
An Energy-Efficient Framework for Large-Scale
Parallel Storage Systems

Ziliang Zong, Matt Briggs, Nick O'Connor, and Xiao Qin*
Department of Computer Science

New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801, USA

{zzong, mbriggs, nick03d}@ nmt.edu, xqin@cs.nmt.edu

Abstract

Huge energy consumption has become a critical

bottleneck for further applying large-scale cluster
systems to build new data centers. Among various
components of a data center, storage subsystems are
one of the biggest consumers of energy. In this paper,
we propose a novel buffer-disk based framework for
large-scale and energy-efficient parallel storage
systems. To validate the efficiency of the proposed
framework, a buffer-disk scheduling algorithm is
designed and implemented. Our algorithm can provide
more opportunities for underlying disk power
management schemes to save energy by keeping a
large number of idle data disks in sleeping mode as
long as possible. The trace-driven simulation results
based on a revised disksim simulator show that this
new framework can significantly improves the energy
efficiency of large-scale parallel storage systems.

1. Introduction

With the tremendous development of human
society, billions of data in the form of knowledge and
information is generated everyday, which leads to huge
requirements of super computers and high performance
clusters. Without the help of modern computer
systems, we can never imagine how scientists and
engineers accomplish the great projects like human
genome sequence, universe dark matter observation
and Google search engine. Therefore, the last decade
becomes the boosting period of data centers in the
whole world. Many huge data centers were built and
the future data center will be even bigger.

However, the rapid growth of data centers
introduces a significant problem: huge energy
consumption. According to EUN (Energy User News)
[1], the power requirements of today’s data centers
range from 75 W/ft2 to 150-200 W/ft2 and will increase
to 200-300 W/ft2 in the near future. High energy
consumption will cause serious economical and

environmental issues. For example, a large-scale
cluster may require 40TWh per year, costing over $4B
per year at the price of $100 per MWh [2]. According
to the data from EPA, generating 1 kWh of electricity
in the United States results in an average 1.55 pounds
(lb) of carbon dioxide (CO2) emissions.

Among various components of a data center,
storage subsystem is one of the biggest consumers of
power. A recent industry report [3] shows that storage
devices account for almost 27% of the total energy in a
data center. This problem will be even exacerbated
when faster disks with higher power needs appear in
the future. Therefore, new technologies of designing
energy-aware storage systems for super computers and
clusters are highly expected and have become a hot
research topic in the high performance computer area.

In this paper, we present a new buffer disk based
strategy to build energy efficient parallel storage
systems. The basic idea of our strategy is very simple
and straightforward. To most people, it is common
sense that leaving a light bulb on at daytime is a waste
of energy. The same thing happens if we keep the
computing nodes on when it is idle. It makes no sense
that we still feed those idle machines power, without
producing any useful work. Huge energy can be
conserved if we turn the idle machines to sleeping
mode or just shut them down directly. However, new
problems come out if we spin the storage system up
and down so frequently. First, the life cycle of storage
disks will be shortened. Second, the availability and
reliability of disks will be degraded. Third, the whole
system will suffer great time and energy overhead for
waking the system up again. One possible solution for
these problems is trying to reduce the time of spinning
status of storage system. Our framework and algorithm
is designed on the basis of this strategy. By using data
buffer disks to temporally buffer the requests, once a
disk is tuning to sleeping node, it will keep this mode
as long as possible. In the view of the whole system,
the number of sleeping disks is optimized as well. In
this research, we construct a buffer-disk based

1-4244-0910-1/07/$20.00 ©2007 IEEE.

framework for parallel storage system and accordingly,
a corresponding scheduling algorithm for parallel disk
requests is also implemented.

The rest of the paper is organized as follows. In
section 2, we present a brief description of related
work. Next, Section 3 illustrates the buffer-disk based
parallel disks framework. In Section 4, we introduce
mathematical models for calculating the power of
parallel storage system. Section 5 demonstrates the
working of buffer disk scheduling algorithm.
Experimental environment and simulation results are
analysis in Section 6. Finally, Section 7 provides the
concluding remarks and future research directions.

