
Load Balancing of Parallel Simulated Annealing on a Temporally Heterogeneous
Cluster of Workstations

Sourabh Moharil and Soo-Young Lee
Department of Electrical and Computer Engineering

Auburn University, Auburn, AL 36849
leesooy@eng.auburn.edu

Abstract

Simulated annealing (SA) is a general-purpose optimiza-
tion technique widely used in various combinatorial op-
timization problems. However, the main drawback of this
technique is a long computation time required to obtain
a good quality of solution. Clusters have emerged as a
feasible and popular platform for parallel computing in
many applications. Computing nodes on many of the clus-
ters available today are temporally heterogeneous. In this
study, multiple Markov chain (MMC) parallel simulated an-
nealing (PSA) algorithms have been implemented on a tem-
porally heterogeneous cluster of workstations to solve the
graph partitioning problem and their performance has been
analyzed in detail. Temporal heterogeneity of a cluster of
workstations is harnessed by employing static and dynamic
load balancing techniques to further improve efficiency and
scalability of the MMC PSA algorithms.

1. Introduction
Simulated annealing (SA) [1] is a stochastic optimiza-

tion algorithm to search a solution space of a combinato-
rial problem with the objective to minimize a cost func-
tion. Its generality and applicability stem from its founda-
tion in thermodynamics and statistical mechanics, and its
hill-climbing capability enables escape from local minima.
However, the main drawback of SA is that it takes a long
time to find a global or acceptable solution. There have been
many efforts to develop parallel SA (PSA) algorithms. The
PSA algorithms developed so far can be classified into two
groups, i.e., single Markov chain (SMC) PSA and multiple
Markov chain PSA [2]-[9].

It has been observed that performance of the MMC PSA
is more consistent in terms of speedup achieved as com-
pared to the SMC PSA. This approach of MMC PSA can ex-
ploit large-scale parallelism to achieve a high speedup with

1-4244-0910-1/07/$20.00 c©2007 IEEE.

no loss in quality of solution [3, 5, 7]. Also, performance
of the MMC PSA is much less problem-dependent, com-
pared to the SMC PSA. However, there is no implementa-
tion of MMC PSA (to solve the graph partitioning problem)
on a coarse-grain temporally heterogeneous cluster of work-
stations inspite of the fact that such a system has emerged
as a feasible alternative for parallel computing in many ap-
plications. Hence, in this study, it is attempted to improve
efficiency and scalability of PSA on a temporally heteroge-
neous cluster of workstations by incorporating simple but
effective static and dynamic load balancing techniques that
exploit the random nature of the problem (SA).

This paper is organized as follows. In Section 2, SA al-
gorithm is described. In Section 3, the graph partitioning
problem is reviewed. In Section 4, the implementation de-
tails and load balancing schemes for non-interacting, inter-
acting and asynchronous MMC PSA’s are described. In Sec-
tion 5, the experimental results obtained on a Sun MPI clus-
ter are provided In Section 6, a summary is provided.

2. SA Algorithm
A typical SA algorithm consists of two nested loops. The

annealing process starts with “heating” the initial solution,
s0, to a melting point or an initial temperature, Tinit. The
outer loop decrements the annealing temperature depend-
ing on a factor α where 0 < α < 1. At a given temper-
ature of SA, a number of perturbations are carried out un-
til the inner loop break conditions are met. The inner loop
break conditions are set depending on the type of combina-
torial problem. The cooling schedule defines quantitatively
how the temperature is lowered during the course of SA.
Two parameters which determine the length of an outer loop
are maximum inner loop iterations, ILImax, (the maximum
number of perturbations allowed at each temperature), and
maximum inner loop rejections, ILRmax, (the maximum
number of consecutive rejections of candidate solutions al-
lowed at each temperature). Outer loop iterations continue
until the annealing temperature reaches the freezing point
Tfrz . A typical high-level construct of SA is as follows:

s ← s0;
T ← Tinit;
while(T ≥ Tfrz) {

while(inner loop break condition is not met){
Perturb the current configuration s to s∗;
Evaluate cost function C() and ∆C = C(s∗) − C(s);
Accept the new configuration with the probability of
min(1, e−∆C/T);

}
T ← α × T ;

}

3. Graph Partitioning

The combinatorial optimization problem chosen in this
study is graph partitioning. Many scientific and engineer-
ing applications can be modeled as graph partitioning prob-
lems [5]. Obtaining an optimal partitioning is NP-complete.
In its most general form, the graph partitioning problem is
to divide vertices in a graph into a specified number of sub-
graphs such that a certain cost function is minimized. An
example of typical cost functions is the weighted sum of
the maximum number of nodes in a subgraph and the num-
ber of edges between subgraphs.

