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Abstract 

       Container-managed persistence is an essential tech-
nology as it dramatically simplifies the implementation of 
enterprise data access. However it can also impose a 
significant overhead on the performance of the 
application at runtime. This paper presents a layered 
queuing performance model for predicting the effect of 
adding or removing container-managed persistence to a 
distributed enterprise application, in terms of response 
time and throughput performance metrics. Predictions 
can then be made for new server architectures - that is, 
server architectures for which only a small number of 
measurements have been made (e.g. to determine request 
processing speed). An experimental analysis of the model 
is conducted on a popular enterprise computing 
architecture based on IBM Websphere, using Enterprise 
Java Bean-based container-managed persistence as the 
middleware functionality. The results provide strong 
experimental evidence for the effectiveness of the model in 
terms of the accuracy of predictions, the speed with which 
predictions can be made and the low overhead at which 
the model can be rapidly parameterised. 
 

1. Introduction 

When designing distributed enterprise applications 
one of the most important decisions that has to be made is 
whether to use middleware functionality (e.g. container-
managed persistence) to manage the application’s access 
to the database, or whether to implement this manually. 
For example in the J2EE middleware this functionality 
can be achieved using Entity Enterprise Java Beans 
(EJBs) [7] and in the .NET middleware this  functionality  
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can be achieved using NJDX [22]. However regardless of 
the middleware being used, it is normally the case that 
using the middleware functionality makes it easier to 
develop and maintain the application, whereas the manual 
version (for example using SQL along with JDBC or 
ODBC) can be more time-consuming to develop but has 
the potential to be significantly more efficient. Thus, 
when deciding whether to use a middleware or manual-
based implementation it can be useful to have quantitative 
data on the potential increase in efficiency. To avoid 
having to implement and test two full versions of one 
application, this quantitative data can be provided by a 
performance model, and the associated performance 
prediction method. 

Various performance prediction methods have been 
used in the literature to predict the performance of 
distributed enterprise applications. For example in [15, 
16] a two-level queuing network performance prediction 
model (for software and hardware respectively) is used. In 
[14] a queuing model is used to maximize the revenue 
obtained by a workload manager. In [10], workload 
information and server load metrics are recorded and used 
to infer the relationship between these variables and the 
system’s performance based on statistical pattern 
recognition and machine learning techniques. And in [1], 
the effects of IBM S/390 workload management decisions 
are predicted by extrapolating from the historical usage of 
each machine’s CPU, memory and I/O resources by 
different classes of workload, using a combination of 
performance modelling and statistical pattern recognision 
techniques. Other examples include our own work on 
statistical and queuing prediction methods [5, 6, 23, 24]. 
However, none of these examples can predict the effect 
on performance of adding or removing middleware 
functionality to manage the application’s access to the 
database, on a new server architecture for which only a 
small number of benchmarks have been run (e.g. to 
determine request processing speed). The work described 



in [25] goes someway to addressing this gap in the 
literature, by describing a comparison of the performance 
of EJB versus JDBC implementations for the same 
benchmark used in this paper. However there is no 
evaluation of a performance model that can predict the 
effect of a change of application implementation. In 
summary there is a need for distributed enterprise 
performance prediction methods that model the effect of a 
change of application implementation from middleware-
based to manual code for accessing the data in the 
database, and test the resulting method on an industry 
standard distributed enterprise application benchmark. 

This paper describes just such a model and associated 
experimental analysis. In particular this paper looks at 
how predictions can be made for new server architectures 
for which only a small number of benchmarks have been 
run. In addition we parameterise the prediction models 
rapidly with low overheads. A layered queuing method is 
selected as the performance modeling technique as it 
explicitly models the tiers of servers found in this class of 
application and it has also been applied to a range of 
distributed systems (e.g. [9,19]). This method has 
additionally been used by both the High Performance 
Systems Group [5, 6] and IBM [13] to model distributed 
enterprise applications. However it has not been used 
previously to model the effect of a change of application 
implementation from middleware-based to manual code 
for accessing the database. 