2. Related work

Most of the previous research regarding energy
conservation issues focuses on single storage system
like laptop and mobile devices to extend the battery
life. Recently, researchers have realized that energy
conservation is also important for large scale parallel
disks in the cluster systems. Several techniques
proposed to conserve energy in storage systems
include dynamic power management schemes [4][5],
power-aware cache management strategies [6], power-
aware prefetching schemes [7], software-directed
power management techniques [8], redundancy
techniques [8], and multi-speed settings [10][11][12].
However, the research on energy-efficient parallel disk
systems is still in its infancy. However, the issue of
using buffer-disk frameworks to reduce energy
consumption in parallel disk systems is not well
investigated.

Buffer management has been used to boost
performance of parallel disk systems [13][14].
Previous studies showed that data buffers significantly
reduce the number of disk accesses in parallel disk
systems [15]. More importantly, it is observed from the
previous studies that traffic of small writes becomes a
performance bottleneck of disk systems, especially
when RAM sizes for data buffers are increased rapidly
[15]. It is expected that small writes dominate energy
dissipation in parallel disk systems that support data-
intensive applications like remote-sensing applications
and on-line transaction processing systems [16][17].

The long-term goal of our research is to develop
fundamental techniques and theories to save energy of
large-scale parallel disk systems. The objective of this
paper, which is paving a way towards that goal, is to
design a radical buffer-disk framework in which
energy-related reliability model, data partitioning, disk
request processing, data movement/placement
strategies, power management, and prefetching
schemes are implemented and holistically integrated to

reduce energy dissipation in parallel disk systems. The
rationale for the proposed research is that the
development of the energy-efficient buffer-disk
framework accompanied with a simulation toolkit will
promote more energy-efficient resource management
techniques for storage systems in general and parallel
disk systems in particular.

3. Buffer-disk framework

A parallel disk system is comprised of an array of
independent disks connected by a high-speed network.
In this paper, we proposed a novel energy efficient
buffer-disk framework which consists of four major
components: a RAM buffer, m buffer disks, n data
disks, and an energy-aware buffer-disk controller (see
Figure 1). Hereinafter, we will call this framework as
BUD framework for short.

The RAM buffer with a size ranging from several
megabytes to gigabytes is residing in the main
memory. The buffer-disk controller carefully
coordinates energy-related reliability model, data
partitioning, disk request processing, data
movement/placement strategies, power management,
and pre-fetching schemes.

We choose to use log disks as buffer disks, because
data can be written onto the log disks in a sequential
manner to improve performance of disk systems. It is
to be noted that in most cases, the number of buffer
disks m is smaller than the number of data disks n, and
values of m and n are independent of one another for
workloads with inter-request parallelisms.

The buffer disk controller, a centerpiece in our

BUD framework, critically affects the overall
performance and energy efficiency of parallel disk
systems. Therefore, we will address several
challenging issues related to the design and

Figure1. The energy aware buffer-disk framework

implementation of an energy-aware buffer disk
controller. The buffer disk controller will be
implemented to achieve the following specific goals.
First, the buffer disk controller will aim to minimize
the number of active buffer disks while maintaining
reasonably quick response times for disk requests.
Second, the controller has to energy-efficiently deal
with read and write (only small writes are considered
in this paper) requests issued to a parallel disk system.
Third, the controller must move data from buffer disks
to data disks in an energy-efficient way. Fourth, the
controller is intended to incorporate an energy-aware
pre-fetching strategy to dynamically fetch the most
popular data into buffer disks, thereby allowing most
data disks to be in the sleep mode to save energy.

4. Energy consumption models

Calculating power for disk drives is complicated.
As performance of disks increase, the power consumed
does not increase linearly. Idle states are closely
approaching run states. This means that this study has
to have a specific goal of power consumption from
modern disks. The basic power model for this study is
a summation of all power states multiplied by the time
each power state was active. The states used are start-
up, idle, and read/write/seek. Read, write and seek are
put together, because they share similar power
consumption.

Let Ttr be the time required to enter and exit the
inactive state. The power consumption of a disk when
entering and exiting the inactive state is Ptr. Thus,
energy Etr consumed by the disk when it enters and

exits the inactive state is expressed as trtr TP ⋅ .