4. MMC PSA

In the multiple Markov chain PSA (MMC PSA), all pro-
cesses follow their own search paths. Each process, inde-
pendent of other processes, perturbs the current solution,
evaluates the perturbed solution and decides on its accep-
tance or rejection. Three versions of MMC PSA have been
implemented in this study, i.e., non-interacting, interacting
(synchronous) and asynchronous MMC PSA’s. Depending
on the load balancing scheme (SLB: static load balancing,
DLB: dynamic load balancing) incorporated, each version
has two or three variations as summarized in Table 1.

Scheme

SQ Sequential SA
NI Non-interacting MMC PSA with no LB
NS Non-interacting MMC PSA with SLB
IN Interacting MMC PSA with no LB
IS Interacting MMC PSA with SLB
IA Interacting MMC PSA with DLB
AY Asynchronous MMC PSA with no LB
AS Asynchronous MMC PSA with SLB
AA Asynchronous MMC PSA with DLB

Table 1. MMC PSA schemes implemented.

Segment

Outer loop iteration

T = Tinit

T = Tfrz

Exchange point

Figure 1. Segments in interacting and asyn-
chronous MMC PSA’s.

For the interacting and asynchronous MMC PSA’s, a seg-
ment is defined as the duration between two successive so-
lution exchanges (interacting MMC PSA) or global state
accesses (asynchronous MMC PSA) as illustrated in Fig-
ure 1, which may be quantified in terms of the number of
temperature decrements or outer loop iterations. The seg-
ment length is controlled such that it decreases as tempera-
ture decreases. This control causes the processes to interact
more frequently at a higher temperature where the solution
is highly unstable and less frequently at a lower temperature
where the solution tends to converge. For non-interacting
MMC PSA, a segment corresponds to the duration of an
outer loop iteration (between two successive temperature
decrements).

A cluster of workstations may include heteregenous
computing elements. Also, the workload varies with time
and workstation since a cluster is usually shared by multi-
ple users and a user may submit task(s) at any time. Such
spatial and temporal heterogeneity necessitates load bal-
ancing in order to utilize such a cluster optimally.

In this study, ILImax (the maximum number of inner
loop iterations) is used as the load balancing parameter to
be controlled for static and dynamic load balancing since
ILImax determines an outer loop break condition at most
of the temperature decrements. On the other hand, ILRmax

(the maximum number of inner loop rejections) determines
an outer loop break condition only when temperature is
close to the freezing point (Tfrz) or when the solution is
converging to an optimal solution and, therefore, is not re-
ferred to in most cases.

4.1. Non-interacting MMC PSA

In non-interacting MMC PSA illustrated in Figure 2,
each process independently follows its own Markov chain
to find a solution. At the end, the best of all the solutions -
the one with minimum cost, is retained and the others are

discarded. The processes do not interact with each other
during the annealing process except for exchanging local
solutions at the end when faster processes wait for slower
processes, leading to idle or wait times. In Figure 2, Pro-
cess 2 is the slowest of all the processes while Process 4 is
the fastest.

Process 1 Process 2 Process 3 Process 4 Process 5Process 0

Idle time

Segment

Segment

Figure 2. Non-interacting MMC PSA.

4.1.1. Implementation Process 0 reads in a graph to be
partitioned, carries out the initial random partitioning and
broadcasts it to all other processes. Then, all processes si-
multaneously follow their own Markov chains for optimiz-
ing the partitioning of the graph. In order to achieve a sig-
nificant speedup, ILImax and ILRmax are controlled as a
function of the number of processes, n, such that :

ILImaxn
=

ILImax seq

n
(1)

and

ILRmaxn
=

ILRmax seq

n
(2)

where ILImax seq and ILRmax seq are for the sequential
SA, and ILImaxn

and ILRmaxn
for the PSA. The other pa-

rameters, Tinit, Tfrz and α are set the same as for the se-
quential SA.

