
Performance Evaluation of A Load Self-Balancing Method for Heterogeneous
Metadata Server Cluster Using Trace-Driven and Synthetic Workload Simulation

Bin Cai1, Changsheng Xie1, Guangxi Zhu2

1Department of Computer Science and
Technology, Huazhong University of Science

and Technology. Wuhan National Laboratory for
Optoelectronics, Wuhan, P.R. China, 430074

{hust_caibin@sohu.com, csxie@263.net}

2Department of Electronics and Information

Engineering, Huazhong University of Science
and Technology. Wuhan National Laboratory for

Optoelectronics, Wuhan, P.R. China, 430074
gxzhu@mail.hust.edu.cn

Abstract

In cluster-based storage systems, the metadata server

cluster must be able to adaptively distribute responsibility
for metadata to maintain high system performance and
long-term load balance, due to workload skew and
metadata servers’ heterogeneity. In this paper, we
describe a simple and adaptive metadata load
management scheme, called Self-Balancing Uniform
(SBU) randomization, to efficiently and continually adapt
the metadata distribution to current demands in
heterogeneous metadata server cluster. We implement our
system within a discrete event driven simulation
environment, along with two other systems, simple
randomization (SR) and performance aware distribution
(PAD) to serve as points of comparison, and evaluate the
performance of our SBU algorithms against SR and PAD
algorithms by both a trace workload and a synthetic
workload. Simulation results verify that our SBU
algorithm achieves load self-balance, provides consistent
response latencies and resource utilization. Simulation
results also indicate that SR cannot cope with skew and
heterogeneity and PAD requires a larger shared state to
achieve optimal performance.

1. Introduction

This research is supported by National 973 Great Research Project of P.R
China under the grant No. 2004CB318200, National Natural Science
Foundation under grant No. 60273037 and No. 60303031, and Huazhong
University of Science and Technology Postdoctoral Special Foundation.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

Cluster-based storage is a promising alternative to
today’s traditional distributed file system and monolithic
storage systems (e.g., [1], [3], [4], [5], [6]). The concept is
that collections of smaller, lower-performance, less-
reliable and commodity storage-nodes (sometimes referred
to as storage bricks) should be able to provide performance
and reliability competitive with today’s high-end solutions,
but at much lower cost and with greater scalability. As
with previous arguments for RAID [9] and cluster
computing, the case for cluster-based storage anticipates
that high levels of reliability and performance can be
obtained by appropriate redundancy and workload
distribution across storage nodes [2], [7], [8]. Generally,
the architecture for large-scale cluster-based storage
consists of many metadata servers (MDS cluster),
thousands of storage nodes (storage node cluster) and
potentially hundreds of thousands of clients. Applications
of such a system will include scientific computing
environments, the Internet Archive, and large data centers.

Although the size of metadata are relatively small
compared to the overall volume of the system, a study on
the file system traces collected in different environments
over a course of several months shows that requests
targeting at the metadata can account for up to 83% of the
total number of I/O requests [12]. As the character of the
metadata workload may change over time, the MDS
cluster must be able to continually adapt to current
demands by dynamically repartitioning workload to
maintain high system performance and long-term load
balance. Moreover, the increasing heterogeneity of MDS
cluster makes this problem more acute. Under such skew
and heterogeneity, an efficient metadata load management
is important to overcome the severe limitation of the
throughput of metadata operations as the number of files
or I/O requests increases.

In this paper, we describe an adaptive metadata load
management scheme to efficiently distribute responsibility

for metadata across a heterogeneous MDS cluster. We
utilize a simple dynamic workload partition scheme, called
Self-Balancing Uniform (SBU) randomization that is
derived from the hashing technique described by Czumaj
et al [13], to continually adapt the metadata distribution to
current demands without prior knowledge about each
individual MDS capacity or clients’ behavior. SBU
randomized processes underlying load balancing is based
on the multiple-choice paradigm and uses two independent
random hash functions to determine the primary location
and alternative location of metadata items in MDS cluster.
It is a simple, memoryless, and local search-based
algorithm that can evenly distribute the tasks of metadata
management onto a group of heterogeneous MDSs and can
balance the workload of the MDSs in the system as much
as this possible. The non- trivial property of SBU scheme
is that it needs only ()1nΟ∆i steps to reach a perfect load
distribution with high probability no matter with which
load distribution the system starts with the imbalance ∆ ,
and will always converge to a best possible load
distribution.

