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Abstract 

 
In cluster-based storage systems, the metadata server 

cluster must be able to adaptively distribute responsibility 
for metadata to maintain high system performance and 
long-term load balance, due to workload skew and 
metadata servers’ heterogeneity. In this paper, we 
describe a simple and adaptive metadata load 
management scheme, called Self-Balancing Uniform 
(SBU) randomization, to efficiently and continually adapt 
the metadata distribution to current demands in 
heterogeneous metadata server cluster. We implement our 
system within a discrete event driven simulation 
environment, along with two other systems, simple 
randomization (SR) and performance aware distribution 
(PAD) to serve as points of comparison, and evaluate the 
performance of our SBU algorithms against SR and PAD 
algorithms by both a trace workload and a synthetic 
workload. Simulation results verify that our SBU 
algorithm achieves load self-balance, provides consistent 
response latencies and resource utilization. Simulation 
results also indicate that SR cannot cope with skew and 
heterogeneity and PAD requires a larger shared state to 
achieve optimal performance.  
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Cluster-based storage is a promising alternative to 
today’s traditional distributed file system and monolithic 
storage systems (e.g., [1], [3], [4], [5], [6]). The concept is 
that collections of smaller, lower-performance, less-
reliable and commodity storage-nodes (sometimes referred 
to as storage bricks) should be able to provide performance 
and reliability competitive with today’s high-end solutions, 
but at much lower cost and with greater scalability. As 
with previous arguments for RAID [9] and cluster 
computing, the case for cluster-based storage anticipates 
that high levels of reliability and performance can be 
obtained by appropriate redundancy and workload 
distribution across storage nodes [2], [7], [8]. Generally, 
the architecture for large-scale cluster-based storage 
consists of many metadata servers (MDS cluster), 
thousands of storage nodes (storage node cluster) and 
potentially hundreds of thousands of clients. Applications 
of such a system will include scientific computing 
environments, the Internet Archive, and large data centers. 

Although the size of metadata are relatively small 
compared to the overall volume of the system, a study on 
the file system traces collected in different environments 
over a course of several months shows that requests 
targeting at the metadata can account for up to 83% of the 
total number of I/O requests [12]. As the character of the 
metadata workload may change over time, the MDS 
cluster must be able to continually adapt to current 
demands by dynamically repartitioning workload to 
maintain high system performance and long-term load 
balance. Moreover, the increasing heterogeneity of MDS 
cluster makes this problem more acute. Under such skew 
and heterogeneity, an efficient metadata load management 
is important to overcome the severe limitation of the 
throughput of metadata operations as the number of files 
or I/O requests increases. 

In this paper, we describe an adaptive metadata load 
management scheme to efficiently distribute responsibility 



for metadata across a heterogeneous MDS cluster. We 
utilize a simple dynamic workload partition scheme, called 
Self-Balancing Uniform (SBU) randomization that is 
derived from the hashing technique described by Czumaj 
et al [13], to continually adapt the metadata distribution to 
current demands without prior knowledge about each 
individual MDS capacity or clients’ behavior. SBU 
randomized processes underlying load balancing is based 
on the multiple-choice paradigm and uses two independent 
random hash functions to determine the primary location 
and alternative location of metadata items in MDS cluster. 
It is a simple, memoryless, and local search-based 
algorithm that can evenly distribute the tasks of metadata 
management onto a group of heterogeneous MDSs and can 
balance the workload of the MDSs in the system as much 
as this possible. The non- trivial property of SBU scheme 
is that it needs only ( )1nΟ∆i  steps to reach a perfect load 
distribution with high probability no matter with which 
load distribution the system starts with the imbalance ∆ , 
and will always converge to a best possible load 
distribution. 

Finally, we evaluate competing load management 
strategies by simulation on the basis of overall system 
performance and adaptation to workloads that evolve over 
time. Simulation results demonstrate that SBU performs 
comparably to an optimal system and provides consistent 
performance for clients’ metadata workload on any MDS 
in heterogeneous MDS cluster with an acceptable degree 
of load migration. 

The rest of this paper is organized as follows. In 
Section2 we summary related work, and Section 3 outlines 
our system architecture, following which the details of our 
SBU algorithm are presented in Section 4. Section 5 
evaluates trace-driven and synthetic simulation 
experiments on our system and shows the results, and the 
conclusion comes at Section 6. 
 