4.1.2. Static Load Balancing In this version, static load
balancing is performed at the end of the first segment. The
average execution time per inner loop iteration, measured
by each process (Process j) in the first segment, t1j , is used
for static load balancing. Let lij and mij denote the exe-
cution time and the total number of inner loop iterations in
segment i for Process j, respectively. Then,

t1j =
l1j

m1j
(3)

All processes send t1j to Process 0 which in turn broad-
casts tmin = minj{t1j}. On receiving tmin, each process

(Process j) estimates its computing power Sj and that of
the fastest process SJ as Sj = 1

t1j
and SJ = 1

tmin
, respec-

tively. Then, it adjusts its ILImaxn
as follows.

ILI ′maxj
= ILImaxn

× Sj

SJ
(4)

The adjusted value, ILI ′maxj
, dictates the annealing pro-

cess in Process j. The reason for using tmin is to prevent
non-interacting Markov processes from getting too lengthy.

4.2. Interacting MMC PSA

In the interacting MMC PSA, all processes interact with
each other to exchange their intermediate solutions at the
end of each segment. After each exchange, the intermedi-
ate solution with the least cost is retained by all processes.
Thus, a process with an inferior solution can update its so-
lution by the minimum-cost solution to accelerate the an-
nealing process or to escape a local minimum. Hence, the
solution quality is expected to be higher for the interacting
MMC PSA than for the non-interacting MMC PSA. Com-
pared to the non-interacting version, communication over-
head is significantly higher because of periodic exchanges
of solutions. However, the information required for load
balancing can be piggybacked on the solutions so that com-
munication is minimized. Also, in order to reduce the com-
munication overhead further, a segment consists of multiple
outer loop iterations, i.e., processes do not exchange their
solutions in every outer loop iteration.

4.2.1. Implementation In addition to reading in a graph
file, performing the initial partitioning on it and broadcast-
ing it to the rest of the processes, Process 0 is also responsi-
ble for load balancing. On receiving the initially partitioned
graph from Process 0, all processes, including Process 0,
execute the PSA routine. In order to achieve a significant
speedup, ILImax and ILRmax are controlled according to
Equations 1 and 2.

4.2.2. Static Load Balancing The static load balancing
routine is executed once at the end of the first segment.
The average execution time per inner loop iteration in the
first segment, t1j , is used for load balancing. Let lijh and
mijhdenote the outer loop execution time and the total num-
ber of inner loop iterations, respectively, in an outer loop h
of segment i for Process j where h = 1, · · · , kij , and kij the
total number of outer loop iterations in segment i for Pro-
cess j. Then,

t1j =

k1j∑

h=1

l1jh

m1jh

k1j
(5)

All processes send the cost (costj) and t1j to Process 0
in a single packet. Process 0 responds with a packet contain-

ing the process rank (BR or the Best Rank) with costmin

= minj{costj} and tavg, where tavg = 1
n

n∑

j=1

t1j . Subse-

quently, they receive the best intermediate solution from
Process BR. Then, each process computes the estimated
computing power Sj = 1

t1j
and SJ = 1

tavg
, and modifies

ILImax according to Equation 4.

4.2.3. Dynamic Load Balancing For the interact-
ing MMC PSA with DLB, load balancing is carried out at
the end of each segment. The average execution time per in-
ner loop iteration (tij for segment i of Process j) from the
previous segment is used in load balancing for the cur-
rent segment on that process. Then, tij can be computed as
follows:

tij =

kij∑

h=1

lijh

mijh

kij
(6)

At the end of a segment, all processes send the cost
(costj) and tij to Process 0 in one packet. Process 0 re-

sponds with a packet containing tavg = 1
n

n∑

j=1

tij and the

rank (BR) of process with costmin = minj{costj}. On re-
ceiving this packet, Process BR broadcasts its solution to
the rest of the processes. Then, each process (j) estimates
its computing power, Sj = 1

tij
and SJ = 1

tavg
. The modifi-

cation of ILImax is carried out the same way as in the SLB
version, but at the end of every segment.