Finally, we evaluate competing load management
strategies by simulation on the basis of overall system
performance and adaptation to workloads that evolve over
time. Simulation results demonstrate that SBU performs
comparably to an optimal system and provides consistent
performance for clients’ metadata workload on any MDS
in heterogeneous MDS cluster with an acceptable degree
of load migration.

The rest of this paper is organized as follows. In
Section2 we summary related work, and Section 3 outlines
our system architecture, following which the details of our
SBU algorithm are presented in Section 4. Section 5
evaluates trace-driven and synthetic simulation
experiments on our system and shows the results, and the
conclusion comes at Section 6.

2. Related Work

Traditional network file systems have partitioned
workload and storage by statically assigning portions of
the directory hierarchy to different file servers; such as
NFS [14], AFS [15], Coda [16], Sprite [17]. This static
partitioning technology typically requires a system
administrator to decide how the file system should be
distributed and manually assign subtrees of the hierarchy
to individual file servers. However, a statically partitioned
cluster can not accommodate file system expansion in a
usual fashion, requiring manual redistribution of the
hierarchy to accommodate new data or even increased
client demand for existing data. Furthermore, if client
workload is not evenly distributed across all file data,
static partitioning is vulnerable to imbalance as individual
servers can be overloaded by “hot spots” of popularity in
certain parts of the hierarchy [18].

Randomization is a powerful technique for load
management in clusters and distributed systems [19], [20].
Simple hash-based randomized load management schemes
balance load effectively in homogeneous environments
and incur very small overhead and also provide an
efficient addressing scheme, which makes them appealing
to traditional clusters and distributed systems. Vesta [21],
Intermezzo [22], RAMA [23], zFS [24], PVFS[10],
GoogleFS [4] and Lustre [11], [25] all hash the file
pathname and/or some other unique identifier to determine
the location of metadata and/or data. Because hashing is
deterministic and requires no I/O operations, clients can
locate and contact the responsible MDS directly and, for
average workloads and well-behaved hash functions,
requests are evenly distributed across the cluster. Further,
hot-spots of activity in the hierarchical directory structure,
such as heavy creation of activity in a single directory, do
not correlate to individual metadata servers because
metadata location has no relation to the directory
hierarchy. Although simple randomization performs well
in certain environments, it can not support extreme
workload skew and server heterogeneity [20].

Many researches have been done in the area of load
management in clusters and distributed systems. A number
of dynamic load management techniques are designed for
parallel systems and homogeneous clusters [33], [34].
Workload is transferred from heavily loaded servers to
lightly loaded ones. Another family of techniques [35], [36]
takes into account server heterogeneity but require all
servers to periodically broadcast load and available
capacity.

3. Architecture and Objectives

Figure 1 shows the architecture of a generic cluster-
based storage system where a number of storage nodes are
connected by a high-bandwidth low-latency switched
network.

Figure 1. Cluster-based storage architecture

Each node has its own storage devices. There are no
functional differences between all cluster nodes. The role
of clients, metadata servers, and storage nodes can be
carried out by any node and a node may not be dedicated
to a specific role. It can act in multiple roles

simultaneously. File data is striped across a large number
of storage nodes to maximize I/O throughput and data
safety. Unlike data storage in traditional file systems,
which typically seek to group related files together, data is
distributed to storage nodes based on a deterministic
pseudo-random algorithm that guarantees a
probabilistically balanced distribution of data throughout
the system [26]. Ultimately all metadata must be stored on
some sort of permanent disk storage. Metadata for a
petabyte file system that may contain more than a billion
files might consume a terabyte or more of disk space [18].
This is likely to be too large to reside completely in the
collective RAM of the metadata server cluster. Ideally, the
MDS memory caches will satisfy most reads, but they will
periodically need to go to disk to retrieve requested
information, and all updates must be saved to a stable store
such as disk.