2. Related Work 
 

Traditional network file systems have partitioned 
workload and storage by statically assigning portions of 
the directory hierarchy to different file servers; such as 
NFS [14], AFS [15], Coda [16], Sprite [17]. This static 
partitioning technology typically requires a system 
administrator to decide how the file system should be 
distributed and manually assign subtrees of the hierarchy 
to individual file servers. However, a statically partitioned 
cluster can not accommodate file system expansion in a 
usual fashion, requiring manual redistribution of the 
hierarchy to accommodate new data or even increased 
client demand for existing data. Furthermore, if client 
workload is not evenly distributed across all file data, 
static partitioning is vulnerable to imbalance as individual 
servers can be overloaded by “hot spots” of popularity in 
certain parts of the hierarchy [18]. 

Randomization is a powerful technique for load 
management in clusters and distributed systems [19], [20]. 
Simple hash-based randomized load management schemes 
balance load effectively in homogeneous environments 
and incur very small overhead and also provide an 
efficient addressing scheme, which makes them appealing 
to traditional clusters and distributed systems. Vesta [21], 
Intermezzo [22], RAMA [23], zFS [24], PVFS[10], 
GoogleFS [4] and Lustre [11], [25] all hash the file 
pathname and/or some other unique identifier to determine 
the location of metadata and/or data. Because hashing is 
deterministic and requires no I/O operations, clients can 
locate and contact the responsible MDS directly and, for 
average workloads and well-behaved hash functions, 
requests are evenly distributed across the cluster. Further, 
hot-spots of activity in the hierarchical directory structure, 
such as heavy creation of activity in a single directory, do 
not correlate to individual metadata servers because 
metadata location has no relation to the directory 
hierarchy. Although simple randomization performs well 
in certain environments, it can not support extreme 
workload skew and server heterogeneity [20]. 

Many researches have been done in the area of load 
management in clusters and distributed systems. A number 
of dynamic load management techniques are designed for 
parallel systems and homogeneous clusters [33], [34]. 
Workload is transferred from heavily loaded servers to 
lightly loaded ones. Another family of techniques [35], [36] 
takes into account server heterogeneity but require all 
servers to periodically broadcast load and available 
capacity. 
 
3. Architecture and Objectives 
 

Figure 1 shows the architecture of a generic cluster-
based storage system where a number of storage nodes are 
connected by a high-bandwidth low-latency switched 
network. 

 
Figure 1. Cluster-based storage architecture 

Each node has its own storage devices. There are no 
functional differences between all cluster nodes. The role 
of clients, metadata servers, and storage nodes can be 
carried out by any node and a node may not be dedicated 
to a specific role. It can act in multiple roles 



simultaneously. File data is striped across a large number 
of storage nodes to maximize I/O throughput and data 
safety. Unlike data storage in traditional file systems, 
which typically seek to group related files together, data is 
distributed to storage nodes based on a deterministic 
pseudo-random algorithm that guarantees a 
probabilistically balanced distribution of data throughout 
the system [26]. Ultimately all metadata must be stored on 
some sort of permanent disk storage. Metadata for a 
petabyte file system that may contain more than a billion 
files might consume a terabyte or more of disk space [18]. 
This is likely to be too large to reside completely in the 
collective RAM of the metadata server cluster. Ideally, the 
MDS memory caches will satisfy most reads, but they will 
periodically need to go to disk to retrieve requested 
information, and all updates must be saved to a stable store 
such as disk. 

The objective of this work is to provide a simple and 
efficient metadata load management scheme for 
heterogeneous MDS clusters. The scheme aims to evenly 
distribute the metadata workload and maintain consistent 
performance for applications without sacrificing overall 
throughput. It also operates without prior knowledge of 
heterogeneity, automatically adapts to workload changes, 
and maintains acceptable load movement during 
rebalancing due to migration cost. 

In this study, we focus on the aspect of metadata load 
management, and some other important issues, such as 
management of the striping of file contents, consistency 
maintenance, concurrency accesses control, file system 
security and protection enforcement, and incorporation of 
fault tolerance, are beyond the scope of this paper. 
 
4. SBU Algorithm 
 

The basic idea behind the hashing technique is to use a 
compact function (the hash function) in order to map some 
space U onto some space V. Hash-based randomization is 
a powerful technique used in clusters and distributed 
systems for load management. It offers uniform 
distribution, efficient addressing, little shared state, and 
scalability. 

