)
L8 idg distr(node) = metis distr(node)

else
L9 for each partition ∈ partition list(node)
L10 if(partition = metis distr(node − 1))
L10 idg distr(node) = metis distr(node − 1)
L11 else if(partition = metis distr(node + 1))
L11 idg distr(node) = metis distr(node + 1)

end if
end for

end for

End algorithm

Figure 4. IDG algorithm pseudocode.

Node Neighbors Metis node distrib. Partition list

0 0 1 3 0 0
1 0 4 7 0 0 1
2 4 5 6 7 1 1 0
3 0 5 7 0 0
4 1 2 6 1 1 0
5 2 3 7 0 0 1
6 2 4 1 1
7 1 2 3 5 0 0 1

Table 1. Data structure of example mesh.

in Table 1.
The second stage (Figure 4) schedules disk write opera-

tions. Each mesh partition is assigned to a different compu-
tation node. In the case of local nodes (L7) there is a fixed
scheduling policy, i.e. they are written by the compute node,
which they belong to (L8). In the case of shared nodes, this
stage chooses (among all the compute nodes where they are
replicated), the most appropriate one. The criterion used
for assigning each shared node is to look to its previous and
subsequent nodes2. This stage works as follows. For each
shared node(L9), its previous node is considered (L10). If
its assigned partition belongs to the shared node partition
list, then it is associated to the same partition (increasing
the locality). Otherwise, we apply the same procedure with

2Note that we are trying to improve the disk access locality, thus here
we are referring previous and subsequent in terms of disk storage order.
For a given node i, its previous and subsequent nodes are i − 1 and i + 1

respectively.

Node Partition list IDG

0 0 0
1 0 1 0
2 1 0 0
3 0 0
4 1 0 0
5 0 1 0
6 1 1
7 0 1 1

Table 2. IDG distribution of example mesh.

the subsequent node (L11). If the considered node is still
unassigned after both checks, we assign it to the first en-
try of its partition list (not shown in the figure). For the
example from Figure 3, shared node 1 is the first one con-
sidered. Given that previous node (node 0) is local, it is
assigned to partition 0. This procedure is applied to nodes
{1, 2, 4, 5, 7}. The resulting node assignation can be seen
in Table 2.

6 Experimental results

In this section we present an extensive evaluation of the
parallel I/O version of the BIPS3D application. In the first
subsection five existent I/O techniques are evaluated. The
second subsection shows an in-depth analysis of the IDG
based on the list I/O technique, which showed the best re-
sults in the experiments from the first section.

We performed our experiments on a cluster of 16 dual
processors Pentium III 800MHz, having 256 KBytes L2
cache and 1024 MB RAM, interconnected by Fast Ethernet
and Myrinet LANai 9 cards at 133 MHz, capable of sustain-
ing a throughput of 2 GB/s in each direction. For Myrinet
we have used MPICH 1.7.15 and for Fast Ethernet MPICH
1.2.6. The PVFS version 1.6.3 with a striping factor of 64
KBytes.

6.1 Evaluation of existing parallel I/O
techniques

We have executed BIPS3D for four different meshes,
with different number of nodes, having a load between 1
and 500 data entries per node, using 4, 7, 8, 10, 14 par-
titions and both Myrinet and Fast Ethernet networks. Our
goal was to investigate the relationship among these param-
eters and write performance for each mesh in order to pre-
dict the most appropriate I/O configuration for each case.

We have used the meshes 1, 2, 3 for both Myrinet and
Fast Ethernet and 4 only for Myrinet. The four meshes
consist of 47219, 32888, 73260 and 289650 nodes, respec-
tively.

For each sequential configuration, we report the sum of
gather and file write time. For parallel configurations, we

4

1,0

10,0

100,0

1000,0

10000,0

100000,0

1 50 100 500

Load

T
im

e
(m

s
c

s
)

NORMAL 2 PHASE LIST I/O SEQ PVFS SEQ NFS

Figure 5. Examples of output techniques for
mesh3 over Myrinet.

report the sum of the time to construct the data type and file
write time.

