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Abstract

Volunteer computing projects supported by BOINC have
been exploring new research directions. For example,
mature projects like Folding@home are moving towards
the use of a broader range of architectures and comput-
ers. Other projects such as Docking@Home are exploring
multi-scale, resource-driven and application-driven adap-
tations of the volunteer system.

This paper presents results that enforce the need for
knowledge-constructed capabilities in volunteer comput-
ing projects, i.e., the capability to drive simulations based
on application-results and resource-status. The Dock-
ing@Home project, which uses volunteer resources to study
putative drugs by computationally simulating the behav-
ior of small molecules (ligands) when docking to a protein,
serves as a case study to positively assess two key hypothe-
ses. The first hypothesis claims that the adaptive selection
of computational models for docking simulations based on
the features of the protein and ligand can positively affect
the final accuracy of the prediction. The second hypothe-
sis claims that the adaptive selection of volunteer resources
can ultimately improve project throughput.

1. Introduction

Volunteer Computing (VC) deploys computing re-
sources (e.g., desktops and notebooks) owned by volunteers
and connected through the Internet to address fundamental
problems in science. BOINC (Berkeley Open Infrastruc-
ture for Network Computing) is a well-known representa-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

tive of VC middleware. It supports VC projects in Biol-
ogy, Medicine, Mathematics, Strategy Games, Astronomy,
Physics, Chemistry, and Earth Sciences. Currently the com-
puting power of BOINC is about 420 TeraFLOPS (based
on credit granted across all projects). The total free disk
space on computers running SETI@Home, one of the first
VC projects, is approximately 12 Petabytes. This makes
BOINC a very attractive solution for computational projects
that need significant computational sampling.

VC projects supported by BOINC have been exploring
new research directions. For example, mature projects like
Folding@home are moving towards the use of a broader
range of architectures and computers. Folding@home re-
cently announced a BOINC client that runs on the Sony
PlayStation 3, which has a peak floating-point speed of
100 GFLOPS. 10,000 of these machines would yield one
PetaFLOP (quoted from CNN.com). Other projects such
as Docking@Home explore multi-scale, resource-driven
and application-driven adaptations of the system. Dock-
ing@Home, in particular, is a project that studies putative
drugs by computationally simulating the behavior of small
molecules, called ligands, when docking to a protein. Dock-
ing@Home has recently gone live and aims to:

1. model protein-ligand docking with algorithms that dy-
namically adapt to the complexity and characteristics
of the proteins and ligands under investigation: in other
words, selecting at runtime the most appropriate and
effective computational model (e.g., protein and sol-
vent representation) for a given protein-ligand com-
plex;

2. assure that these algorithms can be executed in the ”re-
quired” amount of time using large numbers of dis-
tributed VC systems: in other words, selecting at run-



time the most suitable computational resources based
on CPU speed, memory size, and network connection.

It is of vital importance that these two challenges are ad-
dressed in concert and not by themselves, because algo-
rithmic complexity translates into increased simulation time
and resource characteristics constrain project throughput.
This paper presents results that substantiate and enforce the
approach to meeting these challenges that is being pursued
in Docking@Home. In particular, the paper discusses two
main hypotheses that substantiate the need for knowledge-
constructed capabilities, i.e., the capability to drive simula-
tions based on application-results and resource-status.

• Hypothesis 1: Protein-ligand complexes are differen-
tiated by distinctive characteristics (e.g., the size and
flexibility of both the protein and ligand) and can be
grouped in test-cases accordingly. The easiest test-case
is docking a small rigid ligand with a few rotatable
bonds to a relatively rigid protein binding site, while a
difficult test-case is docking a large flexible ligand with
many rotatable bonds to a very flexible protein binding
site. Docking models of increasing complexity and
computational expense are expected to provide suffi-
cient accuracy to correctly predict difficult test-cases.
It is known that simple computationally inexpensive
docking models provide sufficient accuracy for simple
test-cases, and that these models are not adequate for
more difficult test-cases.