Similarly, let Tactive and Tidle are the time intervals when
the disk is in the active and inactive states, respectively.
We denote the energy consumption rates of the disk
when it is active and inactive by Pactive and Pidle,
respectively. Hence, the energy dissipation Eactive of the
disk when it is in the active state can be written as

activeactive TP ⋅ , and the energy Eidle of the disk when it

is sitting idle can be expressed as idleidle TP ⋅ . The total

energy consumed by the disk system can be calculated
as

idleidleactiveactivetrtr

idleactivetrtotal

TPTPTP
EEEE

⋅+⋅+⋅=
++=

 . (1)

Let Tai and Tia denote times a disk spends in

entering and exiting the inactive state, Pai and Pia are
the power consumption rates when the disk enters the

inactive and active states. Let Nai and Nia be the
number of times the disk enters and exits the inactive
state. Then, the transition time Ttr and power Ptr can be
computed as follows

 iaiaaiaitr TNTNT += , (2)

 ia
iaai

ia
ai

iaai

ai
tr P

TT
T

P
TT

T
P

+
+

+
= . (3)

In most cases where the values of Nai and Nia are

both equal to Ntr, Ttr can be written as

 (),iaaitrtr TTNT += (4)

The time interval Tactive when the disk is in active
state is the sum of serving times of disk requests
submitted to the disk system.

 ,)(
1
∑

=

=
n

i
serviceactive iTT (5)

where n is the total number of submitted disk requests,
and)(iTservice is the serving time of the ith disk

request.)(iTservice can be modeled as

).()()()(iTiTiTiT transrotseekservice ++= (6)

where Tseek is the amount of time spent seeking the
desired cylinder, Trot is the rotational delay and Ttrans is
the amount of time spent actually reading from or
writing to the disk.

Now we quantify energy saved by power
management policies as below

()
()
()
() () .trtractiveidleidleactive

trtridleidleactiveactive

activetridleactive

totalactivetridleactivesave

TPPTPP
PTPTPT

PTTT
EPTTTE

−+−=
++

−++=
−++=

 (7)

In this study, the transition power consumption is

not considered. This is because transition power is not
well defined by data presented in prior research. For
this model, the real problem is deciding on what the
power consumption is for each state. Values can be
collected based on data sheets, physical hard disk tests,
and published papers.

Trusting most of the research preformed by others
should be with caution. Most of the papers concerning
power of hard disks where either using old data or data
sheets. Old data presents a problem in that the disks
power performance is not linear. Old data can be used
to prove the conceptual goal, but there is a good chance
that proof is obsolete or misleading. Also, as stated
before, data sheets must be checked against reasonable
values and it is hard to tell from a published paper
whether this was done. Consequently, it is hard to pin
down a power model. The evidence would point to
find a data sheet that can be confirmed with a physical
electrical test. For preliminary tests, we are using a
data sheet for a Seagate hard disk that is modeled by
DiskSim. As long as the parameters we use are
logically correct, the simulator will still be able to
show performance. Without precision numbers, we
will not be able to conclude accurate monetary
savings. This is why disk drive research that is over a
year old can be used, but only if the power
consumptions are relative to modern disks. To
complete this power model, one must define explicitly
each state including transition periods between states.

5. An energy-efficient disk scheduling
algorithm

In this section, we will talk in detail about the

scheduling algorithm which runs on the buffer disk
controller based on the BUD framework presented in
section 3. Basically, this algorithm will provide a
solution for four most important situations in parallel
storage systems and give a relatively judicious decision
in each scenario.

5.1 Write requests

Write requests can be divided into small write
requests and large write requests. Whenever the
controller receives a write request, it will first check
the size. If the request is a large write, say over 10MB
or more, it is sent directly to the corresponding data
disk. Otherwise, the controller will send this request to
the RAM buffer which will buffer these small writes
and form a log of data to be written into one of the
buffer disks later. Once the data are transferred to the
RAM buffer, the controller will send a “write
complete” acknowledgement message to the sender.
Next step, the controller will test the state of all the
buffer disks. If one buffer disk is not busy with writing
a previous log or reading or transferring data, the data
copy will be sent to this buffer disk to ensure that a
reliable copy resides on one of the buffer disks. In
order to guarantee the correctness and consistency of

different data version, the controller is always trying to
match the data with same block to the same buffer disk
unless it is known that the data block is already
outdated. In other words, operations which could write
the same block data into different buffer disks is
forbidden if one legal copy of this block still exists in
any buffer disk.