The IBM WebSphere middleware [8] is selected as 
the platform on which this experiment is run as it is a 
common choice for distributed enterprise applications. 
Since Websphere is based on the J2EE platform, the 
middleware functionality used for accessing the data in 
the database is container-managed persistence using 
Entity EJBs, and the manual version involves using JDBC 
and SQL. On top of WebSphere, the IBM Websphere 
Performance Benchmark Sample ‘Trade’ [11] is run as 
this is the main distributed enterprise application 
benchmark for the WebSphere platform.  

The contributions of this paper are to: i.) present a 
performance model for predicting the impact on 
performance of container-managed persistence, on new 
server architectures; ii.) investigate the use of the model 
experimentally, given the requirement that it must be 
rapidly parameterised at a low overhead; and iii.) to show 
how the model can be used to make predictions with a 
good level of accuracy.  The combination of a widely 
used performance modelling method (the layered queuing 
method), an established system model (see section 2), a 
popular middleware (IBM Websphere) and a distributed 
enterprise benchmark based on best practices (the IBM 
Websphere Performance Benchmark Sample ‘Trade’) 
should make this work of relevance to a wide range of 
distributed enterprise applications. 

The remainder of this paper is structured as follows: 
section 2 depicts the system model, in section 3, 
commonly used middleware for accessing the data in the 
database is described along with the manual alternatives, 
including EJBs and JDBC. Section 4 describes the layered 
queuing performance model and in section 5, the 
experimental analysis of the layered queuing model is 
presented. 

2. System Model 

Distributed enterprise applications are often installed 
in dynamic hosting environments (as opposed to being 
installed on a dedicated set of resources). These are 
environments consisting of a heterogeneous collection of 
servers, hired by more than one service provider, with the 
servers typically being divided across a number of sites. 
Figure 1 shows the dynamic hosting environment system 
model used in this paper. Based on the Oceano hosting 
environment a server can only process the workload from 
one application at a time to isolate the applications (which 
may be being hosted for competing organizations); and 
servers can be dynamically transferred between service 
providers [4]. The service providers would typically use 
these servers to process a continuous stream of incoming 
workload (see e.g. [1, 14]). This workload is modelled as 
a set of heterogeneous service classes for each service 
provider, each of which is associated with a performance 
requirement specified in a Service Level Agreement 
(SLA). This paper focuses on response time performance 
requirements as this has been identified by IBM as one of 
the main performance metrics of interest to e-Business 
customers [1, 14]. 

Based on established work, each service provider is 
modelled as a tier of application servers accessing a single 
database server [2, 13]. Based on the queuing network in 
the WebSphere e-Business platform, a single first-in-first-
out (FIFO) waiting queue is used by each application 
server; and all servers can process multiple requests 
concurrently via time-sharing. There are two types of 
decision making software which are used in the system: 
workload management [17] –determining the site and 
server on which incoming requests should run, and server 
allocation – based on the workload and available servers, 
determining the (dynamic) allocation of servers to service 
providers. The objective is a trade-off between the quality 
of service (provided to the server owners, the service 
providers who hire the servers, the clients who send the 
requests and the administrators) and the costs of 
providing this service. Examples of these costs include 
the cost of hiring servers, the cost of paying penalties for 
SLA failures, and the cost of re-allocating servers. 

In this paper ‘No. of clients and the mean client 
think-time’ is used as the primary measure of the 
workload from a service class. The total number of clients 



across all service classes and the percentage of the 
different service classes are used to represent the system 
load. Using number of clients (as opposed to a static 
arrival rate definition) to represent the amount of 
workload is common when modelling distributed 
enterprise applications – see for example [5, 10, 13]. This 
is because it explicitly models the fact that the time a 
request from a client arrives is not independent of the 
response times of previous requests, so as the load 
increases the rate at which clients send requests decreases. 
In this context ‘client’ refers to a request generator (i.e. a 
web browser window) that requires the result of the 
previous request to send the next request. Users that start 
several such conversations can be represented as multiple 
clients. 

 

 
Figure 1. The system model. 

