

Predicting the Effect on Performance of Container-Managed Persistence in a

Distributed Enterprise Application

David A. Bacigalupo1, James W. J. Xue1, Simon D. Hammond1, Stephen A. Jarvis1,
Donna N. Dillenberger2 and Graham R. Nudd1

daveb@dcs.warwick.ac.uk

1 High Performance Systems Group,
Department of Computer Science,

University of Warwick, Coventry CV4 7AL,
UK

2 IBM T.J. Watson Research Centre,
Yorktown Heights, New York 10598, USA

Abstract

 Container-managed persistence is an essential tech-
nology as it dramatically simplifies the implementation of
enterprise data access. However it can also impose a
significant overhead on the performance of the
application at runtime. This paper presents a layered
queuing performance model for predicting the effect of
adding or removing container-managed persistence to a
distributed enterprise application, in terms of response
time and throughput performance metrics. Predictions
can then be made for new server architectures - that is,
server architectures for which only a small number of
measurements have been made (e.g. to determine request
processing speed). An experimental analysis of the model
is conducted on a popular enterprise computing
architecture based on IBM Websphere, using Enterprise
Java Bean-based container-managed persistence as the
middleware functionality. The results provide strong
experimental evidence for the effectiveness of the model in
terms of the accuracy of predictions, the speed with which
predictions can be made and the low overhead at which
the model can be rapidly parameterised.

1. Introduction

When designing distributed enterprise applications
one of the most important decisions that has to be made is
whether to use middleware functionality (e.g. container-
managed persistence) to manage the application’s access
to the database, or whether to implement this manually.
For example in the J2EE middleware this functionality
can be achieved using Entity Enterprise Java Beans
(EJBs) [7] and in the .NET middleware this functionality

──────────────
1-4244-0910-1/07/$20.00 ©2007 IEEE.

can be achieved using NJDX [22]. However regardless of
the middleware being used, it is normally the case that
using the middleware functionality makes it easier to
develop and maintain the application, whereas the manual
version (for example using SQL along with JDBC or
ODBC) can be more time-consuming to develop but has
the potential to be significantly more efficient. Thus,
when deciding whether to use a middleware or manual-
based implementation it can be useful to have quantitative
data on the potential increase in efficiency. To avoid
having to implement and test two full versions of one
application, this quantitative data can be provided by a
performance model, and the associated performance
prediction method.

Various performance prediction methods have been
used in the literature to predict the performance of
distributed enterprise applications. For example in [15,
16] a two-level queuing network performance prediction
model (for software and hardware respectively) is used. In
[14] a queuing model is used to maximize the revenue
obtained by a workload manager. In [10], workload
information and server load metrics are recorded and used
to infer the relationship between these variables and the
system’s performance based on statistical pattern
recognition and machine learning techniques. And in [1],
the effects of IBM S/390 workload management decisions
are predicted by extrapolating from the historical usage of
each machine’s CPU, memory and I/O resources by
different classes of workload, using a combination of
performance modelling and statistical pattern recognision
techniques. Other examples include our own work on
statistical and queuing prediction methods [5, 6, 23, 24].
However, none of these examples can predict the effect
on performance of adding or removing middleware
functionality to manage the application’s access to the
database, on a new server architecture for which only a
small number of benchmarks have been run (e.g. to
determine request processing speed). The work described

in [25] goes someway to addressing this gap in the
literature, by describing a comparison of the performance
of EJB versus JDBC implementations for the same
benchmark used in this paper. However there is no
evaluation of a performance model that can predict the
effect of a change of application implementation. In
summary there is a need for distributed enterprise
performance prediction methods that model the effect of a
change of application implementation from middleware-
based to manual code for accessing the data in the
database, and test the resulting method on an industry
standard distributed enterprise application benchmark.

This paper describes just such a model and associated
experimental analysis. In particular this paper looks at
how predictions can be made for new server architectures
for which only a small number of benchmarks have been
run. In addition we parameterise the prediction models
rapidly with low overheads. A layered queuing method is
selected as the performance modeling technique as it
explicitly models the tiers of servers found in this class of
application and it has also been applied to a range of
distributed systems (e.g. [9,19]). This method has
additionally been used by both the High Performance
Systems Group [5, 6] and IBM [13] to model distributed
enterprise applications. However it has not been used
previously to model the effect of a change of application
implementation from middleware-based to manual code
for accessing the database.