The study of balls-into-bins games or occupancy 
problems has a long history. In general, the goal of a balls-
and-bins algorithm is to assign a set of independent objects 
(e.g., task, jobs, and data blocks) to a set of resources (e.g., 
processor, servers, and disks) so that the load is distributed 
among the bins as evenly as possible. Previously, in the 
single-choice paradigm, each ball is placed into a bin 
chosen independently and uniformly at random. For the 
case of n bins and m balls ( logm n n≥ ), it is well known 
that a simple process that places the balls one by one in the 
least loaded bin can achieve a maximum load of 

log log (1)m n n+ + Θ  with high probability. A drawback 

of applying this approach to metadata load balance is that 
is requires prior and global knowledge about each 
individual MDS capacity and locations of all metadata, 
which is far too space consuming if the files stored in the 
system grow continuously. This also makes the algorithm 
difficult for implementations in distributed or parallel 
systems. 

We use a technique called Self-Balancing Uniform 
(SBU) randomization to place and balance load. SBU 
Randomization is based on the hashing technique 
described by Czumaj et al [13]. SBU randomized 
processes underlying load balancing is based on the 
multiple-choice paradigm: m balls have to be placed in n 
bins, and each ball can be placed into one out of 2 
randomly selected bins. 

Instead of using a single random hash to hash the 
unique file identifier (the unique name of a file is specific 
to clusters, such as an inode number, a pathname or 
content fingerprint) to determine the location of metadata 
(e.g., Vesta [21], Intermezzo [22], RAMA [23], zFS [24], 
PVFS[10], GoogleFS [4] and Lustre [11], [25]), SBU 
algorithm uses two independent random hash functions h1 
and h2. Hash function h1 determines the primary MDS in 
cluster where the metadata is stored, and hash function h2 
is used to locate the alternative MDS. Each MDS monitors 
its performance and produces a performance metric over a 
chosen time interval. Naturally, we use latency as the 
performance metric because the metadata workload 
consists of little data and short-lived transactions. At the 
end of each interval, each MDS computes its latency in the 
past interval and reports it to an elected delegate server. 
The delegate server examines all latencies and comes up 
with workload distribution. The delegate is designed to be 
stateless and determines the new load configuration based 
solely on reported latencies. If the delegate fails, the next 
elected delegate runs the same protocol with the same 
information. 

Suppose that initially all the metadata has chosen their 
locations in MDS cluster { }1, 2, 3, , n"  and each metadata 
is arbitrarily placed in one of its two locations. For each 
metadata item m, SBU randomization checks the number 
of metadata items in the MDSs using two hash function 
h1(m) and h2(m), and places m in the least loaded of them, 
and repeats the following Self-Balancing step, described at 
figure 2. 

SBU Algorithm is a simple, memoryless and local 
search algorithm. Although it is a local search approach, it 
never arrives at a deadlock situation, in which the 
balancing may be far away from optimal and no re-
balancing progress is possible. The property of SBU 
algorithm is that no matter with which state (i.e., 
assignment of metadata items to MDSs) it starts, then in 
time ( ) ( )1m nΟΟ +  it will converge to a state in which the 



maximum load of any MDS in cluster is upper bounded by 
[ ]m n  with high probability. 

Hence, two random hash functions can in principle 
evenly distribute any tasks of metadata management 
almost perfectly among the heterogeneous MDS cluster 
and can balance the workload of the MDSs in the system 
as much as this possible.. Hash functions that have near-
random qualities in practice are, for example, 
cryptographic hash functions such as SHA-1 [27]. 

 
Figure 2. Self-balancing step 

 
5. Performance Evaluation 
 

To validate the performance characteristics of our load 
management system based on SBU randomization, we 
have implemented our system within a discrete event 
driven simulation environment, along with two other 
systems: simple randomization (SR) and performance 
aware distribution (PAD) to serve as points of comparison, 
and evaluate the performance of our SBU algorithms 
against SR and PAD algorithms by both a trace workload 
and a synthetic workload. 

SR employs a pseudo-random hash function to 
uniformly assign workload to MDS; and PAD perfectly 
knows the processing capabilities of each individual MDS 
and realizes the optimal load balance through identifying 
the permutation of workload onto MDS that minimizes 
average response latency of each MDS. For this reason, 
SR allows us to compare our system with static, offline 
randomized policies used in heterogeneous clusters, while 
PAD provides the upper bound of load balancing 
characteristics. 

Simulation results verify that our SBU algorithm 
achieves load balance among heterogeneous MDS cluster, 
provides consistent response latencies for each client’s 
metadata requests and resource utilization with an 

acceptable degree of load movement. Simulation results 
also indicate that SR cannot cope with skew and 
heterogeneity and PAD requires a larger shared state to 
achieve optimal performance. 
 