All four meshes show simmilar results. Figures 5 and
and 6 show the results of mesh 3 for 8 partitions. The scale
is logarithmic.

It can be noticed that the worst performance is obtained
for the sequential NFS configuration, which is the one used
in the original BIPS3D version.

For Myrinet, when the data set is small, the most ad-
equate configuration is the parallel two-phase I/O one. For
larger sizes the best configuration turns to be list I/O. This is
due to the fact that list I/O works with data intervals, which
is more efficient for large data blocks. Additionally, for list
I/O the data is sent only one time over the network, while for
two-phase I/O twice. Therefore, the communicating data
volume is much larger for two-phase I/O. On the other hand,
for small intervals, the data block management is larger and
the locality smaller for list I/O. In this case two-phase I/O
is more adequate to utilize, because the network is not con-
gested and the overhead of block management lower.

For Fast Ethernet, the most adequate I/O configuration is
list I/O in all the cases. This is due to the fact that Fast Eth-
ernet is considerably slower than Myrinet, which results in
a penalty for all the configurations requiring a high number
of communication operations, like two-phase I/O. Another
good performing configuration is sequential PVFS, due to
the small number of communication operations involved.
However, this configuration will not scale for larger clus-
ters, due to the central point of data gathering.

Based on the results from this subsection, we have con-
structed a decision tree shown in Figure 7. This tree helps
choosing the adequate configuration based on the network
type, mesh size and data set size.

As shown in Figure 7, when working with a fast network
like Myrinet, for networks smaller than 70,000 nodes (Nx
= 70,000) and loads smaller than 90 (Nld = 90), the best
configuration is two-phase I/O. If the load is larger than Nld,
the proper configuration is list I/O. If the number of nodes

1,0

10,0

100,0

1000,0

10000,0

100000,0

1000000,0

1 50 100 500Load

T
im

e
(m

s
e
c
s
)

NORMAL 2 PHASE LIST I/O SEQ PVFS SEQ NFS

Figure 6. Examples of output techniques of
Mesh 3/Fast Ethernet.

Network

Number of
nodes

Load Load

Myrinet Fast Ethernet

< Nx > Nx

< Nld > Nld < Nld >Nld

Two-phase

IO

List I/O Two-phase

IO
List I/O

List I/O

Figure 7. Decision tree for choosing the ade-
quate configuration.

is larger than Nx, for loads smaller than 50 (Nld = 50) the
adequate configuration is two phase I/O and for loads larger
than Nld list I/O is recommended. Finally, for Fast Ethernet,
the best configuration is list I/O.
6.2 IDG performance evaluation

We have divided this subsection into three parts: a com-
parison of list I/O based IDG technique with other parallel
I/O methods, an in-depth analysis of the IDG performance
and the evaluation of the IDG overhead.

6.2.1 Improvement of I/O performance

We have used IDG technique together list I/O technique.
This technique was selected because it showed on average
the best performance in the evaluation from the previous
subsection. We have compared the performance of IDG
with other three strategies: Metis, Random and First Po-
sition.

Metis uses the original node distribution performed by
Metis for parallel I/O.

5

Random approach consists of the first stage of IDG tech-
nique (node classification) and a variant of the second stage
(disk access scheduler). In this second stage variant, each
shared node is assigned to a potential partition randomly.

Finally, First Position uses the same first stage of IDG,
but, unlike the Random strategy, instead of choosing a ran-
dom value, it chooses the smallest partition (among all pos-
sible). The reason for developing these two variants is to
evaluate the load balance effect on our proposal. Random
strategy will produce more balanced disk schedules than
IDG technique, and, in contrast, First Position will produce
the worse schedules.

Table 3 shows the characteristics of the considered input
meshes. All of them correspond to semiconductor devices
used by BIPS3D simulator.

Figure 8 shows the performance of the I/O stage using
these proposals together with List I/O technique. Each fig-
ure corresponds to an input mesh where different load pa-
rameters are evaluated. We can see that IDG is the most
competitive approach in almost all the considered scenarios.
We can also observe than the larger number of nodes is, the
more the performance increases for IDG. We can also no-
tice that both Random and First Position show poor results.
Next section analyses the reasons of these performance re-
sults.