The IBM WebSphere middleware [8] is selected as
the platform on which this experiment is run as it is a
common choice for distributed enterprise applications.
Since Websphere is based on the J2EE platform, the
middleware functionality used for accessing the data in
the database is container-managed persistence using
Entity EJBs, and the manual version involves using JDBC
and SQL. On top of WebSphere, the IBM Websphere
Performance Benchmark Sample ‘Trade’ [11] is run as
this is the main distributed enterprise application
benchmark for the WebSphere platform.

The contributions of this paper are to: i.) present a
performance model for predicting the impact on
performance of container-managed persistence, on new
server architectures; ii.) investigate the use of the model
experimentally, given the requirement that it must be
rapidly parameterised at a low overhead; and iii.) to show
how the model can be used to make predictions with a
good level of accuracy. The combination of a widely
used performance modelling method (the layered queuing
method), an established system model (see section 2), a
popular middleware (IBM Websphere) and a distributed
enterprise benchmark based on best practices (the IBM
Websphere Performance Benchmark Sample ‘Trade’)
should make this work of relevance to a wide range of
distributed enterprise applications.

The remainder of this paper is structured as follows:
section 2 depicts the system model, in section 3,
commonly used middleware for accessing the data in the
database is described along with the manual alternatives,
including EJBs and JDBC. Section 4 describes the layered
queuing performance model and in section 5, the
experimental analysis of the layered queuing model is
presented.

2. System Model

Distributed enterprise applications are often installed
in dynamic hosting environments (as opposed to being
installed on a dedicated set of resources). These are
environments consisting of a heterogeneous collection of
servers, hired by more than one service provider, with the
servers typically being divided across a number of sites.
Figure 1 shows the dynamic hosting environment system
model used in this paper. Based on the Oceano hosting
environment a server can only process the workload from
one application at a time to isolate the applications (which
may be being hosted for competing organizations); and
servers can be dynamically transferred between service
providers [4]. The service providers would typically use
these servers to process a continuous stream of incoming
workload (see e.g. [1, 14]). This workload is modelled as
a set of heterogeneous service classes for each service
provider, each of which is associated with a performance
requirement specified in a Service Level Agreement
(SLA). This paper focuses on response time performance
requirements as this has been identified by IBM as one of
the main performance metrics of interest to e-Business
customers [1, 14].

Based on established work, each service provider is
modelled as a tier of application servers accessing a single
database server [2, 13]. Based on the queuing network in
the WebSphere e-Business platform, a single first-in-first-
out (FIFO) waiting queue is used by each application
server; and all servers can process multiple requests
concurrently via time-sharing. There are two types of
decision making software which are used in the system:
workload management [17] –determining the site and
server on which incoming requests should run, and server
allocation – based on the workload and available servers,
determining the (dynamic) allocation of servers to service
providers. The objective is a trade-off between the quality
of service (provided to the server owners, the service
providers who hire the servers, the clients who send the
requests and the administrators) and the costs of
providing this service. Examples of these costs include
the cost of hiring servers, the cost of paying penalties for
SLA failures, and the cost of re-allocating servers.

In this paper ‘No. of clients and the mean client
think-time’ is used as the primary measure of the
workload from a service class. The total number of clients

across all service classes and the percentage of the
different service classes are used to represent the system
load. Using number of clients (as opposed to a static
arrival rate definition) to represent the amount of
workload is common when modelling distributed
enterprise applications – see for example [5, 10, 13]. This
is because it explicitly models the fact that the time a
request from a client arrives is not independent of the
response times of previous requests, so as the load
increases the rate at which clients send requests decreases.
In this context ‘client’ refers to a request generator (i.e. a
web browser window) that requires the result of the
previous request to send the next request. Users that start
several such conversations can be represented as multiple
clients.

Figure 1. The system model.