• Hypothesis 2: Most VC projects use simple schedul-
ing policies based on First-Come-First-Serve proto-
cols. However, some volunteer resources are more
available and reliable than others. Use of scheduling
policies based on dynamically changing availability
and reliability thresholds, which take into account fluc-
tuations of availability and reliability over the whole
population of workers, should positively affect project
throughput.

To prove our hypotheses we have greatly benefited from
SimBA, the discrete event Simulator for BOINC Appli-
cations that we developed as part of the Docking@Home
project and which we briefly describe in Section 2.2.

The remainder of this paper is structured as follows: Sec-
tion 2 provides background on BOINC, the Simulator for
BOINC Applications (SimBA), and the VC projects we fo-
cus on in this paper. Section 3 discusses application-result
driven adaptation methods, while Section 4 shows resource-
status driven adaptations. Last but not least, Section 5 con-
cludes the paper.

2. Background and Related Work

This section describes the BOINC framework, the Sim-
ulator for BOINC Applications (SimBA), and several
VC projects used to assess our hypotheses, i.e., Predic-
tor@home (P@H), the projects in the World Community
Grid (WCG), and Docking@Home (D@H).

2.1 BOINC

BOINC (Berkeley Open Infrastructure for Network
Computing) is a well-known representative of VC environ-
ments [1]. It is an open-source framework that harnesses the
computing power and storage capacity of millions of PCs
owned by the general public for large-scale scientific simu-
lations. BOINC is based on the master-worker paradigm
and uses replica computing to make sure that scientists
can trust the final results returned by the volunteers. The
BOINC server (master) does this by generating a specified
number of replicas for a work-unit (WU) and distributing
these to different volunteer computers (workers). When a
worker successfully sends back a result, it is rewarded with
credit (so-called Cobblestones) once the result has passed
certain validation checks that aim to determine whether or
not the result can be trusted. Validation is accomplished by
comparing all of the returned replicated results and making
sure at least a specified number of results are in agreement.
If this is not the case, the BOINC master will send out new
replicas until enough returned results are in agreement and
a canonical result can be created. A result may be invalid
as a result of malicious attacks, hardware malfunctions, or
software modifications. As in other VC middleware pack-
ages, the computing resources available to a BOINC project
are highly diverse: the hosts differ by orders of magnitude
in their processor speed, available RAM, disk space, and
network connection speed.

2.2 SimBA a Discrete Event Simulator for
VC Projects

SimBA (Simulator of BOINC Applications) is a dis-
crete event simulator we have developed that accurately
models the main functions of BOINC: generation, distribu-
tion, and monitoring of WUs that are executed in a highly
volatile, heterogeneous environment like Volunteer Com-
puting (VC), as well as collecting and validating results of
the executed WUs [2, 3]. The one-to-one correspondence
between the functions of BOINC and those of SimBA are
shown in Figure 1.

Figure 1.a shows the general path of a WU from its gen-
eration to the validation of its results on the BOINC master:
boxes represent actions and a label over or under the box
indicates the BOINC daemon that performs the associated
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Figure 1. Mapping of the functions of BOINC and SimBA

action. Figure 1.b shows the same path in SimBA where the
actions are events (boxes) driven by entities (the label over
or under the boxes). More in particular, SimBA realistically
simulates the creation, characterization, and termination of
workers (volunteer computers) by using trace files obtained
from real BOINC projects, e.g., Predictor@home [7]. A
trace file contains information that characterizes workers,
e.g., creation time, OS, and life span. Given a trace file,
SimBA:

• generates WUs and creates from each a number of in-
stances or replicas;

• distributes tasks according to worker requests and the
selected scheduling policy;

• models worker volatility and heterogeneity using the
input worker characterization;

• determines the status of a worker’s returned results us-
ing the worker’s error and success rates;

• determines the validity of successfully completed
replicated tasks using the quorum, i.e., the required
number of ”agreeing” results; and

• computes the performance of the simulated VC project
in terms of throughput.

