
Securing Grid Data Transfer Services with Active Network Portals*

Onur Demir, Michael R. Head, Kanad Ghose and Madhusudhan Govindaraju
Department of Computer Science

State University of New York, Binghamton, NY 13902-6000
e-mail:{onur, mike, ghose, mgovinda}@cs.binghamton.edu

* This work supported in part by the NSF under award
numbers EIA 9911099 and CNS 0454298

1-4244-0910-1/07/$20.00 ©2007 IEEE

Abstract

Widely available and utilized Grid servers are
vulnerable to a variety of threats from Denial of Service
(DoS) attacks, overloading caused by flash crowds, and
compromised client machines. The focus of our paper is
the design, implementation and evaluation of a set of
admission control policies that permit the server to
maintain sustained throughput to legitimate clients even
in the face of such overloads and attacks. We propose
several schemes to effectively, and importantly in an
automated fashion, deal with these attacks and
overloads. We discuss how these schemes can be
efficiently implemented on an active network adapter
based gateway that controls access to a pool of backend
data servers. Performance tests conducted on a system
based on a dual-ported active NIC demonstrate that
efficient optimization schemes can be implemented on
such a gateway to minimize the grid service response
time and to improve server throughputs under heavy
loads and DoS attacks. Our results, using the GridFTP
server available with Globus Toolkit 4.0.1, demonstrate
that even in adverse load conditions, the response times
can be maintained at a level similar to normal, low-load
conditions.

Keywords: GridFTP, Active NIC, Intelligent Gateway

1. Introduction

The rapid increase in network capacity, coupled with

the requirements of data intensive applications, has
fueled research on various optimizations for efficient
large data transfers. Some examples include GFPS, XCP,
XTP, Optiputer, and GridFTP. Among these, the
GridFTP framework has emerged as a standard that
provides a modular and extensible architecture to serve

the needs of high performance applications. The features
of GridFTP include support for striped data transfer,
collective operations to transfer data between clusters,
uniform interface across various data sources and sinks
in a distributed environment, tuning of TCP parameters
such as window size and number of parallel streams on a
per connection basis, reliable re-start of transfers, and
support for authentication, data integrity and
confidentiality [1, 2, 16].

Even though the GridFTP framework provides a wide
range of optimization options for high performance data
transfer, its performance is vulnerable to various forms
of Denial of Service (DoS) attacks, malicious clients that
subvert the overall performance by deliberately tying up
resources, flash events caused by legitimate clients, a
few large requests monopolizing the available
bandwidth, and constant interrupts to ongoing transfers.
In this paper we discuss the design, rationale, and
performance of a set of policies and optimization
schemes that can serve as attractive solutions to this
problem. We have implemented these schemes on an
active network adapter based gateway that controls
access to a pool of backend GridFTP (version 4.0.1)
servers.

With the standardization efforts of GGF, it is
expected that many popular grid services, such as
GridFTP, Replica Location Services (RLS), and
Metadata Catalog Services (MCS) will be available on
well known locations for use by the grid community.
The motivation is to facilitate the easy development of e-
science applications. However, the availability of these
servers on openly published locations can also expose
them to a wide range of client abuses. For example, a
sudden and heavy load on a server caused by a set of
legitimate clients can severely impede its performance.
This phenomenon, called flash crowd, is often in
response to a specific event and requires the grid server
to process an intense and overwhelming volume of

requests. Another well known vulnerability of such
servers is a denial-of-service attack, which is usually
launched by a set of compromised client machines or
maliciously configured set of grid nodes. These attacks
can prevent genuine users from utilizing grid servers by
saturating the compute, network, and storage resources
with bogus requests.

Distributed DoS (DDoS) attacks have in the recent
past affected many popular web portals. Widely
deployed grid servers are also susceptible to such
attacks. In this paper we focus on the design of the
GridFTP (also referred to as just servers in this paper)
servers that will prevent a fluctuation in its performance
when exposed to these kinds of attacks. The GridFTP
server’s performance is sensitive to a sustained or
sudden momentary increase in the server’s load.
Moreover, an existing transfer by itself can demand
additional processing (and memory) resources at the
server if concurrent channels are used and when retries
are automatically invoked on some of these channels
because of networking errors or congestion. This
problem is exacerbated when transfer requests for files
that are significantly large or not have been cached.