 
Each request from a client calls one of the operations 

on the application-tier interface. The typical workload is 
defined as the next operation called by a client being 
randomly selected, with probabilities defined as part of 
the Trade benchmark as being representative of real 
clients. The think-time is exponentially distributed with a 
mean of 7 seconds for all service classes as recommended 
by IBM for Trade clients [2] 

3. Managing Access to the Data in the 
Database 

This section provides an overview of container-
managed persistence, and the alternative manual approach 
to accessing the data in the database. Using container-
managed persistence involves creating a set of data 
structures in the application, and defining the relationship 

between these data structures and the tables in the 
database, along with a set of properties that define how 
the middleware is to synchronise the application data with 
the database data. For example in the Java platform this 
often involves creating an entity EJB to represent each 
table in the database, and when using NJDX for the .NET 
platform a dedicated object-relational mapping tool is 
used. The middleware can then provide the services 
which are typically required for enterprise data access 
including: transactional access to maintain the integrity of 
database data; database connection pooling to improve 
performance; configurable security levels (e.g. per-
database or per-user); and error handling facilities to 
assist system administrators isolate problems. 

When container-managed persistence is not used the 
programmer must manually write the code to access the 
database, and the data inside it. This would typically 
involve establishing the connection and setting the 
connection properties using one language (e.g. JDBC for 
the Java platform or ODBC for the .NET platform) and 
then writing the code to access the data in another 
language (normally SQL, possibly using a vendor’s 
proprietary extensions). In this case code to manage and 
commit or rollback transactions would have to be written 
manually, as would much of the code to manage other 
services including database connections, security and 
error handling. Typically this would involve a 
combination of the above languages and the base 
programming language (e.g. Java or C#). Potentially this 
could be a major undertaking, although in practice the use 
of pre-existing libraries can simplify the task. Indeed, the 
use of pre-existing libraries allows for various ‘halfway-
houses’ between container-managed persistence and the 
fully manually approach, in which case some of the 
database access functionality is provided by the libraries 
and some is implemented manually by the programmer. 

The advantages of container-managed persistence 
include dramatically simplifying the implementation of an 
enterprise application that requires the services discussed 
above (e.g. transactions and database connection 
pooling); and the creation of code which is reusable (e.g. 
when switching to a different database vendor) and often 
modular. However container-managed persistence can 
also impose a significant overhead on the performance of 
the application at runtime. The advantages of the manual 
approach include the flexibility that results from having 
full control over how the application accesses the 
database (e.g. over transactional boundaries); and that the 
application can be easier to debug, profile and 
performance tune. However care must be taken so as not 
to tie the implementation to the idiosyncrasies of the 
database software used to test the application, and if the 
code is poorly written it could in the worst case have even 
worse performance than if container-managed persistence 
were used. The reader is referred to [7] for a more 



detailed discussion on the advantages and disadvantages 
of this technology. 

4. Layered Queuing Model 

A layered queuing performance model explicitly 
defines a system’s queuing network. An approximate 
solution to the model can then be generated automatically, 
using the layered queuing network solver (LQNS) [9]. 
The solution strategy involves dividing the queues into 
layers corresponding to the tiers of servers in the system 
model and generating an initial solution. The solver then 
iterates backwards and forwards through the layers, 
solving the queues in each layer by mean value analysis, 
and propagating the result to other layers until the 
solutions converge. A detailed description of the 
modeling language and solution algorithm can be found 
in [9], and a new technique developed by the High 
Performance Systems Group to allow the solution 
algorithm to converge rapidly on a solution when there is 
more than one service class in the workload can be found 
in [6]. 

A layered queuing model is created to represent the 
queuing network in the Websphere middleware. The 
model has application server, database server and 
database server disk layers, with each layer containing a 
queue and a server. In addition the database server layer 
can include a second queue and server for applications 
that use a separate session database server, with the 
associated second server and queue in the database server 
disk layer. The application server disk is not modelled as 
the Trade application’s utilization of this resource is 
found to be negligible during normal operation. Workload 
parameters (per service class) are: the number of clients, 
the mean processing times on each server, the mean client 
think-time, the mean number of application and session 
database requests per application server request and the 
mean number of database disk requests per database 
request for the application and session database servers. 
The other parameters are the maximum number of 
requests each server can process at the same time via 
time-sharing. 