Currently SimBA supports Homogeneous Redun-
dancy [8], First-Come-First-Serve as well as fixed and vari-
able threshold-based scheduling policies [2, 3]. Our expe-
rience to date indicates that SimBA is a reliable tool for
performance prediction of VC projects. Preliminary results
show that SimBA’s predictions of P@H performance are
within approximately 5% of the performance reported by
this BOINC project [3].

2.3 Traces from Predictor@home and the
World Community Grid

Predictor@home (P@H) is a BOINC project for large-
scale protein structure prediction [7]. The protein struc-
ture prediction algorithm in P@H is a multi-step pipeline
that includes: (a) a conformational search using a Monte
Carlo simulated-annealing approach using MFold [6]; and
(b) protein refinement, scoring, and clustering using the
CHARMM Molecular Dynamics simulation package [5].
World Community Grid (WCG) is a project supported by
IBM that makes grid technology available to the public and
not-for-profit organizations. WCG currently supports sev-
eral VC projects: Help Defeat Cancer, FightAIDS@Home
and Human Proteome Folding [11]. In Section 4 we
use traces from P@H MFold simulations as well as from
projects associated with WCG to assess Hypothesis 2.

2.4 Docking@Home

Docking@Home is a VC project that aims to investigate
putative drugs computationally by simulating the docking
of small molecules, called ligands, to proteins and predict-
ing the geometry of the protein-ligand complex. In vivo,
when a ligand binds to a protein the functionality of the
protein changes, which is the desired action of a drug. For
example, an enzyme is a protein that catalyzes a biochemi-
cal reaction: a small molecule (ligand) binds to the protein,
which converts the ligand into a product and releases it. A
competitive inhibitor to this process is a small molecule that
is structurally similar to the ligand but cannot be converted
into a product, thus inhibiting enzyme activity. Many drugs
are designed to inhibit the activity of a specific enzyme in
this way. Another example is a receptor protein that rec-
ognizes a signal molecule, called an agonist, that binds to
the protein and sends a biochemical signal. An antagonist
is a small molecule (ligand) that may bind to the protein re-
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ceptor but cannot trigger the signal, or blocks the binding
of agonists, thus inhibiting receptor activity. Drugs that are
targeted to such protein receptors aim to either increase or
decrease the level of the signal that is sent.

Given a protein-ligand complex formed by a protein and
a ligand, a WU in Docking@Home simulates the docking
process of the ligand to the protein-binding site. This pro-
cess consists of a sequence of independent trials [9]. Each
trial begins with a randomly selected starting conformation
of the ligand and proceeds by investigating the docking of
a set of randomly selected orientations of this ligand con-
formation at a specific docking site of the protein (docking
attempts). Protein-binding sites might be known a-priori
through information available in a protein-ligand database
such as LPDB [4] or have to be identified and investigated
in preliminary simulations.

In Docking@Home, the CHARMM program is used to
perform the docking attempts in terms of Molecular Dy-
namics (MD) simulations and minimizations [9, 12]. The
docking model is characterized by three factors: protein-
ligand representation, solvent representation, and sampling
strategy. Different levels (scales) of complexity can be cho-
sen for the three factors, constituting multi-scale modeling
of the protein-ligand docking process. The protein-ligand
representation spans scale from a rigid to a flexible repre-
sentation of proteins. The solvent representation spans scale
from a less accurate to a more accurate modeling of water
treatment. The sampling strategy spans scale from a fixed
to an adaptive sampling of the protein-ligand docking space
(i.e., length of single docking trials and number of trials per
protein-ligand complex). Figure 2 shows an example of a
trial for the LPDB protein-ligand complex 1cnx in which
different docking attempts of the ligand to the protein are
performed.

The search for putative drugs (i.e., ligands that dock well
in a protein) is a search in a large space of potential con-
formations and, therefore, is a very time- and compute-
intensive process, which can significantly benefit from us-
ing VC resources. The conformational space of a single
ligand is very large, and large-scale virtual screening efforts
such as the ”Find-a-Drug” project aim to dock more than
one million ligands to a single target protein.