An example of a possible DDoS attack on a GridFTP
server could be the use the SYN flood attack. In this
case the malicious host sends a series of SYN packets to
the server, seemingly to initiate a TCP connection via the
3-way handshake protocol. The attacking host uses a
spoofed source IP address and does not respond to the
ACK packets sent by the grid server host. Ultimately, the
grid server will timeout after 70 seconds (or a few
minutes depending on the kernel configuration). In this
process vital resources that could have been used by
legitimate clients are instead tied up in the failed
handshake protocol. A variation of this attack is also
harmful wherein maliciously configured hosts repeatedly
send requests for large files. In this case the hosts send
their correct IP addresses and complete the TCP
handshake, but waste precious bandwidth and processing
power of the server.

It is essential to minimize the number of requests to
the GridFTP server that time-out because of packets that
are dropped during high load periods. Thus, a vital
requirement to deal with attacks is to enable
preferentially serving active (ongoing) data transfers
over new transfer requests. In the absence of such
preferential service, the ongoing transfer will time out
and get resubmitted soon thereafter, adding to the
server’s load, further hurting the performance.
Additionally, the server’s utilization is also reduced as
some or all of partial progress made on the transfer is
aborted.

Grid services are usually designed such that resources
within an organization are governed by local rules and
policies. The gateway to the resources of a local
organization is often responsible for handling load-

balancing, minimizing response-time, maximizing
throughput, and for verifying the security credentials of
each incoming request. The schemes that we propose in
this paper are consistent with the tenet of allowing the
configuration of resources in accordance with local
policies.

In this paper, we present a technique for selective
admission control, implemented on an active network
card based gateway (aka intelligent gateway) to a pool of
GridFTP servers, which allow these servers to
selectively process requests related to an ongoing
transfer under heavy, unanticipated load conditions. The
intelligent gateway relieves the actual servers from:
• Identifying packets that belong to ongoing packets

and treating them separately from those that belong
to new requests.

• Wasteful processing of packets that anyway will
have to be dropped later on during heavy load due to
the policy of prioritizing existing transfers.

• The bookkeeping overhead needed to resume an
ongoing GridFTP transfer that was disrupted due to
network errors/conditions.

Consequently, the utilization of the GridFTP server
improves dramatically and the response time to transfer
requests remain relatively stable under a DoS attack or
on unexpected heavy load. We evaluate our technique
using a prototype implementation and present the
experimental results. Our tests involve running several
concurrent downloads in striping mode under different
conditions. The requesting scripts record the connection
time (time from initiation until actual transfer begins) as
well as the total transfer time and number of bytes
received. The conditions under which we test include:
DDoS attack (large number of spoofed SYN packets),
high server CPU load, and high server I/O load. Our
results show that in each case, we can provide a similar
level of service to ongoing clients as during normal,
“base case” conditions. We have designed a set of
policies and described their rationale and experimental
results to quantify the gains due to smart and adaptive
admission control policies.

2. Smart Admission Control

We consider a locally distributed server
configuration, such as the one shown in Figure 1, where
a pool of server machines implements the GridFTP
server. The GridFTP server’s performance can be
severely limited by sudden increases in the requests for
its services. Such increases will result in long response
times or even in request time-outs. In general, as the
request rates increase, the resultant increase on the server
load causes the server response time to go up
commensurately. Additionally, existing transfers are also
delayed. To provide stable transfer times under abrupt

increases in the load due to hostile events (such as a DoS
attack) or due to rare but natural events (such as transfer
resumption requests on network problems), an effective
solution is to admit request packets selectively to the
server. We now argue that such limiting is best
performed by an intelligent gateway as it relieves the
already-loaded server from the chores associated with
such admission control.

To implement preferential admission control, the
server has to track all ongoing transactions, the number
of active service requests for each type of service
(GridFTP and possibly others), and accept or deny
incoming requests based on some criteria. However, this
solution has some drawbacks. An individual server in a
locally distributed server pool does not have information
on the load and status of other servers. Consequently,
server local decisions are not adequate in implementing
load balancing or in inferring malicious events directed
to the pool. Furthermore, under heavy load, the
bookkeeping needed to monitor requests and to
implement admission control policies can itself impose
additional work on an already loaded machine. Finally,
any malicious activity is hard to detect on individual
servers.