The objective of this work is to provide a simple and
efficient metadata load management scheme for
heterogeneous MDS clusters. The scheme aims to evenly
distribute the metadata workload and maintain consistent
performance for applications without sacrificing overall
throughput. It also operates without prior knowledge of
heterogeneity, automatically adapts to workload changes,
and maintains acceptable load movement during
rebalancing due to migration cost.

In this study, we focus on the aspect of metadata load
management, and some other important issues, such as
management of the striping of file contents, consistency
maintenance, concurrency accesses control, file system
security and protection enforcement, and incorporation of
fault tolerance, are beyond the scope of this paper.

4. SBU Algorithm

The basic idea behind the hashing technique is to use a
compact function (the hash function) in order to map some
space U onto some space V. Hash-based randomization is
a powerful technique used in clusters and distributed
systems for load management. It offers uniform
distribution, efficient addressing, little shared state, and
scalability.

The study of balls-into-bins games or occupancy
problems has a long history. In general, the goal of a balls-
and-bins algorithm is to assign a set of independent objects
(e.g., task, jobs, and data blocks) to a set of resources (e.g.,
processor, servers, and disks) so that the load is distributed
among the bins as evenly as possible. Previously, in the
single-choice paradigm, each ball is placed into a bin
chosen independently and uniformly at random. For the
case of n bins and m balls (logm n n≥), it is well known
that a simple process that places the balls one by one in the
least loaded bin can achieve a maximum load of

log log (1)m n n+ + Θ with high probability. A drawback

of applying this approach to metadata load balance is that
is requires prior and global knowledge about each
individual MDS capacity and locations of all metadata,
which is far too space consuming if the files stored in the
system grow continuously. This also makes the algorithm
difficult for implementations in distributed or parallel
systems.

We use a technique called Self-Balancing Uniform
(SBU) randomization to place and balance load. SBU
Randomization is based on the hashing technique
described by Czumaj et al [13]. SBU randomized
processes underlying load balancing is based on the
multiple-choice paradigm: m balls have to be placed in n
bins, and each ball can be placed into one out of 2
randomly selected bins.

Instead of using a single random hash to hash the
unique file identifier (the unique name of a file is specific
to clusters, such as an inode number, a pathname or
content fingerprint) to determine the location of metadata
(e.g., Vesta [21], Intermezzo [22], RAMA [23], zFS [24],
PVFS[10], GoogleFS [4] and Lustre [11], [25]), SBU
algorithm uses two independent random hash functions h1
and h2. Hash function h1 determines the primary MDS in
cluster where the metadata is stored, and hash function h2
is used to locate the alternative MDS. Each MDS monitors
its performance and produces a performance metric over a
chosen time interval. Naturally, we use latency as the
performance metric because the metadata workload
consists of little data and short-lived transactions. At the
end of each interval, each MDS computes its latency in the
past interval and reports it to an elected delegate server.
The delegate server examines all latencies and comes up
with workload distribution. The delegate is designed to be
stateless and determines the new load configuration based
solely on reported latencies. If the delegate fails, the next
elected delegate runs the same protocol with the same
information.

Suppose that initially all the metadata has chosen their
locations in MDS cluster { }1, 2, 3, , n" and each metadata
is arbitrarily placed in one of its two locations. For each
metadata item m, SBU randomization checks the number
of metadata items in the MDSs using two hash function
h1(m) and h2(m), and places m in the least loaded of them,
and repeats the following Self-Balancing step, described at
figure 2.