4.3. Asynchronous MMC PSA

A parent process spawns child processes and locally
stores the global solution (the best solution) through asyn-
chronous interactions with the child processes as illustrated
in Figure 3. Whenever each child process completes a seg-
ment, it accesses the global solution at the parent process
and compares it with its local solution. If the global solution
is better than the local solution, the child process copies the
global solution over its local solution. Otherwise, the child
process informs the parent process of the local solution.
On receiving this notification, the parent process updates
its own solution with the local solution. Since access to the
global solution is asynchronous, the communication over-
head is reduced, compared to the (synchronous) interacting
MMC PSA, and the idle time is eliminated. Furthermore,
the information required for load balancing can be piggy-
backed on these exchanges of solutions between the par-
ent and child processes to minimize communication over-
head. Once a child process is spawned, it sets ILImax and
ILRmax according to Equations 1 and 2 and starts to exe-
cute the PSA routine.

4.3.1. Static Load Balancing The SLB routine is exe-
cuted once right after the first segment. The average exe-

Child 1 Child 2 Child 3 Child 4Parent Child 0

12
3

4 5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2

3 4
5

1
2

34 5

Figure 3. Asynchronous MMC PSA.

cution time per inner loop iteration (t1j for Process j) for
the first segment is computed by each child process (j) ac-
cording to Equation 5. An active child process sends its lo-
cal cost, costj , and t1j to the parent process. Then, the par-

ent process computes tavg = t′avg+t1j

2 where t′avg is the av-
erage execution time per inner loop iteration before the par-
ent and active child process interaction, and sends tavg and
the global solution cost to the child process. If costj is lower
than the global solution cost, the child process sends its lo-
cal solution to the parent process. Otherwise, it receives the
global solution from the parent process. Once the exchange
of solution between the parent process and the active child
process takes place, the SLB routine is executed on that
child process. Each child process (j) estimates its comput-
ing power, Sj = 1

t1j
and SJ = 1

tavg
and modifies ILImax

according to Equation 4.

4.3.2. Dynamic Load Balancing The asynchronous
MMC PSA with DLB is similar with the SLB version. The
main differences are (i) the load balancing procedure (de-
scribed in Section 4.3.1) is performed at the end of each
segment (as opposed to only once at the end of the first seg-
ment in the SLB version); (ii) the average execution time
per inner loop iteration is computed by each child pro-
cess using Equation 6 (as opposed to Equation 5 in the SLB
version).

5. Results and Discussion

5.1. Sun MPI Cluster and Test Graphs

The MMC PSA’s described in Section 4 have been im-
plemented on a Sun MPI Cluster [10], shared by multiple
users, for performance analysis. The cluster consists of 18
UltraSparc-IIi workstations, each with 128 MB RAM. Only
one PSA process is spawned on each workstation.

The three graphs employed for performance analysis are
g150, g600 and g1200 with 150, 600 and 1200 nodes, re-
spectively. These test graphs were randomly generated. The
specifications of the test graphs are provided in Table 2.

Graph Number of Edges Number of Nodes

g150 324 150
g600 1692 600

g1200 3204 1200

Table 2. Graph specifications

In each case, cost and execution time are measured by
taking their averages from 3 to 5 runs.

5.2. Cost, Speedup and Efficiency

In Figure 4, the MMC PSA’s (refer to Table 1) are com-
pared for different graphs in terms of solution quality (cost),
speedup, and efficiency. The efficiency is defined as the ra-
tio of the speedup achieved to the number of workstations
used. The “background loads” on workstations in the clus-
ter were not “controlled” for these results.

It can be seen that the interacting MMC PSA schemes
perform better than the non-interacting MMC PSA schemes
in most of the cases considered. That is, the interacting
schemes find an equivalent quality of solution, taking less
time than the non-interacting schemes. The processes in the
interacting schemes guide each other to converge to an ac-
ceptable solution faster, such that the communication over-
head for interaction is easily offset by an even larger reduc-
tion in the annealing time.

Another clear trend is that the asynchronous MMC PSA
schemes achieve a higher speedup for the similar quality of
solution than the synchronous counterparts (the interacting
MMC PSA’s). In the asynchronous schemes, the child pro-
cesses are not synchronized for the global state access and,
therefore, no synchronization overhead, particularly the idle
time, is incurred. On the other hand, a significant synchro-
nization overhead is paid at the end of each segment in the
case of the synchronous schemes. It is also observed that
a super-linear speedup was achieved in some cases of the
asynchronous schemes (refer to Figure4-(b)). This is mainly
due to the fact that the total length of the Markov chains fol-
lowed by the child processes can be shorter than that of the
sequential Markov chain since the length of a Markov chain
is a random process.