The following is an overview of how the layered 
queuing model is used, and the different performance 
metrics that are involved. First, the resource usage and 
throughput of each service class under no_of_clients 
number of clients is measured, as well as the maximum 
throughputs of each application server architecture under 
the different application implementations under the 
typical workload as defined in section 2 - or alternatively 
these values could be calculated using performance data 
provided in the literature. These performance metrics are 
then used to calculate the model parameters using 
equations 1-6. Finally, the model is solved using the 
solution strategy outlined at the beginning of this section, 

and the performance metrics generated include response 
times, throughput and utilization information for each 
service class. The remainder of this section describes in 
detail how the model is parameterised using equations 1-
6. 

The model must be parameterised using a simulated 
workload consisting of only one service class at a time. 
This overcomes the difficulties that have been found 
measuring mean processing times (without queuing 
delay) of multiple service classes, in real system 
environments [26]. The number of database requests that 
a service class makes per application server request (nD) 
from the application server to a database D is calculated 
as: 

appserv

D
D throughput

throughput
n =  

 
(1) 

 

Where throughputD is the throughput of the database 
D and throughputappserv is the throughput of the 
application server. 
The mean processing time for a server on an established 
server architecture (denoted PE where the E indicates the 
server is running on an established server architecture) is 
calculated for each service class as follows: 
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Where 
EPusedresource __%  is, in this model, either 

the % CPU usage or % disk usage standard performance 
metric, depending on the resource the server is modelling. 
In practice it has been found that the throughput of the 
database server disk can be set at the same value as that 
for the database server whilst maintaining a good level of 
predictive accuracy (if the mean number of database disk 
requests per database request for that server is also set to 
1). This is useful due to the difficulty in measuring the 
throughput of server disks at a low overhead in real 
system environments. It is also noted that the model 
solution strategy (see above) assumes that each call to a 
server (including ‘disk’ servers) is composed of multiple 
low-level requests for service in the underlying hardware 
processor. 

Once the model has been parameterised on an 
established server architecture the 

EPtimeproc _  
parameters can be adjusted (for each server on an 
established server architecture PE) so as to give their 
values for a new server architecture. This is done by 
calculating the ratio of the established/new server 
architectures’ request processing speeds. For example, 
request processing speed in the measured performance 
data collected in section 5 is represented as the maximum 
throughput of the server architecture under the typical 
workload (as defined in section 2). However, other 



metrics that are easier to measure at a low overhead could 
also be used. In this paper a maximum throughput metric 
is used and so the request processing speed ratio is 
calculated as follows, where 

EAthroughputmx _ is the 
maximum throughput of the established server 
architecture AE on which the model was parameterised, 
and 

NAthroughputmx _ is the maximum throughput of the 
new server architecture AN. 

N

E

NE
A

A
AA throughputmx

throughputmx
ratiospeedprocreq

_
_

___ , = (3)

The processing times for servers running on the new 
server architecture (that is just appserv in the experiments 
in section 5) are defined as follows where AE is the 
established server architecture on which server PE is 
running, and AN is the new server architecture on which 
server PN will be running. 

×=
EN PP timeproctimeproc __  

            
NE AAratiospeedprocreq ,___      (4)

Once the model parameters have been calculated on a 
server architecture, the values can be input into the model 
and the model solved to give response time, throughput 
and % resource usage predictions for any workload on 
that server architecture using the solution strategy 
outlined at the beginning of this section. Since the nD 
values are constant across server architectures they do not 
need to be recalculated - the values calculated on the 
established server architecture can be input into the model 
for the new server architecture without modification. 

The equations used to calculate the processing time 
parameters on a new application (that is, extrapolating the 
parameters for a new application implemented using 
container-managed persistence from the same established 
application implemented without container-managed 
persistence, or vice versa) are as follows:  

N

E

NE
I

I
II throughputmx

throughputmx
ratiospeedprocreq

_
_

___ , =    (5)         

_ _
n EP Pproc time proc time= ×  

          
NE IIratiospeedprocreq ,___                                (6) 

Where IE and IN  are the established and new 
application respectively; 

EPtimeproc _  is, as before the 
mean processing time of the established application IE on 
the established server architecture AE; and 

nPtimeproc _  
is the processing time for the new application IN on the 
established server architecture AE. 