6.2.2 Performance evaluation

We have developed different tests for evaluating the sched-
uler performance. First, we evaluated the effect of data ag-
gregation. Table 4 shows the number of disk intervals and
average length for each mesh using Metis and IDG distribu-
tion for 8, 16 32, and 64 partitions. One interval is defined
as a set of consecutive nodes that are assigned to the same
partition. That is, a set of consecutive entries (as many en-
tries as the number of nodes of the interval multiplied by
the load factor) that are written to disk by the same compute
node. We can see that IDG approach drastically increases
the average length and reduces the number of intervals. We
can also observe that this improvement increases for large
numbers of partitions. The reason of this effect is shown
in Figure 9.This figure shows, for each input mesh, the per-
centage of shared nodes from the overall number of nodes
for 8, 16, 32 and 64 partitions. As expected, the replication
percentage drastically increases with the number of proces-
sors. As we can see, for large numbers of partitions, IDG

Mesh 1 2 3 4

Nodes 47219 32888 73260 289650
Vertices 305120 210437 416950 2027885

Table 3. Main characteristics of the input
meshes.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

1 10 20 30 40 50

Load

T
im

e

Metis IDG Random First Position

(a)

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

1 10 20 30 40 50

Load

T
im

e

Metis IDG Random First Position

(b)

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

1 10 20 30 40 50

Load

T
im

e

Metis IDG Random First Position

(c)

0,00

100,00

200,00

300,00

400,00

500,00

600,00

1 10 20 30 40 50

Load

T
im

e

Metis IDG Random First Position

(d)

Figure 8. Performance of the List I/O for 8 pro-
cessor execution: (a) mesh1, (b) mesh2, (c)
mesh3 and (d) mesh4 .

6

Nr. of Metis IDG
partitions Mesh 1 2 3 4 1 2 3 4

Nr. of intervals 258.0 203.8 244.0 965.5 88.3 67.1 57.0 126.08
Average length 22.5 19.8 96.6 38.7 70.6 63.1 251.8 306.5
Nr. of intervals 217.4 171.3 189.8 642.4 71.6 58.3 49.5 99.816
Average length 13.4 11.5 27.9 29.7 43.5 37.9 151.2 195.4
Nr. of intervals 169.6 136.7 149.4 511.7 54.5 44.9 38.7 75.232
Average length 8.0 6.9 15.8 19.3 28.1 24.6 73.6 141.5
Nr. of intervals 137.0 99.1 112.9 344.4 41.2 31.7 25.4 51.764
Average length 4.5 4.3 10.3 13.7 19.1 17.5 55.1 99.2

Table 4. Comparison of number of intervals and average length for Metis and IDG.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

8 16 32 64

Number of Procesos

%
R

e
p

li
c
a
ti

o
n

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Figure 9. Percentage of data replication for
different meshes and partitions.

technique has more shared nodes to group, therefore, ob-
taining larger data intervals.

Another important aspect is load balance. Figure 10
shows the percentage of load balance for mesh 3 and all
partitions. This percentage was computed with the follow-
ing formula:

LB =
max(assigned nodesi) − min(assigned nodesi)

avg(assigned nodesi)
(1)

where assigned nodesi represents the number of mesh
nodes assigned to each computational node (i) for a disk
write operation. Max, min and avg compute, respectively,
the maximum, minimum and average value for all the ex-
isting compute nodes. We can note that Metis obtains the
best results in all the considered scenarios, followed by the
Random and IDG approaches. On the other hand, First Po-
sition run results in a poor load balance. IDG produces good
balanced distributions when the number of partitions is not
very large. For 8 partitions, IDG generates more unbalanced
accesses than Metis. Note that load balance has not an im-
portant impact on the disk access performance, for instance
when comparing the performance of Random and First Po-

0

0,2

0,4

0,6

0,8

1

1,2

1,4

8 16 32 64

Number of Procesors

%
L

o
a

d
b

a
la

n
c

e

Metis IDG Random First Position

Figure 10. Percentage of load balance for dif-
ferent partitions of mesh3 .