5.3. Dependency on Number of Workstations

For the analysis of dependency on the number of work-
stations, g1200 with 8 subgraphs was used for the NS, IA
and AA schemes. In Figure 5, cost, speedup and % effi-

SQ NI NS IN IS IA AY AS AA
0

500
1000
1500
2000

g1200 with 16 subgraphs on 8 workstations

C
o

st

SQ NI NS IN IS IA AY AS AA
0
2
4
6
8

S
p

ee
d

u
p

SQ NI NS IN IS IA AY AS AA
0

50

100

%
 E

ff
ic

ie
n

cy

(a)

SQ NI NS IN IS IA AY AS AA
0

500
1000
1500
2000

g1200 with 16 subgraphs on 18 workstations

C
o

st

SQ NI NS IN IS IA AY AS AA
0
4
8

12
16
20

S
p

ee
d

u
p

SQ NI NS IN IS IA AY AS AA
0

50

100

%
 E

ff
ic

ie
n

cy

(b)

Figure 4. Cost, speedup and % efficiency for
g1200 with 16 subgraphs under unperturbed
load conditions for (a) 8 workstations and (b)
18 workstations.

ciency are plotted as a function of the number of worksta-
tions.

As shown in Figure 5-(a), the solution quality is almost
independent of the number of workstations. The length of
the Markov chain followed by each process becomes shorter
as the number of workstations (processes) increases. How-
ever, the number of Markov chains increases such that the
total amount of annealing remains equivalent. This makes
the quality (cost) of solutions obtained by the MMC PSA
schemes similar to that of the sequential solutions. In Fig-
ures 5-(b), it is seen that, as expected, as the number of
workstations increases, speedup increases. In particular, the
speedup achieved by the scheme AA is almost equal to the
number of workstations, i.e., the efficiency is close to 100%.
Such a high efficiency is mainly due to the low overhead re-
quired by the asynchronous scheme AA.

2 4 8 12 18
0

500

1000

1500

2000

2500

3000

3500

g1200 − 8 subgraphs

Number of Workstations

C
os

t

NS
IA
AA

(a)

2 4 8 12 18
0

5

10

15

20
g1200 − 8 subgraphs

Number of Workstations

S
pe

ed
up

NS
IA
AA

(b)

2 4 8 12 18
0

20

40

60

80

100

120
g1200 − 8 subgraphs

Number of Workstations

%
 E

ffi
ci

en
cy

NS
IA
AA

(c)

Figure 5. (a) Cost, (b) speedup and (c) % effi-
ciency for g1200 with 8 subgraphs under un-
perturbed load conditions for 2, 4, 8, 12 and
18 workstations.

5.4. Dependency on Problem Size

In Figure 6, effects of the graph size on performance
of the three schemes, NS, IA and AA, are analyzed for
partitioning a graph into 4 subgraphs on 12 workstations.
For a larger graph, the computational requirement is higher
in general, which makes the relative communication (and
other) overhead lower, leading to a higher speedup and effi-
ciency. This can be observed in Figures 6-(b).

g150 g600 g1200
0

500

1000

1500

2000

2500

3000

3500

4000
4 subgraphs on 12 workstations

Graph Size

C
os

t

NS
IA
AA

(a)

g150 g600 g1200
0

2

4

6

8

10

12

14
4 subgraphs on 12 workstations

Graph Size

S
pe

ed
up

NS
IA
AA

(b)

Figure 6. (a) Cost and (b) speedup on 12
workstations under unperturbed load condi-
tions for g150, g600 and g1200 with 4 sub-
graphs.

5.5. Time Components

In Figure 7, the distribution of computation time and
overhead (the communication and idle times) among the
workstations is shown for the three schemes, NS, IA and
AA. The test graph is g600, the number of subgraphs is 4
and the number of workstations employed is 12.