3. Moving towards Application-Result Driven
Simulations

3.1 Our Hypothesis

While searching for effective techniques to drive simula-
tions based on application-results in Docking@Home, our
hypothesis is that protein-ligand complexes are differenti-
ated by distinctive characteristics (e.g., the size and flexi-

docking -
MD simulation

proteinligand random conformation
of ligand

random orientation
of ligand

docking -
MD simulation

docking -
MD simulation

Figure 2. A docking trial in Docking@Home

bility of both the protein and ligand) and can be grouped in
more or less complex test-cases accordingly. Docking mod-
els of increasing complexity and computational expense are
expected to provide sufficient accuracy to correctly predict
difficult test-cases but are too computationally expensive for
simpler test-cases for which simple docking models already
provide sufficient accuracy.

3.2 Computational Assessment

To assess our hypothesis we ran the following compu-
tational test: we considered 26 protein-ligand complexes
from the LPDB database [4] in which the ligands have dif-
ferent numbers of rotable bonds. Rotable bonds in a ligand
represent its flexibility to change its conformation. We also
considered three different docking models:

• Model 1: a docking protocol that employs a coarse rep-
resentation of a protein, i.e., a lattice with 1 Å distance
between two consecutive points and 10 docking trials
per protein-ligand complex

• Model 2: a docking protocol that employs a coarse rep-
resentation of a protein, i.e., a lattice with 1 Å distance
between two consecutive points, but 20 docking trials
per protein-ligand complex

• Model 3: a docking protocol that employs a finer rep-
resentation of a protein, i.e., a lattice with 0.25 Å dis-
tance between two consecutive points and 40 docking
trials per protein-ligand complex

Model 3 is considered only for ligands with more than three
rotable bonds. We cluster complexes based on the number
of rotable bonds and observe whether different models pro-
vide different results (with different accuracies) based on
the complexity of the ligand: simple ligands are those with
three or fewer rotable bonds, while complex ligands are
those with more than three rotable bonds. Figure 3 presents
the accuracy of the three docking models. For each model
and associated docking attempts, best-docked structures are
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identified at runtime and are those with lowest energy. The
accuracy of any given docking attempt is measured by the
Root-Mean-Square-Deviation (RMSD) of all non-hydrogen
ligand atoms between these lowest-energy structures from
the docking attempt and the ligand’s position in the crystal
structure. Good structures are those with RMSDs smaller
than two Å; however, structures with RMSDs between two
and three Å are considered good results for difficult test-
cases. As shown in the figure, only in six cases, over a to-
tal of 26, do we get an improvement in accuracy (RMSD
decreases) by increasing the number of trials from 10 to
20. For ligands with a higher flexibility (number of rotable
bonds greater than three), we consider the more accurate
model (Model 3), with a finer lattice structure, which re-
sults in a larger memory footprint and increased execution
time for each docking attempt. In these cases, we observe a
significant improvement in accuracy for 12 of the 15 com-
plexes. We do not apply the more sophisticated Model 3 to
small and inflexible ligands because this level of complexity
is not needed. Performance analysis of the different models
is presented in [9].

3.3 Work in Progress

The results in Section 3.2 encourage us to pursue the
identification of protein-ligand characteristics and the adap-
tation of docking models to the complex’s characteristics.
In particular, in Docking@Home we are extending the
complexity of the models and the factors that character-
ize the protein-ligand docking process towards a multi-scale
modeling representation that eventually will comprise three
spanning scales (dimensions) of docking assumptions:

• Protein-ligand representation - from a rigid to a flexi-
ble protein representation.

• Solvent representation - from a constant dielectric co-
efficient to a distance-dependent dielectric coefficient
and ultimately an implicit representation of water us-
ing a Generalized Born model.

• Sampling strategy - from a fixed number of trials per
attempt and a fixed number of orientations per confor-
mation to a variable number of trials per attempt and a
variable number of orientations per conformation.

Selection of these spanning scales can be performed manu-
ally but this would result in time-demanding tuning of the
model by the scientists for each protein-ligand complex. On
the other hand, an automatic selection of models at runtime
would facilitate the scientists’ work. To drive the selection
of the most suitable scales at runtime, for a given protein-
ligand complex, we are studying the effectiveness and the
cost of using machine learning techniques such as fast ker-
nel classifiers, support vector machines, support vector re-

gression, and active learning combining off-line evolution-
ary strategies. We plan to deliver results of this study in the
second phase of the Docking@Home project.