Another solution may be to naively limit the
incoming requests at the gateway leading to the server
pool. This has some disadvantages. The ongoing
GridFTP transfers are unknown to the gateway and
associated packets may be dropped. It is also possible to
deny the resumption request for an interrupted ongoing
transaction request. A complete solution thus needs to
take into account the context of a request. The load
information of the servers is important as well; it is not
possible to estimate a server machine’s load by just
examining the incoming packets. Load balancing can
only be performed with accurate global knowledge of the
load on each server machine.

It is precisely for the reasons listed above that we
propose a solution of load and context conscious
admission control to a GridFTP server pool using an
intelligent gateway.

3. Prototype System Details

Figure 1 shows the overall configuration for our
prototype. One port of a dual-ported active NIC
(network interface card) based gateway acts as an
interface to the GridFTP server. All admitted client
traffic goes through the active NIC portal towards the
server pool via the second interface on the active NIC.
Responses from the server use a different path as shown,
bypassing the gateway.

 The active NIC is responsible for selecting and
distributing incoming packets to the servers after
subjecting them to a filtering rule. In particular, the
intelligent gateway maintains information to prioritize

ongoing transfers and information to perform load
balancing. The server cluster provides a single IP
(virtual IP, VIP) address to the Internet, which is
assigned to the incoming port of active NIC. The
incoming packet headers are modified by the gateway,
which changes the VIP with the IP address of the
selected server machine. When the server machine
responds to the request it uses VIP as the source IP.

The host, where active NIC is mounted (called the
active NIC host), runs a daemon called the control agent.
The control agent periodically collects information from
server agents that run on the servers. The control agent
uses this information to determine the dynamic packet
filtering rules that have to be deployed on the gateway
and updates the existing filtering rule set on the active
NIC. Keeping the control agent on the active NICs host
significantly eases the processing load on the active NIC.

In our prototype implementation, we have used a
Ramix PMC 694 active NIC with dual 100 Mbits/sec
Ethernet interfaces, two autonomous DMA controllers, a
233 MHz. Power PC CPU and 32 Mbytes of RAM and 8
Mbytes of Flash memory [3]. The Ramix PMC 694 is a
PCI card.

The proposed gateway should have at least three
capabilities from the standpoint of performance. These
are as follows:
1. The gateway should not impede the traffic directed

at the servers. The gateway should be able to pass
traffic at a rate that is equal to or higher than what it
takes to saturate the servers.

2. The gateway should be able to react very quickly to
attack traffic.

3. The path to the servers via the gateway must have a
low latency - this is necessary for keeping the
overall server response time down.

All of these requirements essentially call for a fast
packet classification and filtering scheme, a low latency
packet transport path from the input port to the server-
side port and a simple packet dropping policy that allows
the gateway to quickly clamp down on the attack traffic.
We meet these requirements as follows:
• The packet filter used in our implementation is the

widely used BPF+ packet filter [4]. We modified
the native BPF+ code slightly to optimize the
performance of the data cache on the Power PC
processor on the PMC 694.

• The packet filter was embedded into the TCP/IP
stack running on the active NIC immediately on top
of the IP layer. The TCP layer was completely
bypassed within the gateway. Although the packet
filtering and classification module was deployed at
the exit from the IP layer on the incoming side, one
can still examine and classify packets using the TCP
header and parts of the payload.

• Packets were forwarded from the incoming
port/interface on the active NIC to the selected

server via the service side port/interface without any
packet copying between the two interfaces.

• The load balancer within the gateway selected a
server for the admitted request using a simple round-
robin scheduling policy. However, alternative
scheduling policies using the server feedback.
Information can also be used [17, 18].

• To keep overall processing delays small, the
traditional interrupt-driven packet-receiving
interface was replaced by a polled mode of
operation. A real-time task was created to poll the
input port for an incoming packet. When a packet
arrived, the packet classification, filtering and
forwarding functions were completed before
resuming the polling.

 Figure 1: Active NIC enabled GridFTP
Server Architecture.
Additional functions are provided on the machine

hosting the intelligent gateway to quickly update the
packet filtering rules and to read out packet classification
statistics.

A proprietary library is used for communicating from
the host PC to the PMC 694; this interface is not critical
to the performance of our scheme.

The server agents gather the information used to

classify incoming packets as admissible or non-
admissible on a regular basis and pass this information to
the control agent on the active NIC’s host. The final
decision for admission control and the dynamic
alteration of the packet-filtering rule at the gateway is
left to the control agent.