0,001

0,01

0,1

1

8 16 32 64

Number of Procesors

In
s

p
e

c
to

r
E

x
e

c
u

ti
o

n
T

im
e

Time Red Time IDG

Figure 11. Computation time (in secs.) of IDG
algorithm of mesh3 .

sition in Figure 8. The latter one is considerably more un-
balanced, but obtains better performance results than Ran-
dom approach. Similar results were obtained when compar-
ing IDG and Metis.

6.2.3 IDG overhead

We have evaluated the IDG overhead by using two metrics:
CPU time and the memory consumption. Figure 11 shows
the inspector execution time (in secs.) for mesh 3 and all
partitions using logarithmic scale. For each measurement
we divided the time of each stage into a node classification

7

component (labeled Time red in the figure) and a disk access
scheduler component (labeled time IDG). We can see that
the former one in negligible if compared with the latter. The
overall execution time of IDG algorithm is very small. Also,
it is important to remark, that the IDG inspector is applied
once (for a given mesh partition) and its information can
be reused during different disk write operations3. In this
figure we also notice that the inspector overhead linearly
increases with the number of partitions, which demonstrates
the scalability of the solution.

7 Conclusions

In this paper we presented the optimization and evalua-
tion of parallel I/O operations for BIPS3D parallel irregu-
lar application. First of all we showed how we parallelized
the file access operation by using the partitioning informa-
tion provided by Metis library. Then, we introduced a novel
technique, called Interval Data Grouping (IDG), which ex-
ploits the data replication of mesh nodes for scheduling disk
accesses in order to improve the performance of the parallel
output operation.

In the evaluation section we have evaluated several ex-
isting I/O techniques and found out that list I/O performed
the best for BIPS3D application. Using list I/O, we have
compared IDG with three different I/O strategies, including
the initial Metis based strategies. IDG performed better in
most of the cases, even though it did not achieve the best
load balance. This is due to the high locality of write oper-
ations, which, for this application, is shown to play a more
important role than the load balance.

References

[1] R. Bordawekar. Implementation of Collective I/O in the In-
tel Paragon Parallel File System: Initial Experiences. In
Proc. 11th International Conference on Supercomputing,
July 1997. To appear.

[2] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved
parallel I/O via a two-phase run-time access strategy. In
Proc. of IPPS Workshop on Input/Output in Parallel Com-
puter Systems, 1993.

[3] http://www.unix systems.org/. The Portable Operating Sys-
tem Interface, 1995.

[4] G. Karypis and V. Kumar. METIS — A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
Technical report, Department of Computer Science/Army
HPC Research Center, University of Minnesota, Minneapo-
lis, 1998.

3This is very useful for checkpointing, where data is repeatedly stored
to disk using the same pattern.

[5] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In
Proc. of the First USENIX Symp. on Operating Systems De-
sign and Implementation, 1994.

[6] W. Ligon and R. Ross. An Overview of the Parallel Virtual
File System. In Proceedings of the Extreme Linux Workshop,
June 1999.

[7] A. Loureiro, J. Gonzlez, and T.F.Pena. A parallel 3d semi-
conductor device simulator for gradual heterojunction bipo-
lar transistors. Journal of Numerical Modelling: electronic
networks, devices and fields, 16:53–66, 2003.

[8] Message Passing Interface Forum. MPI2: Extensions to the
Message Passing Interface, 1997.

[9] R. Sandberg, D. Goldberg, S. Kleinman, D. Walsh, and
B. Lyon. Design and implementation of the sun network
filesystem. In Proc. of the Summer USENIX Conference,
1985.

[10] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File Sys-
tem for Large Computing Clusters. In Proceedings of FAST,
2002.

[11] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett.
Server-directed collective I/O in Panda. In Proceedings of
Supercomputing ’95.

[12] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Col-
lective I/O in ROMIO. In Proc. of the 7th Symposium on
the Frontiers of Massively Parallel Computation, pages 182–
189, February 1999.

[13] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proc. of the Sixth
Workshop on I/O in Parallel and Distributed Systems, pages
23–32, May 1999.

8