5.1. Simulation Setup and Workload 
 

The focus of our simulation efforts is on MDS behavior 
and workload movement, and not on underlying disk 
storage behavior. Since a significant body of research has 
investigated the use of accurate disk simulation for storage 
system evaluation [29], the distributed metadata 
management systems we are evaluating can exist on any 
underlying disk subsystem. For this reason, we simplify 
the storage simulation to reflect the response latency and 
resource utilization of each individual MDS, and workload 
movement during a specified interval of metadata requests 
only. The simulator models a MDS cluster and uses First-
Come-First Served (FCFS) queuing discipline to serve 
each MDS workload. 

We use the DFSTrace [28] to drive our experiments. 
DFSTrace data were collected on about 30 different 
workstations running different file systems such as NFS 
[14], AFS [15], Coda [16], and the local Unix file system. 
However, DFSTrace data has some shortcomings in 
driving our simulation, such as being collected on legacy 
hardware with limited heterogeneity. The data provides 
limited ability to explore the performance of our system 
because it represents a fixed hardware configuration. To 
get around the limitations of DFSTrace, we perform 
experiments driven by a synthetic workload as well. 
Synthetic workload explores different workload skew with 
DFSTrace. This allows us to experiment with an arbitrary 
amount of heterogeneity and helps to understand our 
system’s characteristics under different 
hardware/workload configurations deeply. We use 
DFSTrace workload results for comparison with synthetic 
workloads to ensure the sanity of our results. 

We run simulations based on a 6 hours DFSTrace to 
test the performance characteristics of our system and the 
other two systems described above. There are 33,540 
metadata requests in total. Based on the number of 
requests, we choose to simulate a heterogeneous MDS 
cluster with 6 MDSs. Server 1, 2, 3, 4, 5 and 6 have 
processing power 11, 9, 7, 5, 3 and 1 respectively. More 
specifically, for the same workload, if the most powerful 
server in our simulated MDS cluster (server 1) consumes 
time T to complete a metadata request, then the least 
powerful server (server 6) consumes time 9T. 



Latency of Simple Randomizaton

0

30

60

90

120

150

180

210

240

270

300

0 30 60 90 120 150 180 210 240 270 300 330
Operat ion Number (x100)

Re
sp

on
se
 L

at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(a) 

Latency of Simple Randomizaton

0

20

40

60

80

100

120

140

160

180

200

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se
 L

at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(a) 

Latency of Performance-Aware
Distribution

0

3

6

9

12

15

18

21

24

27

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

R
es
po

ns
e 
L
at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(b) 

Latency of Performance Aware
Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

R
es
po

ns
e 
L
at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(b) 

Latency of SBU Distribution

0

5

10

15

20

25

30

35

40

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se
 L

at
en

cy
 (s

)

Server1 Server2
Server3 Server4
Server5 Server6

(c) 

Latency of SBU Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se

 L
at
en

cy
 (s

)

Server1 Server2
Server3 Server4
Server5 Server6

(c) 

Figure 3. MDS latency for DFSTrace workload Figure 4. MDS latency for synthetic workload 

 
5.2. Performance Comparison 
 

The performance comparison is done in two parts. First, 
we compare the response latency and resource utilization 
of each individual MDS in the three load management 
systems to investigate the performance characteristics of 
them and to verify that our system only takes some time to 
discover the heterogeneous configuration in MDS cluster 
and converge to the balancing workload distribution. 
Second, we show a close-up comparison of our system and 
PAD system in some aggregate metrics to understand 
some load balance performance details, such as average 
latency and requests distribution, and to illustrate that the 
performance of our system and PAD system is comparable. 

Figure 3 shows the response latency of 6 MDSs that 
serve metadata requests over DFSTrace with the number 
of metadata operation increases. SR performs poorly 
because it is static algorithms. It has no knowledge about 
MDS or workload heterogeneity and cannot respond to 

skew when it occurs. Over the simulation, with the number 
of metadata operation grows, the response latencies of 
server 4 and 5 increase, even though the more powerful 
MDSs (server 1, 2, 3 and 4) have unused capacity. 

The PAD and SBU algorithms balance load over the 
course of the experiment. Because of having perfect 
knowledge about each MDS capacity, the PAD algorithm 
performs in a load-balanced state at the very beginning, 
identifies the best load distribution before the workload 
occurs and configures the MDS to best handle the 
workload. SBU algorithm has no prior knowledge and, 
therefore, assumes initially that all workload and all MDSs 
are uniform. Then, it adapts to workload and heterogeneity 
of each MDS capacity, and reaches a self-balance state. 