The most important scheduling strategy between
RAM buffer and buffer disk is that rather than wait
until the RAM is full, the data are written into the
buffer disks whenever they are available. This policy
has two major advantages. First, data are guaranteed to
be written into one of the reliable buffer disks in the
shortest time period, which is very important to ensure
the reliability and availability of data. Second, the
RAM buffer can have more available room to buffer a
large burst of new requests because previous data are
always quickly moved from the RAM to the buffer
disks.

Here we should note that the total storage space of
each buffer disk is divided into equal n parts (n is the
number of data disks) which are used to buffer the data
requests corresponding to each data disk. For example,
if we have two 10GB buffer disks and ten 100GB data
disks, each buffer disk will have 1GB as the buffer
space for each data disk. All the small write requests to
data disk 1 will be buffered in the corresponding buffer
space reserved for disk 1. The reason we split the
buffer disks into small pieces for each data disk is to
improve the response performance of the whole system.
In the case when one buffer disk is busy writing or
moving data, the other disk could serve the incoming
requests immediately.

5.2 Read requests

Handling read operations is kind of simple and
straightforward in the BUD framework. When a read
request arrives, the controller first searches the RAM
buffer. If the data is still in the RAM buffer then the
data is immediately sent back to the requester.
Otherwise, the controller will do a seek operation in
the buffer disks. If the required data can not be found
in the buffer disks, a missing message will be sent back
to controller and the controller will send a read request
to the corresponding data disk and finally the data will
be transferred to the requester by the data disk. Using
this policy, the read performance should be similar to
or sometimes better than that of traditional disk
because most of the requests will be sent to the data
disk and reading from RAM or buffer disks seldom
occurs in real applications.

5.3 Data movement

The other important scheduling problem is when

and how to move the data from buffer disks to target
data disks. Since the data transfer process competes
with the disk accesses, a good algorithm to perform
data moving is critical to the overall system
performance. Rather than just consider the response
time performance, data moving algorithm has to ensure
the correctness and consistency while moving and after
movement of data.

An available space percentage or ASP for short,
based scheduling algorithm was designed to complete
this task. In this ASP scheduling algorithm, an up
bound of available space percentage will be set as the
threshold which is used to invoke the data moving
operation. For example, if we set the threshold as 20%,
a data moving operation request for data disk1 will be
sent to the controller as long as more than 80% space
allocated for data disk1 in any buffer disk has been
used.

In order to guarantee the response time and also the
data consistency, the controller will first send a data
clean command to the requested buffer disk. This
command will mark all the blocks which will be
moved to the data disk as “timeout” before the actual
moving data operation starts.

The ASP algorithm combined with multiple
partitioned buffer disks has two distinct advantages.
First, it can significantly improve the response time of
the whole system because usually the moving
operation will take a long time. Once one buffer disk is
super busy on moving data, the other buffer disks can
immediately absorb data from the RAM thus greatly
increase the parallel levels of the whole systems.
Second, ASP algorithm can hundred percent guarantee
the data correctness and consistency by using the
“timeout” marks. Whenever a write request comes, the
controller will check which block will be revised and
match the write operation to the buffer disk which has
the only legal copy of this specific block. Since all the
blocks has already been marked as “timeout” before
data moving, the controller will match the same write
request to a new buffer disk when the supposed buffer
disk is transferring data.

5.4 Power management

The ultimate objective of our research is to
conserve as more energy as possible without
sacrificing performance. To reduce energy
consumption, modern disks use multiple power modes
that include active, idle, sleep and shut down modes. In
active mode, the platters are spinning and the head is
seeking or actively reading or writing. In idle mode, a
disk is spinning at its full speed but no disk activity is

taking place. Therefore, staying in the idle mode when
there is no disk request provides the best-possible
access time since the disk can immediately service
requests, but it consumes the most energy. In sleep
mode, the disk consumes much less energy, but in
order to service a request, the disk has to incur
significant energy and time overheads to spin up to
active mode.