SBU Algorithm is a simple, memoryless and local
search algorithm. Although it is a local search approach, it
never arrives at a deadlock situation, in which the
balancing may be far away from optimal and no re-
balancing progress is possible. The property of SBU
algorithm is that no matter with which state (i.e.,
assignment of metadata items to MDSs) it starts, then in
time () ()1m nΟΟ + it will converge to a state in which the

maximum load of any MDS in cluster is upper bounded by
[]m n with high probability.

Hence, two random hash functions can in principle
evenly distribute any tasks of metadata management
almost perfectly among the heterogeneous MDS cluster
and can balance the workload of the MDSs in the system
as much as this possible.. Hash functions that have near-
random qualities in practice are, for example,
cryptographic hash functions such as SHA-1 [27].

Figure 2. Self-balancing step

5. Performance Evaluation

To validate the performance characteristics of our load
management system based on SBU randomization, we
have implemented our system within a discrete event
driven simulation environment, along with two other
systems: simple randomization (SR) and performance
aware distribution (PAD) to serve as points of comparison,
and evaluate the performance of our SBU algorithms
against SR and PAD algorithms by both a trace workload
and a synthetic workload.

SR employs a pseudo-random hash function to
uniformly assign workload to MDS; and PAD perfectly
knows the processing capabilities of each individual MDS
and realizes the optimal load balance through identifying
the permutation of workload onto MDS that minimizes
average response latency of each MDS. For this reason,
SR allows us to compare our system with static, offline
randomized policies used in heterogeneous clusters, while
PAD provides the upper bound of load balancing
characteristics.

Simulation results verify that our SBU algorithm
achieves load balance among heterogeneous MDS cluster,
provides consistent response latencies for each client’s
metadata requests and resource utilization with an

acceptable degree of load movement. Simulation results
also indicate that SR cannot cope with skew and
heterogeneity and PAD requires a larger shared state to
achieve optimal performance.

5.1. Simulation Setup and Workload

The focus of our simulation efforts is on MDS behavior
and workload movement, and not on underlying disk
storage behavior. Since a significant body of research has
investigated the use of accurate disk simulation for storage
system evaluation [29], the distributed metadata
management systems we are evaluating can exist on any
underlying disk subsystem. For this reason, we simplify
the storage simulation to reflect the response latency and
resource utilization of each individual MDS, and workload
movement during a specified interval of metadata requests
only. The simulator models a MDS cluster and uses First-
Come-First Served (FCFS) queuing discipline to serve
each MDS workload.

We use the DFSTrace [28] to drive our experiments.
DFSTrace data were collected on about 30 different
workstations running different file systems such as NFS
[14], AFS [15], Coda [16], and the local Unix file system.
However, DFSTrace data has some shortcomings in
driving our simulation, such as being collected on legacy
hardware with limited heterogeneity. The data provides
limited ability to explore the performance of our system
because it represents a fixed hardware configuration. To
get around the limitations of DFSTrace, we perform
experiments driven by a synthetic workload as well.
Synthetic workload explores different workload skew with
DFSTrace. This allows us to experiment with an arbitrary
amount of heterogeneity and helps to understand our
system’s characteristics under different
hardware/workload configurations deeply. We use
DFSTrace workload results for comparison with synthetic
workloads to ensure the sanity of our results.

We run simulations based on a 6 hours DFSTrace to
test the performance characteristics of our system and the
other two systems described above. There are 33,540
metadata requests in total. Based on the number of
requests, we choose to simulate a heterogeneous MDS
cluster with 6 MDSs. Server 1, 2, 3, 4, 5 and 6 have
processing power 11, 9, 7, 5, 3 and 1 respectively. More
specifically, for the same workload, if the most powerful
server in our simulated MDS cluster (server 1) consumes
time T to complete a metadata request, then the least
powerful server (server 6) consumes time 9T.