Each request from a client calls one of the operations

on the application-tier interface. The typical workload is
defined as the next operation called by a client being
randomly selected, with probabilities defined as part of
the Trade benchmark as being representative of real
clients. The think-time is exponentially distributed with a
mean of 7 seconds for all service classes as recommended
by IBM for Trade clients [2]

3. Managing Access to the Data in the
Database

This section provides an overview of container-
managed persistence, and the alternative manual approach
to accessing the data in the database. Using container-
managed persistence involves creating a set of data
structures in the application, and defining the relationship

between these data structures and the tables in the
database, along with a set of properties that define how
the middleware is to synchronise the application data with
the database data. For example in the Java platform this
often involves creating an entity EJB to represent each
table in the database, and when using NJDX for the .NET
platform a dedicated object-relational mapping tool is
used. The middleware can then provide the services
which are typically required for enterprise data access
including: transactional access to maintain the integrity of
database data; database connection pooling to improve
performance; configurable security levels (e.g. per-
database or per-user); and error handling facilities to
assist system administrators isolate problems.

When container-managed persistence is not used the
programmer must manually write the code to access the
database, and the data inside it. This would typically
involve establishing the connection and setting the
connection properties using one language (e.g. JDBC for
the Java platform or ODBC for the .NET platform) and
then writing the code to access the data in another
language (normally SQL, possibly using a vendor’s
proprietary extensions). In this case code to manage and
commit or rollback transactions would have to be written
manually, as would much of the code to manage other
services including database connections, security and
error handling. Typically this would involve a
combination of the above languages and the base
programming language (e.g. Java or C#). Potentially this
could be a major undertaking, although in practice the use
of pre-existing libraries can simplify the task. Indeed, the
use of pre-existing libraries allows for various ‘halfway-
houses’ between container-managed persistence and the
fully manually approach, in which case some of the
database access functionality is provided by the libraries
and some is implemented manually by the programmer.

The advantages of container-managed persistence
include dramatically simplifying the implementation of an
enterprise application that requires the services discussed
above (e.g. transactions and database connection
pooling); and the creation of code which is reusable (e.g.
when switching to a different database vendor) and often
modular. However container-managed persistence can
also impose a significant overhead on the performance of
the application at runtime. The advantages of the manual
approach include the flexibility that results from having
full control over how the application accesses the
database (e.g. over transactional boundaries); and that the
application can be easier to debug, profile and
performance tune. However care must be taken so as not
to tie the implementation to the idiosyncrasies of the
database software used to test the application, and if the
code is poorly written it could in the worst case have even
worse performance than if container-managed persistence
were used. The reader is referred to [7] for a more

detailed discussion on the advantages and disadvantages
of this technology.

4. Layered Queuing Model

A layered queuing performance model explicitly
defines a system’s queuing network. An approximate
solution to the model can then be generated automatically,
using the layered queuing network solver (LQNS) [9].
The solution strategy involves dividing the queues into
layers corresponding to the tiers of servers in the system
model and generating an initial solution. The solver then
iterates backwards and forwards through the layers,
solving the queues in each layer by mean value analysis,
and propagating the result to other layers until the
solutions converge. A detailed description of the
modeling language and solution algorithm can be found
in [9], and a new technique developed by the High
Performance Systems Group to allow the solution
algorithm to converge rapidly on a solution when there is
more than one service class in the workload can be found
in [6].

A layered queuing model is created to represent the
queuing network in the Websphere middleware. The
model has application server, database server and
database server disk layers, with each layer containing a
queue and a server. In addition the database server layer
can include a second queue and server for applications
that use a separate session database server, with the
associated second server and queue in the database server
disk layer. The application server disk is not modelled as
the Trade application’s utilization of this resource is
found to be negligible during normal operation. Workload
parameters (per service class) are: the number of clients,
the mean processing times on each server, the mean client
think-time, the mean number of application and session
database requests per application server request and the
mean number of database disk requests per database
request for the application and session database servers.
The other parameters are the maximum number of
requests each server can process at the same time via
time-sharing.