In order to fully utilize the gap of energy
consumption rate under different modes, the controller
will be always trying to keep as more data disks in
sleep mode as possible and also keep the sleep mode as
long as possible. However, once a data disk is waken
up, it will be keeping busy for a while because a large
trunk of data coming from RAM buffer directly or
coming from buffer disks will be written to it. At the
same time, the controller will set an idle time threshold
for the wakened up data disks. These disks will be
tuned back to sleep mode to save power if the idle time
exceeds this threshold. By using this power
management strategy, we can farthest conserve energy
and reduce potential damage to disks caused by
frequently tune the states of disks.

6. Simulation Results

Our simulation results consist of first developing a
simulator which meets all project specifications and
running this simulator with a trace to get some
preliminary results.

So far the simulator completed all the main
functions that are necessary in order to model our
distributed system. That is the program takes data
from a trace. Then the program moves data to
appropriate virtual disks that use disksim to derive
there timing information. These virtual disks use a
simple model to calculate total energy. Finally, both
timing and energy data are reported to the user in the
form of the two respective totals.

Our results from the simulator consist of two
parallel disk systems. To simulate with these two
systems we used a simple trace that came with disksim.
The first system that was simulated was a simple disk
system which is used today by many storage systems.
It is basically a RAID 1 system consisting of 31 disks.
This is basically a baseline system in which to compare
our results. The second simulated disk system is
similar to section 3 with 6 buffer disks each one acting
as a buffer for a group of approximately 5 disks.

The simulator runs 25.55 minutes for each
simulated system. Table 1 shows the energy
consumption of the disk system without employing
buffer disks and the disk system using buffer disks to
conserve energy. Specifically, the traditional system

without buffer disks consumed 189279.78 J (0.05
KWH) with all disks starting from off and being turned
on when needed. In contrast, the parallel disk system
with buffer disks only used 117345.99 J (0.03 KWH),
which is substantially less. This resulted in overall
power savings of 38%.

Table 1. Energy consumption of the two
simulated parallel disk systems

Simulated Disk System Energy
Consumption

Disk system without buffer disks 189279.78 J
Disk system with buffer disks 117345.99 J
Energy saving 71933.79 J
Energy consumption reduced by 38%

Our results have shown substantial gains can be

made by using buffer disks for very specific workload
conditions. In order to further develop our storage
algorithm we need to test our results in many more
simulations and with more varied workloads. The
simulator also needs to check with analytic
calculations and the code needs to include the
transition time and power from switching from mode
to mode.

7. Conclusions and future work

In this paper, we proposed a novel buffer-disk
based framework for large-scale and energy-efficient
parallel storage system. In light of this novel buffer
disk framework that are energy-efficient in nature, we
designed a power consumption model, a disk
scheduling algorithm, read/write quests handling
strategies, data moving and power management
policies. The preliminary results have shown
substantial gains that the proposed energy-efficient
disk framework can conserve more than 38% power
compared with traditional parallel systems without
employing the buffer disks.

Future studies in this research include the
following points. First, we will conduct extensive
simulation experiments by running disk traces from
real-world applications. Second, we will extend our
scheme to deal with intra-request parallelisms. For
now, we simply consider inter-request parallelisms.
Thus, I/O activities with intra-request parallelisms will
be considered in the future. Third, we intend to further
extend the disk scheduling algorithm to handle real-
time disk requests, where hard deadlines must be
guaranteed.

Acknowledgements

The work reported in this paper was supported in part
by the New Mexico Institute of Mining and
Technology under Grant 103295 and by Intel
Corporation under Grant 2005-04-070.

References

[1] B. Moore. Taking the data center power and

cooling challenge. Energy User News, August
27th, 2002.

[2] J. Chase and Ron Doyle, “Energy Management
for Server Clusters,” Proc. the 8th Workshop Hot
Topics in Operating Systems (HotOS-VIII), pp.
165, May 2001.

[3] Power, heat, and sledgehammer. White paper,
Maximum Institution Inc., http://www.max-
t.com/ downloads/whitepapers/
SledgehammerPowerHeat20411.pdf, 2002.