As can be seen in Figures 7-(a), the individual execution
times of NS on 12 workstations are quite different since the
processes are completely independent of each other with-
out any synchronization. Note that most of the overhead is
the idle time at the end of the annealing. In IA, the pro-
cesses interact with each other in each segment through syn-
chronous communication. Therefore, their execution times
are similar as shown in Figures 7-(b). However, it is evi-
dent that the overhead is much higher than that for the other
schemes. In AA, the child processes indirectly interact with
each other by asynchronously accessing the global state.
In other words, they are more loosely coupled than in IA.
Therefore, variation of execution time among the child pro-
cesses is larger compared to IA as shown in in Figures 7-(c).
But, the overhead is lowest among the three schemes, which
leads to the highest speedup.

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250
NS

Workstation (Process) ID

E
xe

cu
tio

n
tim

e
(S

)

Communication + Idle
Computation

(a)

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250
IA

Workstation (Process) ID

E
xe

cu
tio

n
tim

e
(S

)

Communication + Idle
Computation

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250
AA

Workstation (Process) ID

E
xe

cu
tio

n
tim

e
(S

)

Communication + Idle
Computation

(c)

Figure 7. Execution time of 12 workstations
for g600 (4 subgraphs) under unperturbed
load conditions for (a) NS, (b) IA and (c) AA.

5.6. SLB and DLB Under Static and Dynamic
Load Conditions

In order to test the efficiency of SLB and DLB schemes,
two load environments were simulated over 12 worksta-
tions, i.e., static and dynamic load conditions.

Static load condition: Some of the available workstations
running MMC PSA are pre-loaded with background jobs
(viz. Matlab, Maple, etc.) that share the memory and CPU
cycles on those workstations. It is ensured that these load
conditions remain unchanged during the execution of PSA.
This load condition is introduced to simulate spatial hetero-

geneity on the cluster.

Dynamic load condition: Some of the available work-
stations running MMC PSA are intermittently loaded with
background jobs over time. This is carried out by repeatedly
starting these jobs and terminating them after some time.
The purpose of this load perturbation is to simulate tempo-
ral heterogeneity on the cluster.

Figures 8-(a) and (b) compare performances of the MMC
PSA’s with no load balancing (NI, IN and AY) and with
SLB (NS, IS and AS) under the static and dynamic load
conditions. Figures 8-(c) and (d) compare the MMC PSA’s
with SLB (IS and AS) and MMC PSA’s with DLB (IA and
AA) under both load conditions.

From Figure 8-(a), it is clear that, under the static load
condition, the SLB versions outperform the versions with
no load balancing, i.e., a higher speedup. Since the spatially
varying load conditions remain unchanged throughout the
entire PSA execution, adjusting the workload once in the
beginning according to the estimated computing power, as
in NS, IS and AS, is sufficient. On the other hand, in NI, IN
and AY, the spatial heterogeneity of load is not taken into ac-
count in determining the workload of each workstation and,
therefore, a significant load imbalance among the worksta-
tions is incurred, leading to a low speedup.

From Figure 8-(b), it is evident that, under the dynamic
load condition, performance of NS, IS and AS is deterio-
rated slightly in terms of speedup. This is mainly because
the load distribution does not remain the same as the ini-
tial load condition On the other hand, the speedup achieved
by the no-load balancing schemes, except for NI, is higher
in the dynamic load condition than in the static load condi-
tion. When the load on each workstation varies with time,
the overall load distribution among the workstations tends
to be averaged out, which benefits the no load balancing
schemes (compared to the case when the load remains un-
changed on each workstation).

From Figure 8-(c), it is clear that under the static load
condition, the SLB schemes perform better than the DLB
schemes in general. The speedup achieved by the SLB
schemes is higher since the spatially varying load condi-
tions remain unchanged throughout the entire PSA execu-
tion and, therefore, adjusting the workload once in the be-
ginning according to the estimated computing power is ef-
fective. Also, the DLB schemes incur the load balancing
overhead during the execution of PSA leading to a lower
speedup.

As shown in Figure 8-(d), under the dynamic load con-
dition, the speedup achieved by the DLB versions is higher
than that by the SLB versions with a marginal difference in
quality of their solutions. Performance of the SLB versions
is deteriorated because they are not adaptive to time-varying
loads on the workstations.