Latency of Simple Randomizaton

0

30

60

90

120

150

180

210

240

270

300

0 30 60 90 120 150 180 210 240 270 300 330
Operat ion Number (x100)

Re
sp

on
se
 L

at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(a)

Latency of Simple Randomizaton

0

20

40

60

80

100

120

140

160

180

200

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se
 L

at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(a)

Latency of Performance-Aware
Distribution

0

3

6

9

12

15

18

21

24

27

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

R
es
po

ns
e
L
at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(b)

Latency of Performance Aware
Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

R
es
po

ns
e
L
at
en

cy
 (
s)

Server1 Server2
Server3 Server4
Server5 Server6

(b)

Latency of SBU Distribution

0

5

10

15

20

25

30

35

40

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se
 L

at
en

cy
 (s

)

Server1 Server2
Server3 Server4
Server5 Server6

(c)

Latency of SBU Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Re
sp

on
se

 L
at
en

cy
 (s

)

Server1 Server2
Server3 Server4
Server5 Server6

(c)

Figure 3. MDS latency for DFSTrace workload Figure 4. MDS latency for synthetic workload

5.2. Performance Comparison

The performance comparison is done in two parts. First,
we compare the response latency and resource utilization
of each individual MDS in the three load management
systems to investigate the performance characteristics of
them and to verify that our system only takes some time to
discover the heterogeneous configuration in MDS cluster
and converge to the balancing workload distribution.
Second, we show a close-up comparison of our system and
PAD system in some aggregate metrics to understand
some load balance performance details, such as average
latency and requests distribution, and to illustrate that the
performance of our system and PAD system is comparable.

Figure 3 shows the response latency of 6 MDSs that
serve metadata requests over DFSTrace with the number
of metadata operation increases. SR performs poorly
because it is static algorithms. It has no knowledge about
MDS or workload heterogeneity and cannot respond to

skew when it occurs. Over the simulation, with the number
of metadata operation grows, the response latencies of
server 4 and 5 increase, even though the more powerful
MDSs (server 1, 2, 3 and 4) have unused capacity.

The PAD and SBU algorithms balance load over the
course of the experiment. Because of having perfect
knowledge about each MDS capacity, the PAD algorithm
performs in a load-balanced state at the very beginning,
identifies the best load distribution before the workload
occurs and configures the MDS to best handle the
workload. SBU algorithm has no prior knowledge and,
therefore, assumes initially that all workload and all MDSs
are uniform. Then, it adapts to workload and heterogeneity
of each MDS capacity, and reaches a self-balance state.

Both PAD and SBU policies show increases in latency
on the most powerful MDS under heavy load (the first
4000 operations and the operations between 18000-
19000). The bursts of workload occur in a few operations
and both algorithms map those bursts to the most powerful

servers. PAD algorithm does so more effectively because
it has perfect knowledge of each MDS’s capability, and
can move operations to any MDS to get the best fit
between workload and server capabilities. Even though
SBU algorithm has no prior knowledge, it does perform
comparably. After experiencing response latencies

increase on less powerful servers (server 5 and 6), SUB
enlists the next more powerful server (server1, 2, 3 and 4)
in the next operation step. As a result, our system takes
some time to discover heterogeneous configuration of
MDS cluster, and converge to the balanced workload
distribution.

Utilization of Simple Randomizaton

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Pe
rc

en
ta
ge

 o
f
U
til

iz
at
io

n
(%

)

Server1 Server2
Server3 Server4
Server5 Server6

(a)

Utilization of Simple Randomizaton

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Pe
rc

en
ta
ge

 o
f
U
til

iz
at
io

n
(%

)

Server1 Server2
Server3 Server4
Server5 Server6

(a)

Utilization of Performance-Aware
Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 30 60 90 120 150 180 210 240 270 300 330
Operat ion Number (x100)

Pe
rc

en
ta

ge
 o

f U
til

iz
at
io

n
(%

)

Server1 Server2
Server3 Server4
Server5 Server6

(b)

Utilization of Performance Aware
Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Pe
rc

en
ta

ge
 o

f U
til

iz
at

io
n

(%
) Server1 Server2

Server3 Server4
Server5 Server6

(b)