In the experimental setup in section 5 there is only 
one (application) database as the default configuration for 
the Websphere middleware is to store the session data in-
memory as opposed to on a separate database server. (The 
use of this model to predict performance when session 

databases are used has been investigated in [24].) It is 
calculated that in the experimental setup, the typical 
workload makes 1.14 requests on average to the Trade 
database using equation 1 (that is nDB=1.14, where DB is 
the database D). And the application server and database 
server (for the application database) can process 50 and 
20 requests at the same time, respectively. These values 
were selected using the WebSphere performance tuning 
wizard. The database server disk can only process one 
request at the same time. The mean processing times, 
which vary depending on whether container-managed 
persistence is used in the application implementation, and 
on the server architecture being used, are calculated in the 
experimental results section (see section 5). 

5. Experimental Analysis 

Experiments are conducted to examine the predictive 
accuracy of the model from the previous section. The 
following software is used: WebSphere Advanced Edition 
V4.0 [8], DB2 Universal Database (UDB) Enterprise 
Server Edition (ESE) V7.2 [12] and the ‘Trade 2’ [11] 
performance benchmark sample all of which are installed 
according to the recommended configuration. The 
experimental setup consists of four tiers of machines for 
the workload generators, workload manager, application 
server and database server respectively. The application 
servers are a P4 1.8Ghz, 256MB JVM heap size and a P4 
2.66Ghz, 256MB JVM heap size. The first application 
server is used to represent the new server architecture and 
the second the established server architecture. The 
database server is a P2 355Mhz, 384MB RAM. The IBM 
HTTP Server v1.3.19 is used as the workload manager to 
direct the workload either to the established or new server 
architecture, as required in the experiments. All servers 
run on Windows 2000 Advanced Server and a number of 
clients (each generating the typical workload from section 
2) are simulated by each workload generator (P4 1.8 GHz, 
512MB RAM) using the Apache JMeter tool [3]. It is 
noted that although, in this paper, only the typical 
workload (that is, the standard workload provided by 
IBM) is used, the use of the layered queuing model to 
make predictions for different, heterogeneous workloads 
has been demonstrated in [6]. All machines are connected 
via a 100MB/s fast Ethernet. 

 
5.1. Experimental Results 

 
This section describes the experimental analysis of 

the predictive accuracy of the model from section 4, using 
the experimental setup described above. This involves 
parameterising the model using a server with container-
managed persistence turned on, and using that model to 
make performance predictions for if the application is re-
implemented without container-managed persistence, and 



if this new application is run on a new server architecture. 
For clarity, in this section the version of the Trade 
application implemented using container-managed 
persistence is referred to as the established application, 
and the version of the Trade application implemented 
without container-managed persistence is referred to as 
the new application. This investigation is conducted in 
three steps. First predictions are made for the established 
application on the established server architecture, then for 
the new application on the established server architecture, 
and then for the new application on the new application 
server architecture. Accuracy calculations are made using 
the following equation: 

100
_

__
1 ×

−
−= 





valuemeasured
valuemeasuredvaluepredicted

acc      (7) 

 

So the first step is making predictions for the 
established application on the established server 
architecture. The workload is parameterised on the 
established server architecture. A number of test runs are 
conducted to parameterise the model at different values of 
no_of_clients. Each test run involves activating 
no_of_clients number of clients (with no_of_clients 
ranging from 70 to 2520 in increments of 250 with 20 
clients instrumented so as to measure the mean response 
time, in each case) and waiting 30 seconds for the system 
to reach a steady state. The %CPU/disk usage samples are 
then recorded for a period of 1 minute along with the 
mean throughput during the minute, for the application 
and database servers. The sampling interval is set at 6 
seconds so the increase in the %CPU/disk usage (that is, 
the sampling overhead) is no more than 5%. Equation 2 is 
then used to calculate the 