The data structure used to keep track of the IP
addresses of hosts requesting a GridFTP transfer is a
PATRICIA trie, which is extremely efficient for
inserting and searching such information [5]. The control
agent, the server agent and the active NIC all use this
data structure. The IP addresses of the clients constitute
the keys in this data structure. Each entry has a time
stamp for last access time. Entries are aged according to
this time stamp, and eventually removed from the data

structure when the last access time becomes older than
one hour.

4. Admission Control Policies

To implement admission control policies for the

GridFTP server, the intelligent gateway classifies
requesting hosts by their source IP addresses into the
following categories:
• Green: These are hosts that are currently in the

middle of a GridFTP transfer. Our aim is to keep
servicing these addresses regardless of the DoS
attacks and loading caused by (non-GridFTP)
services. This class has a dynamic nature and has to
be updated regularly.

• Unknown: These are the hosts that have not used
the GridFTP server within the finite history of server
logs.

• Preferred: This optional class of hosts is specific to
the server. The server can choose the set of preferred
hosts that request file transfers based on the
GridFTP authentication information, the host’s
domain, or any other criteria. Preferred hosts can
also be specified through a static list.

 After classifying the requesting hosts into groups, the
control agent transfers the corresponding filter rule
updates to the active NIC gateway. The load on the
server and the number of half-open connections are the
main criterion to decide what packets are allowed to
enter the server. We considered two types of loading
information for each server machine in the pool: CPU
load and I/O load. CPU load can be measured by
monitoring CPU utilization and the I/O load is measured
by monitoring number of I/O interrupts per second, and
number of block operations done per second.

4.1 Admission Control Policy for Coping with
Server Overloads

When a GridFTP host node provides other services

also, we need to have policies that allow the GridFTP
services to remain stable despite loading on the server
caused by these other services. We have considered two
different types of loading on the server: (a) “compute”
loading caused by the execution of scripts (such as cgi)
that mostly consume CPU resources, and (b) I/O loading
caused by the file I/O accesses made by standard
services (such as http).

The admission control policy implemented in this
case requires the server agents to monitor the load level
on their respective server machine. When the loading
crosses a threshold level of L, the machine is considered
to be heavily loaded and the server agent notifies the
intelligent gateway to perform dynamic load balancing
of the non-GridFTP requests at the gateway. As new

Incoming
Requests/Control
Data

 Active NIC
Gateway

Active NIC
Host

Server
Pool

Switch

Outgoing
Responses

EGRESS
Switch

Load Info.
From
Servers

To
Requesters

non-GridFTP requests arrive, they are preferentially
directed to the machines that are not heavily loaded.

For the results reported later, we used L as 0.8 (that is
80%) of the peak compute or I/O load.

5. Scalability

The proposed solution was evaluated using a single
active NIC gateway controlling access to a small server
pool. A single gateway device may not be able to cope
with the processing requirements for traffic directed at
large server pools. The potential bottlenecks are the
storage needed for the green or preferred class of IP
addresses, the processing overhead for packet filtering
and collection of statistical data at the gateway, and the
performance of the gateway's network interfaces.

The proposed solution can be scaled up to meet the
processing needs for protecting large-scale server pools
as follows:
• Several active NIC gateways operating in parallel

can be used. Multiple active NICs can be hosted on
the common PCI bus of a single host. The PCI
driver for the active NICs need to be modified to
support the "broadcast" of status information to all
cards on a common PCI bus. This can be easily done
by passing on the status information via a common
memory-mapped buffer in the RAM of the host of
the gateways. Additionally, a front-end load
balancing switch can be used to direct the incoming
server traffic to a specific gateway. Alternative
configurations that using independent gateway hosts
can be used to improve overall reliability.

 The memory requirements for the IP address classes
on each gateway can be prohibitive as the number of
attacking clients increase. A solution here will be to
use a dynamic data structure like MULTOPS [7].
This will limit the storage usage and switch
dynamically between maintaining information on a
per IP address basis or on a subnet address basis
depending on the amount of traffic data and offered
traffic volume. We are currently implementing this
alternative on our prototype.

 The processing capabilities on the active NIC
gateways continue to increase steadily, and this
offers some relief for the solutions targeting larger
scale systems and traffic volumes. The emerging
generation of cards from Ramix has such
capabilities (dual or quad 1 GBits/secs interfaces,
faster CPU, additional RAM etc.).