The following is an overview of how the layered
queuing model is used, and the different performance
metrics that are involved. First, the resource usage and
throughput of each service class under no_of_clients
number of clients is measured, as well as the maximum
throughputs of each application server architecture under
the different application implementations under the
typical workload as defined in section 2 - or alternatively
these values could be calculated using performance data
provided in the literature. These performance metrics are
then used to calculate the model parameters using
equations 1-6. Finally, the model is solved using the
solution strategy outlined at the beginning of this section,

and the performance metrics generated include response
times, throughput and utilization information for each
service class. The remainder of this section describes in
detail how the model is parameterised using equations 1-
6.

The model must be parameterised using a simulated
workload consisting of only one service class at a time.
This overcomes the difficulties that have been found
measuring mean processing times (without queuing
delay) of multiple service classes, in real system
environments [26]. The number of database requests that
a service class makes per application server request (nD)
from the application server to a database D is calculated
as:

appserv

D
D throughput

throughput
n =

(1)

Where throughputD is the throughput of the database
D and throughputappserv is the throughput of the
application server.
The mean processing time for a server on an established
server architecture (denoted PE where the E indicates the
server is running on an established server architecture) is
calculated for each service class as follows:

E

E

E
P

P
P throughput

usedresource
timeproc

__%
_ =

(2)

Where
EPusedresource __% is, in this model, either

the % CPU usage or % disk usage standard performance
metric, depending on the resource the server is modelling.
In practice it has been found that the throughput of the
database server disk can be set at the same value as that
for the database server whilst maintaining a good level of
predictive accuracy (if the mean number of database disk
requests per database request for that server is also set to
1). This is useful due to the difficulty in measuring the
throughput of server disks at a low overhead in real
system environments. It is also noted that the model
solution strategy (see above) assumes that each call to a
server (including ‘disk’ servers) is composed of multiple
low-level requests for service in the underlying hardware
processor.

Once the model has been parameterised on an
established server architecture the

EPtimeproc _
parameters can be adjusted (for each server on an
established server architecture PE) so as to give their
values for a new server architecture. This is done by
calculating the ratio of the established/new server
architectures’ request processing speeds. For example,
request processing speed in the measured performance
data collected in section 5 is represented as the maximum
throughput of the server architecture under the typical
workload (as defined in section 2). However, other

metrics that are easier to measure at a low overhead could
also be used. In this paper a maximum throughput metric
is used and so the request processing speed ratio is
calculated as follows, where

EAthroughputmx _ is the
maximum throughput of the established server
architecture AE on which the model was parameterised,
and

NAthroughputmx _ is the maximum throughput of the
new server architecture AN.

N

E

NE
A

A
AA throughputmx

throughputmx
ratiospeedprocreq

_
_

___ , = (3)

The processing times for servers running on the new
server architecture (that is just appserv in the experiments
in section 5) are defined as follows where AE is the
established server architecture on which server PE is
running, and AN is the new server architecture on which
server PN will be running.

×=
EN PP timeproctimeproc __

NE AAratiospeedprocreq ,___ (4)

Once the model parameters have been calculated on a
server architecture, the values can be input into the model
and the model solved to give response time, throughput
and % resource usage predictions for any workload on
that server architecture using the solution strategy
outlined at the beginning of this section. Since the nD
values are constant across server architectures they do not
need to be recalculated - the values calculated on the
established server architecture can be input into the model
for the new server architecture without modification.

The equations used to calculate the processing time
parameters on a new application (that is, extrapolating the
parameters for a new application implemented using
container-managed persistence from the same established
application implemented without container-managed
persistence, or vice versa) are as follows:

N

E

NE
I

I
II throughputmx

throughputmx
ratiospeedprocreq

_
_

___ , = (5)

_ _
n EP Pproc time proc time= ×

NE IIratiospeedprocreq ,___ (6)

Where IE and IN are the established and new
application respectively;

EPtimeproc _ is, as before the
mean processing time of the established application IE on
the established server architecture AE; and

nPtimeproc _
is the processing time for the new application IN on the
established server architecture AE.