EPtimeproc _  parameters for 
the application server, database server and database server 
disk. It is found that these values are approximately 
constant except for very small workloads (i.e. when 
no_of_clients is 70 or 270). As a result the minimum 
value of no_of_clients once the values of the parameters 
have stabilised is used, so as to minimise the resource 
usage overhead (i.e. no_of_clients is fixed at 520 for the 
parameterisation). Specifically, the resource usage 
overhead is that the % CPU usage of the application and 
database servers is just 27% and 23% respectively, and 
the database server disk usage is just 1.9% when the 
model is parameterised at 520 clients. This is likely to be 
a low resource usage overhead for a modern hosting 
environment. The resulting 

EPtimeproc _  parameters are 
shown in table 1. The predictive accuracy of the model 
for the established application on the established server 
architecture is then calculated for values of no_of_clients 
from 520 to 2520 in increments of 250. Predictive 
accuracy before the mean processing time has stabilised 
(i.e. before 520 clients) is not considered here as 

performance predictions are less critical when the 
majority of the server’s resources are available, due to the 
workload being extremely small. The resulting overall 
mean predictive accuracy is very good at 97.7% and 
79.6% for throughput and mean response time 
respectively. The full details of this calculation are 
omitted due to space restrictions and because measured 
performance data is available for IBM Websphere with 
and without container-managed persistence [25]. The 
reader is referred instead to the similar calculations for the 
new application on the established and new server 
architectures, which follow next. 

The second step is to calculate the predictive 
accuracy of the new application on the established server 
architecture. The 

NE IIratiospeedprocreq ,___  value 
used is calculated using data provided by the literature 
and is found to have a value of 1.5 (as calculated using 
the ratio of the throughput data for container-managed 
persistence and manual application implementations 
running on the Websphere middleware in [25]). Using 
this value the layered queuing model is updated as 
described in section 4 (using equations 5 and 6) and 

nappservtimeproc _ is set to 2.43. The predicted mean 
response times evaluated using this model are shown in 
table 2, along with the measured mean response times, 
and the predictive accuracy. Overall a good level of 
overall mean predictive accuracy is obtained 
(approximately the same as before at 96.3% for 
throughput and just a 7.6% reduction for mean response 
time from the value calculated in step 1). 

 

Eappservtimeproc _
 

EDBtimeproc _  
EDBdisktimeproc _

 
3.65 3.75 0.30 

Table 1.  Model processing time parameters (ms) 
 

 

Number 
of Clients 

Measured 
(ms) Predicted (ms) Accuracy 

(%) 

520 7.3 9.4 71.23 

770 8.9 11.2 74.16 

1020 11.0 13.7 75.45 

1270 25.5 17.8 69.80 

1520 44.3 25.9 58.47 

1770 204.1 119.9 58.75 

2020 1048.3 572.8 54.64 

2270 2131.0 2226.0 95.54 

2520 3146.0 2823.0 89.73 

Table 2.  Measured/predicted mean response 
time - the new application on the established 

server architecture. 
 



Number of 
Clients Measured (ms) Predicted (ms) Accuracy 

(%) 

520 8.8 9.7 89.77 

770 8.3 11.6 60.24 

1020 27.4 14.2 51.82 

1270 37.0 18.4 49.73 

1520 117.3 26.8 22.85 

1770 514.4 121.0 23.52 

2020 1544.0 1306.0 84.59 

2270 2692.0 2460.0 91.38 

2520 3886.0 3468.0 89.24 

Table 3.  Measured/predicted mean response 
times - the new application on the new server 

architecture. 
 