 100000

 1e+06

 1e+07

 1e+08

 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(B

/s
)

Time (s)

Realized Server Throughput Over Time

NORMAL
ATTACK, no policy

ATTACK, small favored 3
ATTACK medium favored 3

ATTACK, large favored 3

 Figure 2: shows the server throughput
under different conditions. We ran the test
under five different conditions on our
network: (1) normal conditions (Base Case)
when there is no load on the server, (2)
Base: Under heavy load and the server is
not protected against attacks, (3) when
small file class requests are favored and (4)
when large file class requests are favored,
(5) when the medium file class requests are
favored.

An alternative to using active NIC gateways is to use
network processors. We have an ongoing effort using the
Intel IXP2400 NPU.

6. Experimental Results

The servers used for the evaluation system are
Pentium IV PCs running a modified version of Linux
kernel 2.4.18. We used two switches and constructed
two subnets with 100 Mbits/sec Ethernet. The server
pool constitutes one subnet and the client GridFTP
machines are from another subnet (representing the
outside world). The active NIC is positioned as a
gateway with its two ports connected to the two subnets.
Multiple addresses are assigned to network interfaces of
client and load machines to extend the IP range. For
each request, clients are able to select an IP assigned to
the interface.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0 20 40 60 80 100 120 140

Th
ro

ug
hp

ut
 (B

/s
)

Time (s)

Realized Client Throughput Over Time

NORMAL (prowl)
ATTACK, no policy (prowl)

ATTACK, small favored 3 (prowl)
ATTACK, medium favored 3 (prowl)

ATTACK, large favored 3 (prowl)

(a)Large File Class

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 10 20 30 40 50 60 70 80 90 100

Th
ro

ug
hp

ut
 (B

/s
)

Time (s)

Realized Client Throughput Over Time

NORMAL (bottleneck)
ATTACK, no policy (bottleneck)

ATTACK, small favored 3 (bottleneck)
ATTACK, medium favored 3 (bottleneck)

ATTACK, large favored 3 (bottleneck)

(b) Medium File Class
Requestors connect directly to the gateway, which in

turn forwards packets to the server, rewriting packet
headers, or potentially dropping packets when necessary.
Connections are normal GridFTP connections requesting
transfers of files be sent in four parallel data connections
in the “Extended Block Mode”. The GridFTP requestor
and server are both the official Globus 4.0.1 globus-
url-copy and gridftp daemon, while the active NIC
gateway software is written in C.

Our tests consist of running requestor scripts
repeatedly under the different experimental conditions. A
client script connects, authenticates, sets up the
connection parameters, and requests the transfer of a file.
The server transfers the file as requested after which the
client quits and reports connection latency (time from
initiation of the connection until transfer begins), total
time (time from initiation of the connection until transfer
completes). To gather performance results, the client
script is run several times on each of the client machines.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

B
/s

)

Time (s)

Realized Client Throughput Over Time

NORMAL (pvh)
ATTACK, no policy (pvh)

ATTACK, small favored 3 (pvh)
ATTACK, medium favored 3 (pvh)

ATTACK, large favored 3 (pvh)

(c) Small File Class
Figure 3 (a), (b), and (c): shows the effective
bandwidth of each file class under different
conditions for (a) large file class (b) medium
file class and (c) small file class. We ran the
test under four different conditions on our
network: (1) normal conditions (Base Case)
when there is no load on the server, (2)
Base: Under heavy load and the server is
not protected against attacks, (3) when
small file class requests are favored and (4)
when large file class requests are favored
(5) when the medium file class requests are
favored.
We designed and implemented an admission request

policy that classifies files served by the GridFTP servers
based on the file sizes. We defined three different classes
of files: (1) small, (2) medium, and (3) large. The main
motivation of applying the admission control policies
based on file classes is to maintain acceptable
performance under heavy load conditions for specific
classes of client requests. Assuming that the clients
expect a bound service time based on the file size, a
transfer should finish within a time-out period whose
duration is based on the expected service time. In order
to determine a time-out period for each file class, we
measured the average transfer times for a wide range of
file sizes within each class during lightly-loaded
conditions and multiplied this duration by a factor of K
to obtain the expected service time under heavy loading.
A value of K=2 was found to be useful for the scenarios
studied. In order to minimize the number of time-outs
during intervals of heavy server load, we use the Active
NIC gateway to allow/deny requests based on the class
of the requested file. A quota is set for requests
belonging to each class (based on the file size). The
quotas for each class were determined through
experimentation. A given class’ quota is determined as
the number of requests that can be fulfilled in a certain
window without causing time-outs. The gateway applies

access control policies based on the quotas of each file
class: requests submitted for a particular class of files are
dropped at the gateway when the quota for that class is
(momentarily) exceeded. Figure 2 shows how the server
throughput varies under several different conditions.
During an attack or when the server is heavily loaded,
the server throughput, as perceived by the clients, varies
quite dramatically. By using policies favoring a certain
class, we can give guaranteed performance to the
requests in that class. In Figure 2, we can see that the
class-quota based admission control policy ensure that
the server throughput is more reliable and predictable.