Utilization of SBU Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Pe
rc

en
ta
ge

 o
f U

til
iz

at
io

n
(%

)

Server1 Server2
Server3 Server4
Server5 Server6

(c)

Utilization of SBU Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 30 60 90 120 150 180 210 240 270 300 330
Operation Number (x100)

Pe
rc

en
ta

ge
 o

f U
til

iz
at

io
n

(%
)

Server1 Server2
Server3 Server4
Server5 Server6

(c)

Figure 5. Utilization for DFSTrace workload Figure 6. Utilization for synthetic workload

To better understand the impact of our system under
extreme workload skew, we conduct experiments using a
synthetic workload that is generated using the same
parameters as the DFSTrace. In other words, the synthetic
workload consists of 33,540 client requests during a period
of 6 hours. The request inter-arrival times are governed by
a Pareto distribution [20], [30], [31], [32]. As shown in
Figure 4, the experiments driven by the synthetic workload
follow our results found from DFSTrace simulation.
Again, we observe that SR policy cannot cope with

workload and MDS heterogeneity, while SBU and PAD
are comparable.
The resource utilization of 6 MDSs under DFSTrace and
the synthetic workload are illustrated in Figure 5 and
Figure 6, respectively. SR system is heavily unbalanced.
Its uniform randomization makes more powerful MDS idle
and less powerful MDS busy. Hence, it wastes the
processing resources and brings bottleneck at the weaker
MDS. PAD system balances the resource utilization
among MDSs effectively and makes the most powerful

MDS (server 1) always busy, but it needs prior knowledge
about each MDS capacity to fit MDS to current workload.
Our SBU system makes a tradeoff between these two
policies by adaptively assigning workload to more
powerful MDS. Although it does not utilize the overall
resource of the most powerful MDS, it indeed mitigates
the load of less powerful MDS and alleviates the
bottleneck.

5.3. Dynamic Workload Migration

It is very costly to move metadata from one server to
another. The server that transfers metadata needs to flush
its cache, writing all dirty data to disk, while the server
that receives metadata must initialize the metadata with a
cold cache, which hinders initial performance. Figure 7
shows the number of requests movement during the course
of DFSTrace simulation with divided into 3 minutes
interval. We observer that most activities of workload
movement are upper bounded by 70 and the average
number of request movement every 3 minutes interval
approximates to 100.

Number of Workload Movement

0

200

400

600

800

1000

1200

1 16 31 46 61 76 91 106

Time (3 minutes)

N
um

be
r o

f R
eq

ue
st

Figure 7. The number of workload movement
during DFSTrace simulation

Percentage of Workload
Movement

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 16 31 46 61 76 91 106

Times (3 minutes)
Figure 8. The percentage of workload movement
during DFSTrace simulation

Figure 8 illustrates the percentage of total workload that
has been moved by SBU algorithm during the same
experiment. This result reveals that the percentage of most
movement activities is around 20% and the very few peaks
of movement curve are about 70%. The average

percentage of workload movement every 3 minutes
interval is around 34%. These experimental results
demonstrate that our system can provide consistent
performance with the workload movement falling into an
acceptable range.

6. Conclusion

In this study, we focus on the aspect of metadata load
management and describe an adaptive metadata load
management scheme to efficiently distribute responsibility
for metadata across a heterogeneous MDS cluster. We
utilize a dynamic workload partition scheme, called Self-
Balancing Uniform (SBU) randomization, to continually
adapt the metadata distribution to current demands without
prior knowledge about each individual MDS capacity or
application behavior. SBU is a simple, memoryless, local
search algorithm that can evenly distribute the tasks of
metadata management onto a group of heterogeneous
MDSs and can balance the workload of the MDSs in the
system as much as this possible. SBU randomized
processes underlying load balancing is based on the
multiple-choice paradigm and uses two independent
random hash functions to determine the primary location
and alternative location of metadata items in MDS cluster.
SBU randomization has the non-trivial property that no
matter with which state the system starts, it will always
converge to a state in which the maximum load is
optimally small and does not arrives at a “dead-lock”
situation.