[4] F. Douglis, P. Krishnan, and B. Marsh,
“Thwarting the Power-Hunger Disk,” Proc.
Winter USENIX Conf., pp.292-306, 1994.

[5] K. Li, R. Kumpf, P. Horton, and T. E. Anderson,
“A Quantitative Analysis of Disk Drive Power
Management in Portable Computers,” Proc.
Winter USENIX Conf., pp.279-292, 1994.

[6] Q. Zhu, F. M. David, C. F. Devaaraj, Z. Li, Y.
Zhou, and P. Cao, “Reducing Energy
Consumption of Disk Storage Using Power-
Aware Cache Management,” Proc. High-
Performance Computer Framework, 2004.

[7] S.W. Son and M. Kandemir, “Energy-aware data
prefetching for multi-speed disks,” Proc. ACM
International Conference on Computing
Frontiers, Ischia, Italy, May 2006.

[8] S.W. Son, M. Kandemir, and A. Choudhary,
“Software-directed disk power management for
scientific applications,” Proc. Int’l Symp. Parallel
and Distributed Processing, April, 2005.

[9] E.Pinheiro, R. Bianchini, C. Dubnicki,
“Exploiting redundancy to conserve energy in
storage systems,” Proc. Sigmetrics and
Performance, Saint Malo, France, June 2006.

[10] S. Gurumurthi, A. Sivasubramaniam, M.
Kandemir, and H. Fanke, “DRPM: Dynamic
Speed Control for Power Management in Server
Class Disks,” Proc. Int’l Symp. of Computer
Framework, pp. 169-179, June 2003.

[11] D. P. Helmbold, D. D. E. Long, T. L. Sconyers,
and B. Sherrod, “Adaptive Disk Spin-Down for
Mobile Computers,” Mobile Networks and
Applications, Vol. 5, No.4, pp.285-297, 2000.

[12] P. Krishnan, P. Long, J. Vitter, “Adaptive Disk
Spindown via Optimal Rent-to-buy in

Probabilistic Environments,” Proc. Int’l Conf. on
Machine Learning, pp. 322-330, July 1995.

[13] J.-H Kim, S.-W. Eom, S.H. Noh, and Y.-H. Won,
“Striping and buffer caching for software RAID
file systems in workstation clusters,” Proc. 19th
IEEE Int’l Conf. Distributed Computing Systems,
pp. 544 – 551, 1999.

[14] P.J., Varman, R.M Verma, “Tight bounds for
prefetching and buffer management algorithms
for parallel I/O systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 10, no. 12, pp.
1262 – 1275.

[15] Y. Hu and Q. Yang, “DCD-Disk Caching Disk: A
New Approach for Boosting I/O Performance,”
Proc. Int’l Symp. Computer Framework, 1996.

[16] S.-K. Lee, C.-S. Hwang, and M. Kitsuregawa,
“Efficient, Energy Conserving Transaction
Processing in Wireless Data Broadcast,” IEEE
Trans. Knowledge and Data Engineering, no. 18,
no. 9, pp. 1225 – 1238, Sept. 2006.

[17] D. Stodolsky, M. Holland, W.V. Courtright II,
and G.A. Gibson, “Parity Logging Disk Arrays,”
ACM Trans. Computer Systems, pp. 206-235,
Agu. 1994.

[18] John Zedlewski, Sumeet Sobti, Nitin Garg,
Fengzhou Zheng,Arvind Krishnamurthy, and

Randolph Wang. Modeling Hard-Disk Power
Consumption. Proc. Second Conference on File
and Storage Technologies. March 2003.

[19] Qingbo Zhu, Francis M. David, Christo F.
Devaraj, Zhenmin Li,Yuanyuan Zhou and Pei
Cao, "Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache
Management", 10th International Symposium on
High Performance Computer Framework
(HPCA'04), 2004

[20] Hogil Kim, E. J. Kim and Rabi N Mahapatra,
"Power Management in RAID Server Disk
System Using Multiple Idle States", in the
Proceedings of International Workshop on
Unique Chips and Systems (UCAS) 2005, pp.53-
59.

[21] HDD Diet: Power Consumption and Heat
Dissipation, Alex Karabuto July 11, 2005.
http://www.digitlife.com/articles2/storage/hddpo
wer.htm