We used 48 KB sized test files for small files, 2 MB
sized test files for medium files, and 64 MB sized test
files for large files. Our tests consist of running requestor
scripts (calling globus-url-copy) repeatedly under
different experimental conditions. We measure the time
to run globus-url-copy to collect the effective client
throughput data. We used three admission control
policies in which a certain file class, chosen statically, is
favored. (The file classes are defined by the size of the
file in the GridFTP request, as defined earlier.) However
the classes can be constructed by any type of criteria
such as content, type, modification time, etc. As can be
seen on Figure 3 (a), (b) and (c), the policies favoring
each class give reliable performance, timeliness, and
predictability for requests in the favored class. However,
predictability of requests within a class drops when the
admission control policies do not favor that class.
.
7. Related Work and Conclusions

Our work involves providing differentiated service to
GridFTP. A substantial amount of related work has been
developed in support of these techniques for web
servers, though little, as yet, as been developed for the
GridFTP service.

There is a plethora of work in supporting
differentiated services on web servers. Some examples
follow. Operating System facilities for supporting
differentiated services are explored in [8]. The work of
[9] uses transcoding technique to vary content
resolution/quality to meet QoS needs on a per-client
basis. The work of [10] proposes a technique for
dynamically partitioning a server pool into classes and
assigning servers to a specific class. In [11], session-
based relationships among http requests are used to
device traffic conformation functions that are used for
resource allocation to limit server overloading. In [12],
an adaptive technique for determining the number of
servers needed to service requests with specific targets is
introduced and evaluated through simulations against
optimal configurations. All of these techniques allow
packets to enter the server and then are differentiated
within the server. This implies that the servers take a
performance hit to examine an incoming request and

then either rejecting it or delaying its service. The
performance hit can be substantial under flash crowd
traffic or when a DoS attack is in progress. We filter low
priority requests at the gateway, freeing up the server
resources to perform the services for the high priority
classes. Our work in this paper represents a significantly
enhanced version of the results and policies introduced
in [15]. We have also included new policies, their
rationale, and experimental results to quantify the gains
from these policies.

A complete solution for dealing with DDoS attacks,
by necessity has to be distributed and requires the
coordination of several entities on the network. Since
many types of DDoS attacks use spoofed IP source
addresses, a rather naive prevention mechanism is to use
simple egress filtering - filters in switches take the traffic
out of a subnet to ensure that the source addresses of
packets going out corresponds to valid host IP addresses
within the subnet. Although it sounds simple, this
solution is not practical - the large majority of subnets do
not have egress routers with this capability; neither will
this scheme be of any use unless the filters are
configured correctly. IP-traceback - tracing packets back
to the source - and similar techniques can be used to
trace a large and unusual influx of packets from a
specific port (or set of ports). With the use of traceback,
controlling or limiting packet flow is a more
sophisticated and distributed mechanism for coping with
DDoS [13, 6]. Mazu networks offers a commercial
product for defending against DDoS attacks, that relies
on traffic flow monitoring [14]; some other vendors offer
similar products as well. Other distributed solutions for
coping with DDoS are possible, including the use of
trusted network components. Until these distributed
solutions are standardized and widely adopted, servers
have to deploy local solutions to protect themselves.
Traceback and similar solutions (based solely on the
monitoring of packet flow towards the servers) are
generally incapable of dealing with load attacks, which
do not always manifest themselves as a sudden burst of
unusually heavy traffic. Furthermore, to detect such
attacks, the en-route routers need to have the capability
of examining the payload in the requests. Load attacks
can be better dealt with by using the actual loading
information at the servers. Distributing such loading
information to en-route routers can be time consuming
and complex - and, perhaps, practically infeasible.
Solutions implemented on gateways closer to the server
that incorporate the servers' loading information to
perform dynamic packet filtering, as proposed in this
paper, appear to be more attractive in coping with DDoS
attacks.