Finally, the third step is to calculate the predictive 
accuracy of the new application on the new server 
architecture. The 

NE AAratiospeedprocreq ,___  used is 
calculated using the max throughputs of the two server 
architectures for convenience, in this case 255.1 and 
235.2 requests/second for the established and new server 
architectures respectively, resulting in a value of 1.08 
when equation 3 is applied. However as discussed in 
section 4 other request processing speed metrics (for 
example, metrics which are easier to measure at a low 
overhead) could be used instead of this particular metric. 
It is also noted that although a value of 1.08 would seem 
to imply that the two server architectures are very similar 
this is in fact misleading, as the response times provided 
by the established server architecture are on average 1.72 
times faster than those provided by the new server 
architecture. Using the value of 1.08 for 

NE AAratiospeedprocreq ,___ the layered queuing model 

is updated using equation 4 and 
Nappservtimeproc _ is set to 

2.63. The predicted mean response times given by this 
updated model are shown in table 3, as are the measured 
mean response times and predictive accuracy values. The 
overall mean predictive accuracy for mean response time 
and throughput are both good; the value for mean 
response time being just 9.4% less than for step 2, and the 
value for throughput being approximately the same at 
98.1%. The details of the throughput predictive accuracy 
calculations are omitted due to lack of space, because the 
predictive accuracy is higher than that for mean response 
time and because the shape of the throughput graphs are 
very similar to the equivalent graphs in [6]. 

It can be seen that in both tables 2 and 3 the 
predictive accuracy decreases as the number of clients at 
which maximum throughput is reached is approached 
(that is, 2020 clients for table 2 and 1770 clients for table 
3), but after that the predictive accuracy reverts to a high 
level. It is a known problem with the layered queuing 
method that this type of model underestimates the 

response time (but not throughput) as the maximum 
throughput of a system is approached, due to the 
approximations used to make rapid predictions in the 
solver [6]. The temporary reduction in predictive accuracy 
in tables 1 and 2 is consistent with this, and in practice 
would have been compensated for by increasing the 
response times predicted by the solution strategy for these 
samples. However this has not been done here so the 
predictive accuracy figures give the accuracy of the 
solution strategy alone. 

Overall, it has been shown in this section that the 
model from section 4 models the effect of container-
managed persistence on an application’s performance 
with a good level of accuracy (in terms of the throughput 
and mean response time metrics). It has been shown that 
this model is particularly useful as apart from the model 
of the established application, all that is required to make 
the predictions for the effect on performance of adding or 
removing container-managed persistence is an estimate of 
the overhead of the container-managed persistence (which 
in this set of experiments has been taken from the 
literature [25]). It has also been shown that these 
predictions can be made for a new application server 
architecture for which only the request processing speed 
is known. The model also has the advantage that it can be 
evaluated rapidly to give a prediction (taking 5 seconds or 
less on an Athlon 1.4Ghz under a convergence criterion 
of 20ms). And finally, it has been shown that the models 
can be rapidly parameterised at a low model overhead (as 
detailed in step 1 above) whilst still providing enough 
data to make these accurate predictions. Collectively, this 
provides strong experimental evidence for the 
effectiveness of the layered queuing model proposed by 
this paper. 

6. Conclusion 

This paper examines the effect of using middleware 
functionality to manage an application’s access to the data 
in the database, on the performance of distributed 
enterprise applications. A model of the effect of this, on 
metrics including mean response time and throughput 
under different workloads and server architectures is 
presented, using the layered queuing method. 
Experiments are then conducted to examine this on a 
popular enterprise computing architecture based on IBM 
Websphere, using the default EJB-based container-
managed persistence as the middleware functionality. The 
results provide strong experimental evidence for the 
effectiveness of the model in terms of the accuracy of 
predictions, the speed with which predictions can be made 
and the low overhead at which the model can be rapidly 
parameterised. 

In addition to the work described in this paper, we are 
also investigating hosting environments as part of an 



EPSRC e-Science project Dynamic Operating Policies for 
Commercial Hosting Environments (which part sponsors 
this work under contract no. EP/C538277/1). The reader 
is referred to other project publications for more 
information about dynamic hosting environments 
including performance prediction methods to enhance 
workload management and dynamic reallocation 
[5,6,23,24], optimal and heuristic policies for dynamic 
server reallocation [18,20] and an open software 
architecture for dynamic operating policies [21]. The 
work described in this paper will feed into the project by 
allowing dynamic hosting environment administrators to 
decide whether it is worth re-implementing an application 
being hosted for a service provider, so as to add or 
remove container-managed persistence, based on the 
predicted effect on application performance. 
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