4. Moving towards Resource-Status Driven
Simulation

4.1 Our Hypothesis

While looking for effective solutions for resource-driven
simulations, our hypothesis is that the use of scheduling
policies based on dynamically changing availability and
reliability thresholds, which take into account fluctuations
of availability and reliability over the whole population of
workers, should positively affect project throughput.

4.2 Computational Assessment

To assess this hypothesis some initial definitions are
needed. First of all, metrics are needed to quantify the avail-
ability and reliability of volunteer computers. In [2, 10] we
propose availability as the ratio of the number of work-unit
(WU) replicas returned to the number of WU replicas as-
signed to a host. This ratio is measured over a certain in-
terval of time or a certain number of bundles of replicas
assigned to that host. As pointed out in [2, 10], hosts are
error prone and might return fewer results than replicas as-
signed. Again, in [2, 10], we define reliability as the ra-
tio of the number of valid results to the number of results
returned without errors. A valid result is one that passed
the validation check in a BOINC project, which can be ei-
ther a fuzzy or a bit-to-bit comparison. Malicious attacks,
hardware malfunctions, or software modifications are fac-
tors that could cause differences in successfully returned
results. The two metrics that we use to quantify avail-
ability and reliability are only two of several possibilities.
Developers of the World Community Grid are consider-
ing other metrics using claimed and granted credits [11].
To validate our hypothesis we use SimBA for the simula-
tion of a VC project and traces from the Predictor@home
(P@H) BOINC project. The simulated project has a mini-
mum number of three replicas per WU and an estimated 30
GFLOPS per WU. There are 14,000 workers in the P@H
traces and we simulate a project run of 12 days. Last but
not least, we apply Homogeneous Redundancy (HR) [8] in
our simulation and use a bit-to-bit validation of the results.
HR uses the fact that replicas are assigned to computation-
ally equivalent machines (e.g., only to Windows machines
with Intel processors). In this scenario we consider three
different scheduling policies:

• Policy 1: First-Come-First-Serve (FCFS) - replicas are
assigned to any worker that asks for work (availability
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Figure 3. Comparison of docking accuracy for different protein-ligand complexes and models

and reliability thresholds are both zero)

• Policy 2: Fixed thresholds - replicas are assigned to
workers that have an availability and a reliability above
some fixed thresholds defined by the project adminis-
trator

• Policy 3: Dynamically adaptable thresholds - a heuris-
tic is applied at a regular interval to vary the thresh-
olds (ranging from .1 to 1) at runtime; if the num-
ber of replicas waiting for distribution is greater than
the number of work-unit (WU) replica requests gener-
ated by ineligible hosts, i.e., hosts with reliability and
availability levels below the current thresholds, then
both the availability and reliability thresholds are de-
creased by 0.1 (10%), otherwise, they are increased by
0.1 (10%)

Table 1 presents the results of the related simulation. We
correlate the results of the second and third policy to the
first, the FCFS policy, which is the default scheduling pol-
icy in BOINC. As can be seen in the table, with the fixed
threshold policy, which excludes those machines that have
demonstrated poor availability or have returned only a few
valid results, the number of generated WUs remains the
same but the number of replicas that are distributed to vol-
unteer computers decreases. Therefore, this reduction is not
due to less sampling but to the significant reduction in er-
rors (-64.1%) and the consequent reduction in production
of additional replicas (-11.2%). The BOINC master keeps
track of distributed replicas and assigns each WU replica
a deadline for completion. If a WU replica does not com-
plete within this defined time or if it fails, then the BOINC
master classifies it as timed-out or error, respectively. Then,
the master proceeds with the generation and distribution of
a new replica of the WU until a specified quorum of WU

replicas needed for validation of the returned results is at-
tained. In P@H and SimBA the quorum dictates that three
results must match; the maximum number of replicas per
WU is five.