Simulation results demonstrate that our load
management system based on SBU randomization
technique addresses several performance issues in
heterogeneous metadata server cluster, deals with
heterogeneity in both server and workload, and performs
comparably to an optimal system. The results also reveals
that SBU randomization maintains performance
consistency, comes up with an acceptable degree of load
migration, and provides all the load balancing benefits of
optimal systems with less shared state.

References

[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, et al.,

“Serverless Network File System”, ACM Transactions on
Computer Systems Special Issue on Operating System
Principles, 14(1): 41-79, Feb, 1996.

[2] Y. Saito, S. Frolund, A. Veitch, et al., “FAB: Building
Distributed Enterprise Disk Arrays from Commodity
Components”, ACM SIGARCH Computer Architecture
News, 32(5): 48-58, Dec, 2004.

[3] G. R. Ganger, et al., “Self-* Storage: Brick-Based Storage
with Automated Administration”, Technical Report CMU-
CS-03-178, Carnegie Mellon University, Aug, 2003.

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
“The Google File System”, ACM Symposium on Operating

System Principles (SOSP 2003), New York, USA, Oct.
2003.

[5] IBM Almaden Research Center, “Collective Intelligent
Bricks”, Oct, 2005.
http://www.almaden.ibm.com/StorageSystems/autonomic_
storage/CIB/index.shtml.

[6] E. K. Lee and C. A. Thekkath, “Petal: Distributed Virtual
Disks”, Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Cambridge, Massachusetts,
USA, pp: 84-92, Oct, 1996.

[7] Z. Zhang, S. D. Lin, Q. Lian, et al., “RepStore: A Self-
Managing and Self-Tuning Storage Backend with Smart
Bricks”, Proceedings of 2004 Autonomic Computing
International Conference, May, 2004.

[8] Hong Tang, Aziz Gulbeden, Jingyu Zhou, et al., “Sorrento:
A Self-Organizing Storage Cluster for Parallel Data-
Intensive Applications”, Proceedings of International
Conference on High Performance Computing, Networking
and Storage, Pittsburgh PA, Nov. 2004.

[9] D. A. Patterson, et al., “A case for redundant arrays of
inexpensive disks (RAID)”, ACM SIGMOD International
Conference on Management of Data, 1988.

[10] P. Carns, W. Ligon III, R. Ross, and R. Thakur, "PVFS: A
Parallel File System for Linux Clusters," In Proc. of 4th
Annual Linux Showcase and Conference, 2000.

[11] Cluster File Systems, Inc, “Lustre: A Scalable, High-
Performance File System”, White Paper, 2003.

[12] J. R. L. Drew Roselli and T. E. Anderson, “A Comparison
of File System Workloads”, Proceedings of the Annual
USENIX Technical Conference, San Diego, California,
Jun, 2000.

[13] Artur Czumja, Chris Riley and Christian Scheideler,
“Perfectly Balanced Allocation”, Proceedings of 7th
International Workshop on Randomization and
Approximation Techniques in Computer Science
(RANDOM 2003), Aug. 2003.

[14] R. Sandberg, D. Goldberg, S. Klerman, et al., “Design and
Implementation of the Sun Network File System”,
Proceedings of the Summer 1985 USENIX Conference, pp:
119-130, 1985.

[15] J. Howard, M. Kazar, S. Menees, et al., “Scale and
Performance in a Distributed File System”, ACM
Transactions on Computer Systems, 6(1): 51-81, Feb, 1988.

[16] J. Kistler and M. Satyanarayanan, “Disconnected Operation
in the Coda File System”, ACM Transactions on Computer
Systems, 10(1): 3-25, Feb, 1992.

[17] J. K. Ousterhout, A. R. Cherenson, F. Douglist, et al., “The
Sprite Network Operating System”, Computer, 21(2): 23-
36, Feb, 1988.