In the experimental setup in section 5 there is only
one (application) database as the default configuration for
the Websphere middleware is to store the session data in-
memory as opposed to on a separate database server. (The
use of this model to predict performance when session

databases are used has been investigated in [24].) It is
calculated that in the experimental setup, the typical
workload makes 1.14 requests on average to the Trade
database using equation 1 (that is nDB=1.14, where DB is
the database D). And the application server and database
server (for the application database) can process 50 and
20 requests at the same time, respectively. These values
were selected using the WebSphere performance tuning
wizard. The database server disk can only process one
request at the same time. The mean processing times,
which vary depending on whether container-managed
persistence is used in the application implementation, and
on the server architecture being used, are calculated in the
experimental results section (see section 5).

5. Experimental Analysis

Experiments are conducted to examine the predictive
accuracy of the model from the previous section. The
following software is used: WebSphere Advanced Edition
V4.0 [8], DB2 Universal Database (UDB) Enterprise
Server Edition (ESE) V7.2 [12] and the ‘Trade 2’ [11]
performance benchmark sample all of which are installed
according to the recommended configuration. The
experimental setup consists of four tiers of machines for
the workload generators, workload manager, application
server and database server respectively. The application
servers are a P4 1.8Ghz, 256MB JVM heap size and a P4
2.66Ghz, 256MB JVM heap size. The first application
server is used to represent the new server architecture and
the second the established server architecture. The
database server is a P2 355Mhz, 384MB RAM. The IBM
HTTP Server v1.3.19 is used as the workload manager to
direct the workload either to the established or new server
architecture, as required in the experiments. All servers
run on Windows 2000 Advanced Server and a number of
clients (each generating the typical workload from section
2) are simulated by each workload generator (P4 1.8 GHz,
512MB RAM) using the Apache JMeter tool [3]. It is
noted that although, in this paper, only the typical
workload (that is, the standard workload provided by
IBM) is used, the use of the layered queuing model to
make predictions for different, heterogeneous workloads
has been demonstrated in [6]. All machines are connected
via a 100MB/s fast Ethernet.

5.1. Experimental Results

This section describes the experimental analysis of

the predictive accuracy of the model from section 4, using
the experimental setup described above. This involves
parameterising the model using a server with container-
managed persistence turned on, and using that model to
make performance predictions for if the application is re-
implemented without container-managed persistence, and

if this new application is run on a new server architecture.
For clarity, in this section the version of the Trade
application implemented using container-managed
persistence is referred to as the established application,
and the version of the Trade application implemented
without container-managed persistence is referred to as
the new application. This investigation is conducted in
three steps. First predictions are made for the established
application on the established server architecture, then for
the new application on the established server architecture,
and then for the new application on the new application
server architecture. Accuracy calculations are made using
the following equation:

100
_

__
1 ×

−
−=

valuemeasured
valuemeasuredvaluepredicted

acc (7)

So the first step is making predictions for the
established application on the established server
architecture. The workload is parameterised on the
established server architecture. A number of test runs are
conducted to parameterise the model at different values of
no_of_clients. Each test run involves activating
no_of_clients number of clients (with no_of_clients
ranging from 70 to 2520 in increments of 250 with 20
clients instrumented so as to measure the mean response
time, in each case) and waiting 30 seconds for the system
to reach a steady state. The %CPU/disk usage samples are
then recorded for a period of 1 minute along with the
mean throughput during the minute, for the application
and database servers. The sampling interval is set at 6
seconds so the increase in the %CPU/disk usage (that is,
the sampling overhead) is no more than 5%. Equation 2 is
then used to calculate the

EPtimeproc _ parameters for
the application server, database server and database server
disk. It is found that these values are approximately
constant except for very small workloads (i.e. when
no_of_clients is 70 or 270). As a result the minimum
value of no_of_clients once the values of the parameters
have stabilised is used, so as to minimise the resource
usage overhead (i.e. no_of_clients is fixed at 520 for the
parameterisation). Specifically, the resource usage
overhead is that the % CPU usage of the application and
database servers is just 27% and 23% respectively, and
the database server disk usage is just 1.9% when the
model is parameterised at 520 clients. This is likely to be
a low resource usage overhead for a modern hosting
environment. The resulting

EPtimeproc _ parameters are
shown in table 1. The predictive accuracy of the model
for the established application on the established server
architecture is then calculated for values of no_of_clients
from 520 to 2520 in increments of 250. Predictive
accuracy before the mean processing time has stabilised
(i.e. before 520 clients) is not considered here as

performance predictions are less critical when the
majority of the server’s resources are available, due to the
workload being extremely small. The resulting overall
mean predictive accuracy is very good at 97.7% and
79.6% for throughput and mean response time
respectively. The full details of this calculation are
omitted due to space restrictions and because measured
performance data is available for IBM Websphere with
and without container-managed persistence [25]. The
reader is referred instead to the similar calculations for the
new application on the established and new server
architectures, which follow next.