We presented an intelligent gateway based solution
for supporting differentiated service for a GridFTP
server that preferentially services known clients under
DDoS attack, and actively manages server load

distribution based on the servers’ systems’ statistics. The
capabilities of the active NIC-based gateway permit a
dynamic mechanism to react intelligently to a denial of
service attack, as well as external load on the servers to
be efficiently implemented. The packet filtering rules at
the gateway are dynamically altered based on the
incoming packet rate and dynamic loading information
periodically collected from each of the servers in the
server pool.

We demonstrated how a flexible admission control
policy can be implemented at the gateway to provide
differentiated service to various client classes. The
clients are classified based on whether or not they are
known to the server. We also showed that the desired
degree of real-time performance (bounded response
time) can be guaranteed even under heavy server loading
and denial of service attack by choosing rate limits
appropriately. The proposed system is scalable, flexible
and provides continuous service of the servers by
performing dynamic request rate limiting at the active
NIC-based gateway.

8. References

[1] W. Allcock (editor), “GridFTP Protocol Specification”,
Global Grid Forum Recommendation GFD.20, March 2003.

[2] W. Allcock, et al. “Data Management and Transfer in High
Performance Computational Grid Environments”. Parallel
Computing Journal, Vol. 28 (5), May 2002, pp. 749-771

[3] Ramix Inc., “Intelligent Ethernet Adapter Product Guide”,
available at: http://www.ramix.com

[4] A. Begel, S. McCanne and S.L. Graham, “BPF+:
Exploiting Global Data flow Optimization in a generalized
Packet Filter Architecture”, in Proc. of SIGCOMM 99, 1999

[5] D.R. Morrison. “Patricia-practical algorithm to retrieve
information coded in alphanumeric”. Journal of ACM,
15(4):514--534, Jan 1968.

[6] S. Savage, D. Wetherall, A. Karlin, and T. Anderson,
“Practical Network Support for IP Traceback”, in Proceedings
of ACM SIGCOMM'2000, August 2000.

[7] T.M. Gil, and M. Poletteo, “MULTOPS: a data-structure
for bandwidth attack detection”, Proceedings of USENIX
Security Symposium’2001, August 2001.

[8] M. Aron, “Differentiated and Predictable Quality of Service
in Web Server Systems”, PhD Dissertation, Rice University,
2000. Available at: http://cs-tr.cs.rice.edu/Dienst/UI/2.0/
Describe/ncstrl.rice_cs/TR00-369.

[9] S. Chandra, C.S. Ellis, and A. Vahdat, “Differentiated
Multimedia Web Services Using Quality Aware Transcoding”,
Proc. of Infocom 2000, 2000.

[10] J. Zhang, et al, “A New Mechanism for Supporting
Differentiated Services in Cluster-based Network Servers”,
Proc. of MASCOTS 2002, 2002.

[11] H. Chen, and P. Mohapatra, “Overload control in QoS-
aware web servers”, Computer Networks: The International
Journal of Computer and Telecommunications Networking,
Vol 43, No. 1, May 2003.

[12] S. Ranjan, et al, “QoS-Driven Server Migration for
Internet Data Centers”, in Proc. Intl. Workshop on QoS 2002,
2002.

[13] S.M. Bellovin, "ICMP Traceback Messages", Internet
Draft: draftbellovin- itrace-00.txt, March 2000.

[14] Mazu Networks, Enforcer, Product information and white
papers at: http://www.mazunetworks.com, 2004.

[15] O. Demir, M. R. Head, K. Ghose, and M. Govindaraju,
"Protecting Grid Data Transfer Services with Active Network
Interfaces," In proceedings of Grid 2005 - 6th IEEE/ACM
International Workshop on Grid Computing, pp: 9-16, Seattle
WA, November 2005.

[16] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, I. Foster.The Globus Striped GridFTP
Framework and Server. Proceedings of Super Computing 2005
(SC05) , November 2005.

[17] O. Kremier, J. Kramer. Methodical analysis of adaptive
load sharing algorithms. IEEE Trans. Parall. Distrib. Syst. 3, 6
(Nov.), 747–760.1992

[18] N. G. Shivaratri, P. Krueger, M. Singal. Load distributing
for locally distributed systems. IEEE Computer 25, 12 (Dec.),
33–44. 1992