[18] Sage A. Weil, Kristal T. Pollack, Scott A. Brandt, et al.,
“Dynamic Metadata Management for Petabyte-Scale File
Systems”, Proceedings of ACM SuperComputing, 2004.

[19] M. Mitzenmacher, “On the Analysis of Randomized Load
Balancing Schemes”, ACM Symposium on Parallel
Algorithms and Architectures, 1997.

[20] Changxun Wu and Randal Burns, “Achieving Performance
Consistency in Heterogeneous Clusters”, HPDC 2004.

[21] P. F. Corbett and D. G. Feitelson, “The Vesta Parallel File
System”, ACM Transactions on Computer Systems, 14(3):
225-264, 1996.

[22] P. Braam, M. Callahan and P. Schwan, “The Internezzo
File System”, Proceedings of the 3rd of the Perl
Conference, O’Reilly Open Source Convention, Monterey,
CA, USA, Aug, 1999.

[23] E. L. Miller and R. H. Katz, “RAMA: An easy-to-use,
High-Performance Parallel File System”, Parallel
Computing, 23(4): 419-446, 1997.

[24] Rodeh and A. Teperman, “zFS: A Scalable Distributed File
System using Object Disks”, Proceedings of the 20th
IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies, Apr, 2003.

[25] P. J. Braam, “The Lustre storage architecture”, Technical
report, Cluster File Systems, Inc., 2002.
http://www.lustre.org/docs/lustre.pdf

[26] R. J. Honicky and E. L. Miller, “Replication under Scalable
Hahsing: A Family of Algorithms for Scalable
Decentralized Data Distribution”, Proceedings of the 18th
International Parallel and Distributed Processing
Symposium (IPDPS 2004), Santa Fe, NM, Apr, 2004.

[27] M. J. R. Robshaw, “MD2, MD4, MD5, SHA and Other
Hash Functions”, RSA Labs., Vol. 4.0, Technical Report,
TR-101, 1995.

[28] L. Mummert and M. Satyanarayanan, “Long Term
Distributed File Reference Tracing: Implementation and
Experience”, Technical Report CMU-CS-94-213, Carnegie
Mellon University, Nov, 1994.

[29] J. Wilkes, “The pantheon storage-System Simulator”,
Technical Report HPL-SSP-95-14, Storage Systems
Program, Computer Systems Laboratory, Hewlett-Packard
Laboratory, Palo Alto, CA, May, 1996.

[30] P. Barford, A. Bestavros, A. Bradley, et al., “Change in
Web Client Access Patterns: Characteristics and Caching
Implication”, World Wide Web, 1999.

[31] P. Barford and M. E. Crovella, “Generating Representative
Web Workloads for Network and Server Performance
Evaluation”, Proceedings of the 1998 ACM SIGMETRICS,
Jul, 1998.

[32] M. E. Crovella, R. Frangioso and M. Harchol-Balter,
“Connection Scheduling in Web Servers”, Proceedings of
the 1999 USENIX Symposium on Internet Technologies
and Systems, Boulder, Colorado, USA. Oct, 1999.

[33] D. L. Eager, E. D. Lazowska and J. Zahorjan, “Adaptive
Load Sharing in Homogeneous Distributed Systems”, IEEE
Transactions on Software Engineering, 12(5), 1986.

[34] J. Watts and S. Taylor, “A Practical Approach to Dynamic
Load Balancing”, IEEE Transactions on Parallel and
Distributed Systems, 9(3), 1998.

[35] H. Zhu, T. Yang, Q. Zheng, et al. Adaptive Load Sharing
for Clustered Digital Library Servers. International Journal
on Digital Libraries, 2(4), pp 25-235, May. 2000.

[36] J. Watts, M. Rieffle and S. Taylor, “Dynamic Management
of Heterogeneous Resources”, Proceedings of the High
Performance Computing Conference: Grand Challenges in
Computer Simulation, Apr, 1998.