The number of average replicas per WU drops from
3.8 for FCFS to 3.2 for the fixed threshold policy. The
ideal thresholds for the fixed threshold policy depend on
the application and the available VC resources. By adopt-
ing dynamically adaptable thresholds that are modified in
response to changes in VC resource availability, we ob-
serve in Table 1 that we get even better performance than
using the fixed thresholds: the number of valid WU re-
sults increases by 2.8% and the average number of repli-
cas per WU remains 3.2. In addition to improving project
throughput, by varying the thresholds at runtime, we can
regain previously ineligible volunteer computers and meet
the needs of VC projects with diverse ideal thresholds. Fig-
ure 4 shows that, although different VC projects with dif-
ferent resources show similar tendencies as the availability
and reliability thresholds increase, each VC project has its
own sweet spot(s): the availability and reliability thresh-
olds for which the percentage of valid results is the high-
est. The figure shows this behavior for three different VC
projects: P@H, FightAIDS@Home, and the Help Defeat
Cancer project. For each project we have used SimBA and
the project’s traces to generate the number of WUs and mea-
sure the percentage of these that are valid.

Table 1 and Figure 4 show that our hypothesis of adapt-
ing the threshold levels according to the resource-status by
using simple heuristics results in better project throughput.
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Table 1. P@H performance of different scheduling polices based on SimBA results
FCFS Fixed Thresholds Dynamically Adaptable

(Best case: Thresholds
Avail. 95%; Rel. 75%)

Generated WUs 78658 78886 +0.2% 78621 ∼0%
Generated WU Replicas 284140 252258 -11.2% 253611 -10.7%

Errors (Replica) 38491 13802 -64.1% 14424 -62.5%
Valid WUs 70948 71201 +0.4% 72929 +2.8%

Average Replicas per WU 3.8 3.2 -11.1% 3.2 -11.1%

Predictor@home FightAIDS@Home Help Defeat Cancer

Number of WUs generated Number of WUs generated Number of WUs generated

Percentage of valid results Percentage of valid results Percentage of valid results
(a) (b) (c)

Figure 4. Work-unit generated and their percentage of valid results for different VC projects

4.3 Work in Progress

Our work is moving towards the comparison and con-
trast of a wider range of metrics to effectively capture VC
resource-status. Currently we are comparing credit-based
metrics (claimed and granted credits) with our availability
and reliability metrics. SimBA has been serving as a useful
tool to study and quantify the effectiveness of new metrics
as well as new scheduling techniques based on heuristics
and machine learning techniques. As shown in Figure 4
(b) and (c), we have extended our database of traces to in-
clude traces from the World Community Grid project and
we will soon have new traces from the Docking@Home
project (currently in an alpha test phase). The quantifica-
tion of the scheduling effectiveness of the different adap-
tive scheduling techniques in VC projects using SimBA will
include the analysis of time to distribute WU replicas, the
number of ineligible volunteer computers, and the through-
put of valid results. Another critical aspect is how to use
ineligible machines: we do not want to let these machines

starve. We are currently studying new scheduling strategies
that assign priorities to WU replicas and distribute them
to hosts based on these priorities, e.g., high priority repli-
cas are assigned to highly available and reliable machines
and vice versa, low priority replicas are assigned to less
available and less reliable machines. Ultimately, we will
integrate the most effective scheduling techniques in Dock-
ing@Home.

5. Conclusion

Volunteer Computing (VC) environments are at the edge
of the frontier of heterogeneous computing. Even so, they
use very simple scheduling policies and application sim-
ulation protocols. As indicated by the results presented
in the paper, dynamic adaptivity in terms of both ap-
plication modeling and resource scheduling can provide
a path to the next generation of VC. Our results point
out the need for knowledge-constructed capabilities in VC
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projects: knowledge of application- and system charac-
teristics should drive runtime adaptations of the genera-
tion and distribution of computation. The Docking@Home
project is studying methods and strategies to build these
knowledge-constructed capabilities and use them to adapt
both application modeling and resource scheduling to ulti-
mately achieve higher project throughput.
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