Both PAD and SBU policies show increases in latency 
on the most powerful MDS under heavy load (the first 
4000 operations and the operations between 18000-
19000). The bursts of workload occur in a few operations 
and both algorithms map those bursts to the most powerful 



servers. PAD algorithm does so more effectively because 
it has perfect knowledge of each MDS’s capability, and 
can move operations to any MDS to get the best fit 
between workload and server capabilities. Even though 
SBU algorithm has no prior knowledge, it does perform 
comparably. After experiencing response latencies 

increase on less powerful servers (server 5 and 6), SUB 
enlists the next more powerful server (server1, 2, 3 and 4) 
in the next operation step. As a result, our system takes 
some time to discover heterogeneous configuration of 
MDS cluster, and converge to the balanced workload 
distribution. 
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Figure 5. Utilization for DFSTrace workload Figure 6. Utilization for synthetic workload 

To better understand the impact of our system under 
extreme workload skew, we conduct experiments using a 
synthetic workload that is generated using the same 
parameters as the DFSTrace. In other words, the synthetic 
workload consists of 33,540 client requests during a period 
of 6 hours. The request inter-arrival times are governed by 
a Pareto distribution [20], [30], [31], [32]. As shown in 
Figure 4, the experiments driven by the synthetic workload 
follow our results found from DFSTrace simulation. 
Again, we observe that SR policy cannot cope with 

workload and MDS heterogeneity, while SBU and PAD 
are comparable. 
The resource utilization of 6 MDSs under DFSTrace and 
the synthetic workload are illustrated in Figure 5 and 
Figure 6, respectively. SR system is heavily unbalanced. 
Its uniform randomization makes more powerful MDS idle 
and less powerful MDS busy. Hence, it wastes the 
processing resources and brings bottleneck at the weaker 
MDS. PAD system balances the resource utilization 
among MDSs effectively and makes the most powerful 



MDS (server 1) always busy, but it needs prior knowledge 
about each MDS capacity to fit MDS to current workload. 
Our SBU system makes a tradeoff between these two 
policies by adaptively assigning workload to more 
powerful MDS. Although it does not utilize the overall 
resource of the most powerful MDS, it indeed mitigates 
the load of less powerful MDS and alleviates the 
bottleneck. 
 
5.3. Dynamic Workload Migration 
 

It is very costly to move metadata from one server to 
another. The server that transfers metadata needs to flush 
its cache, writing all dirty data to disk, while the server 
that receives metadata must initialize the metadata with a 
cold cache, which hinders initial performance. Figure 7 
shows the number of requests movement during the course 
of DFSTrace simulation with divided into 3 minutes 
interval. We observer that most activities of workload 
movement are upper bounded by 70 and the average 
number of request movement every 3 minutes interval 
approximates to 100. 
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Figure 7. The number of workload movement 
during DFSTrace simulation 
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Figure 8 illustrates the percentage of total workload that 
has been moved by SBU algorithm during the same 
experiment. This result reveals that the percentage of most 
movement activities is around 20% and the very few peaks 
of movement curve are about 70%. The average 

percentage of workload movement every 3 minutes 
interval is around 34%. These experimental results 
demonstrate that our system can provide consistent 
performance with the workload movement falling into an 
acceptable range. 
 

6. Conclusion 
 

In this study, we focus on the aspect of metadata load 
management and describe an adaptive metadata load 
management scheme to efficiently distribute responsibility 
for metadata across a heterogeneous MDS cluster. We 
utilize a dynamic workload partition scheme, called Self-
Balancing Uniform (SBU) randomization, to continually 
adapt the metadata distribution to current demands without 
prior knowledge about each individual MDS capacity or 
application behavior. SBU is a simple, memoryless, local 
search algorithm that can evenly distribute the tasks of 
metadata management onto a group of heterogeneous 
MDSs and can balance the workload of the MDSs in the 
system as much as this possible. SBU randomized 
processes underlying load balancing is based on the 
multiple-choice paradigm and uses two independent 
random hash functions to determine the primary location 
and alternative location of metadata items in MDS cluster. 
SBU randomization has the non-trivial property that no 
matter with which state the system starts, it will always 
converge to a state in which the maximum load is 
optimally small and does not arrives at a “dead-lock” 
situation. 

Simulation results demonstrate that our load 
management system based on SBU randomization 
technique addresses several performance issues in 
heterogeneous metadata server cluster, deals with 
heterogeneity in both server and workload, and performs 
comparably to an optimal system. The results also reveals 
that SBU randomization maintains performance 
consistency, comes up with an acceptable degree of load 
migration, and provides all the load balancing benefits of 
optimal systems with less shared state. 
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