6. Summary

In this paper, several versions of MMC PSA for a tem-
porally heterogeneous cluster of workstations have been
developed. In order to harness heterogeneity on a cluster,
static and dynamic load balancing schemes have been in-
corporated into the MMC PSA schemes to improve the effi-
ciency of the PSA algorithms. The MMC PSA schemes de-
veloped in this study achieve high speedup and efficiency
on a loosely coupled and temporally heterogeneous cluster
of workstations, harness temporal heterogeneity by incor-
porating the simple yet effective load balancing algorithms,
obtain the solution quality close to and in some cases bet-
ter than that by the sequential SA, and scale well, particu-
larly in the asynchronous MMC PSA case, with the increas-
ing number of workstations.

References

[1] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, “Optimiza-
tion by Simulated Annealing,” Science, pp. 671-680, vol.
220, 1983.

[2] R. Azencott, “Simulated Annealing: Parallelization Tech-
niques,” John Wiley & Sons, USA, pp. 200, 1992.

[3] J.A. Chandy and P. Banerjee, “Parallel Simulated Anneal-
ing Strategies for VLSI Cell Placement,” IEEE Proc. 9 th
Intl Conf. VLSI Design, pp 37, Jan 03-06, 1996.

[4] H. Chen, N.S. Flann, and D.W. Watson, “Parallel genetic
simulated annealing: a massively parallel SIMD algorithm,”
IEEE Trans. Parallel and Distributed Systems, pp. 126-136,
Vol.9, No. 2, 1998.

[5] S.Y. Lee and K.G. Lee, “Synchronous and Asynchronous
Parallel Simulated Annealing with Multiple Markov
Chains,” IEEE Trans. Parallel and Distributed Systems, pp.
993-1008, vol.7, 1996.

[6] Georg Kliewer and Stefan Tschoke, “A General Parallel
Simulated Annealing Library and its Application in Airline
Industry,” Proc. Intl Conf Parallel Processing, IPDPS’00,
pp. 55 - 62, May 1 - 5, 2000.

[7] John A. Chandy, Sungho Kim, Balkrishna Ramkumar,
Steven Parkes and Prithviraj Banerjee, “An Evaluation of
Parallel Simulated Annealing Strategies with Application
to Standard Cell Placement, ” IEEE Trans. CAD OF Inte-
grated Circuits and Systems, pp. 398 - 410 , VOL. 16, NO.
4, April 1997.

[8] J. Knopman and Z.S. Aude, “Parallel Simulated Annealing:
An Adaptive Approach,” 11th IEEE Intl Parallel Process-
ing Symposium (IPPS ’97), pp. 552, April 01 - 05, 1997.

[9] A. Sohn, “Parallel N-ary Speculative Computation of Simu-
lated Snnealing,” IEEE Trans. Parallel and Distributed sys-
tems, pp. 997-1005, Vol. 6, No. 10, 1995.

[10] Sun Microsystems, “SUN MPI User’s Guide.”

NI NS IN IS AYAS
0

500

1000

1500

2000

2500

3000

3500

4000
g600 − 2 subgraphs

Co
st

NI NS IN IS AYAS
0

2

4

6

8

10
g600 − 2 subgraphs

Sp
ee

du
p

(a)

NI NS IN IS AYAS
0

500

1000

1500

2000

2500

3000

3500

g600 − 2 subgraphs

Co
st

NI NS IN IS AYAS
0

1

2

3

4

5

6

7

8

9

g600 − 2 subgraphs

Sp
ee

du
p

(b)

IS IA AS AA
0

500

1000

1500

2000

2500

3000

g1200 − 8 subgraphs

Co
st

IS IA AS AA
0

1

2

3

4

5

6

7

8

9
g1200 − 8 subgraphs

Sp
ee

du
p

(c)

IS IA AS AA
0

500

1000

1500

2000

2500

3000

3500
g1200 − 8 subgraphs

Co
st

IS IA AS AA
0

1

2

3

4

5

6

7

8

9

g1200 − 8 subgraphs

Sp
ee

du
p

(d)

Figure 8. Comparison between no load bal-
ancing and SLB for g600 with 2 subgrahs
under (a) static and (b) dynamic load con-
ditions, and comparison between SLB and
DLB for g1200 with 8 subgraphs under the
(c) static and (d) dynamic load conditions. 12
workstations are employed.