The second step is to calculate the predictive
accuracy of the new application on the established server
architecture. The

NE IIratiospeedprocreq ,___ value
used is calculated using data provided by the literature
and is found to have a value of 1.5 (as calculated using
the ratio of the throughput data for container-managed
persistence and manual application implementations
running on the Websphere middleware in [25]). Using
this value the layered queuing model is updated as
described in section 4 (using equations 5 and 6) and

nappservtimeproc _ is set to 2.43. The predicted mean
response times evaluated using this model are shown in
table 2, along with the measured mean response times,
and the predictive accuracy. Overall a good level of
overall mean predictive accuracy is obtained
(approximately the same as before at 96.3% for
throughput and just a 7.6% reduction for mean response
time from the value calculated in step 1).

Eappservtimeproc _

EDBtimeproc _
EDBdisktimeproc _

3.65 3.75 0.30

Table 1. Model processing time parameters (ms)

Number
of Clients

Measured
(ms) Predicted (ms) Accuracy

(%)

520 7.3 9.4 71.23

770 8.9 11.2 74.16

1020 11.0 13.7 75.45

1270 25.5 17.8 69.80

1520 44.3 25.9 58.47

1770 204.1 119.9 58.75

2020 1048.3 572.8 54.64

2270 2131.0 2226.0 95.54

2520 3146.0 2823.0 89.73

Table 2. Measured/predicted mean response
time - the new application on the established

server architecture.

Number of
Clients Measured (ms) Predicted (ms) Accuracy

(%)

520 8.8 9.7 89.77

770 8.3 11.6 60.24

1020 27.4 14.2 51.82

1270 37.0 18.4 49.73

1520 117.3 26.8 22.85

1770 514.4 121.0 23.52

2020 1544.0 1306.0 84.59

2270 2692.0 2460.0 91.38

2520 3886.0 3468.0 89.24

Table 3. Measured/predicted mean response
times - the new application on the new server

architecture.

Finally, the third step is to calculate the predictive
accuracy of the new application on the new server
architecture. The

NE AAratiospeedprocreq ,___ used is
calculated using the max throughputs of the two server
architectures for convenience, in this case 255.1 and
235.2 requests/second for the established and new server
architectures respectively, resulting in a value of 1.08
when equation 3 is applied. However as discussed in
section 4 other request processing speed metrics (for
example, metrics which are easier to measure at a low
overhead) could be used instead of this particular metric.
It is also noted that although a value of 1.08 would seem
to imply that the two server architectures are very similar
this is in fact misleading, as the response times provided
by the established server architecture are on average 1.72
times faster than those provided by the new server
architecture. Using the value of 1.08 for

NE AAratiospeedprocreq ,___ the layered queuing model

is updated using equation 4 and
Nappservtimeproc _ is set to

2.63. The predicted mean response times given by this
updated model are shown in table 3, as are the measured
mean response times and predictive accuracy values. The
overall mean predictive accuracy for mean response time
and throughput are both good; the value for mean
response time being just 9.4% less than for step 2, and the
value for throughput being approximately the same at
98.1%. The details of the throughput predictive accuracy
calculations are omitted due to lack of space, because the
predictive accuracy is higher than that for mean response
time and because the shape of the throughput graphs are
very similar to the equivalent graphs in [6].

It can be seen that in both tables 2 and 3 the
predictive accuracy decreases as the number of clients at
which maximum throughput is reached is approached
(that is, 2020 clients for table 2 and 1770 clients for table
3), but after that the predictive accuracy reverts to a high
level. It is a known problem with the layered queuing
method that this type of model underestimates the

response time (but not throughput) as the maximum
throughput of a system is approached, due to the
approximations used to make rapid predictions in the
solver [6]. The temporary reduction in predictive accuracy
in tables 1 and 2 is consistent with this, and in practice
would have been compensated for by increasing the
response times predicted by the solution strategy for these
samples. However this has not been done here so the
predictive accuracy figures give the accuracy of the
solution strategy alone.

Overall, it has been shown in this section that the
model from section 4 models the effect of container-
managed persistence on an application’s performance
with a good level of accuracy (in terms of the throughput
and mean response time metrics). It has been shown that
this model is particularly useful as apart from the model
of the established application, all that is required to make
the predictions for the effect on performance of adding or
removing container-managed persistence is an estimate of
the overhead of the container-managed persistence (which
in this set of experiments has been taken from the
literature [25]). It has also been shown that these
predictions can be made for a new application server
architecture for which only the request processing speed
is known. The model also has the advantage that it can be
evaluated rapidly to give a prediction (taking 5 seconds or
less on an Athlon 1.4Ghz under a convergence criterion
of 20ms). And finally, it has been shown that the models
can be rapidly parameterised at a low model overhead (as
detailed in step 1 above) whilst still providing enough
data to make these accurate predictions. Collectively, this
provides strong experimental evidence for the
effectiveness of the layered queuing model proposed by
this paper.

6. Conclusion

This paper examines the effect of using middleware
functionality to manage an application’s access to the data
in the database, on the performance of distributed
enterprise applications. A model of the effect of this, on
metrics including mean response time and throughput
under different workloads and server architectures is
presented, using the layered queuing method.
Experiments are then conducted to examine this on a
popular enterprise computing architecture based on IBM
Websphere, using the default EJB-based container-
managed persistence as the middleware functionality. The
results provide strong experimental evidence for the
effectiveness of the model in terms of the accuracy of
predictions, the speed with which predictions can be made
and the low overhead at which the model can be rapidly
parameterised.

In addition to the work described in this paper, we are
also investigating hosting environments as part of an

EPSRC e-Science project Dynamic Operating Policies for
Commercial Hosting Environments (which part sponsors
this work under contract no. EP/C538277/1). The reader
is referred to other project publications for more
information about dynamic hosting environments
including performance prediction methods to enhance
workload management and dynamic reallocation
[5,6,23,24], optimal and heuristic policies for dynamic
server reallocation [18,20] and an open software
architecture for dynamic operating policies [21]. The
work described in this paper will feed into the project by
allowing dynamic hosting environment administrators to
decide whether it is worth re-implementing an application
being hosted for a service provider, so as to add or
remove container-managed persistence, based on the
predicted effect on application performance.

References

[1] J. Aman, C. Eilert, D. Emmes, P. Yocom, D. Dillenberger,
Adaptive Algorithms for Managing a Distributed Data
Processing Workload, IBM Systems Journal, 36(2):242-
283, 1997

[2] Y. An, T. Kin, T. Lau, P. Shum, A Scalability Study for
WebSphere Application Server and DB2 Universal
Database, IBM White paper, 2002.
http://www.ibm.com/developerworks/

[3] Apache JMeter v1.8 User Manual, available at:
http://jakarta.apache.org/jmeter/index.html, 2002

[4] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M.
Kalantar, S. Krishnakumar, D.P. Pazel, J. Pershing, B.
Rochwerger, Oceano-SLA Based Management of a
Computing Utility, 7th IFIP/IEEE International Symposium
on Integrated Network Management, New York, May 2001

[5] D.A. Bacigalupo, S.A. Jarvis, L. He, D.P. Spooner, D.N.
Dillenberger, G.R. Nudd, “An Investigation into the
Application of Different Performance Prediction Methods
to Distributed Enterprise Applications”, The Journal of
Supercomputing, 34:93-111, 2005

[6] D.A.Bacigalupo “Performance prediction-enhanced
resource management of distributed enterprise systems”,
PhD Thesis, Department of Computer Science, University
of Warwick, 2006

[7] L. DeMichiel, M. Keith, JSR 220: Enterprise Java Beans
version 3.0 Specification, 2nd May 2006, available from
http://java.sun.com/

[8] M. Endrel, IBM WebSphere V4.0 Advanced Edition
Handbook, IBM International Technical Support
Organisation Pub., 2002. Available at:
http://www.redbooks.ibm.com/

[9] R.G. Franks, Performance Analysis of Distributed Server
Systems, Phd thesis, Ottawa-Carleton Institute for Electrical
and Computer Engineering, Faculty of Engineering,
Department of Systems and Engineering, Carleton
University, 20th December 1999.

[10] M. Goldszmidt, D. Palma, B. Sabata, On the
Quantification of e-Business Capacity, ACM Conference
on Electronic Commerce (EC’01), Florida, USA, October
2001

[11] IBM Corporation, IBM Websphere Performance
Benchmark Sample: Trade. Available at
http://www.ibm.com/software/info/websphere/

[12] IBM DB2 UDB Enterprise Edition v8.0.
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

[13] T. Liu, S. Kumaran, J. Chung, Performance Modeling of
EJBs, 7th World Multiconference on Systemics,
Cybernetics and Informatics (SCI’03), Florida USA, 2003

[14] Z. Liu, M.S. Squillante, J. Wolf, On Maximizing Service-
Level-Agreement Profits, ACM Conference on Electronic
Commerce (EC’01), Florida, USA, October 2001

[15] D. Menasce, Two-Level Iterative Queuing Modeling of
Software Contention, 10th IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS’02), Texas,
USA, October 2002

[16] D. Menasce, D. Barbara, R. Dodge, Preserving QoS of E-
commerce Sites through Self-Tuning: A Performance
Model Approach, ACM Conference on Electronic
Commerce (EC’01), Florida, USA, October 2001

[17] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, E. Nahum. Locality-aware request
distribution in cluster-based network servers ACM
SIGPLAN Notices, 1998

[18] J. Palmer and I. Mitrani, Optimal and heuristic policies for
dynamic server allocation, Journal of Parallel and
Distributed Computing, 65:10(1204-1211), Elsevier, 2005

[19] F. Sheikh, M. Woodside, Layered Analytic Performance
Modelling of a Distributed Database System, International
Conference on Distributed Computing Systems
(ICDCS'97), Maryland USA, May 1997

[20] J.Slegers, I. Mitrani and N. Thomas, Server Allocation in
Grid Systems with On/Off Sources, Workshop on
Middleware and Performance (WOMP’06), Sorrento, Italy,
December 2006.

[21] J. Slegers, C. Smith, I. Mitrani, A. van Moorsel and N.
Thomas, Dynamic Operating Policies for Commercial
Hosting Environments, 5th UK e-Science All Hands
Meeting, Nottingham, UK, Sept. 2006

[22] Software Tree Inc, NJDX homepage, available at:
http://www.softwaretree.com/NJDX_index.htm

[23] J.D. Turner, D.A. Bacigalupo, S.A. Jarvis, D.N.
Dillenberger, G.R. Nudd, Application Response
Measurement of Distributed Web Services, Int. Journal of
Computer Resource Measurement, 108:45-55, 2002

[24] J.W.J. Xue, D.A. Bacigalupo, S.A. Jarvis, G.R. Nudd,
Performance Prediction of Distributed Enterprise
Applications with Session Persistence, 22nd Annual UK
Performance Engineering Workshop (UKPEW’06),
Bournemouth University, Poole, UK, 6-7 July 2006

[25] Y. Zhang, A. Liu, W. Qu, Comparing Industry Benchmarks
for J2EE Application Server: IBM’s Trade2 vs Sun’s
ECperf, 26th ACM Australasian Conference on Computer
Science: Research and Practice in Information Technology,
Adelaide, Australia, 2003

[26] L. Zhang, C. Xia, M. Squillante, W. Nathaniel Mills III,
Workload Service Requirements Analysis: A Queueing
Network Optimization Approach, 10th IEEE International
Symposium on Modeling, Analysis, & Simulation of
Computer & Telecommunications Systems (MASCOTS
’02), Texas, USA, Oct. 2002

